Skip to main content

Early Radiation of Biomineralizing Phyla

  • Chapter
Origin and Early Evolution of the Metazoa

Part of the book series: Topics in Geobiology ((TGBI,volume 10))

Abstract

Phanerozoic rocks, from the Cambrian onward, teem with fossils of biomineralizing organisms. The long Proterozoic sequence, up to its very contact with the Phanerozoic, reflects an almost total absence of biologically controlled mineralization. Indications of calcareous incrustations of Proterozoic photosynthesizing organisms (Klein et al., 1987) are at most questionable, and in any case do not imply more than that mineralization may have been indirectly induced by biological activity. Records of biogenic magnetite in the Proterozoic (Chang and Kirschvink, 1989) suggest more direct biological control and are thus of considerable interest with regard to the early evolution of biomineralization. In terms of structural and mineralogical diversity, however, the transition to the Phanerozoic nevertheless represents a quantum jump.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abaimova, G. P., 1978, Anabaritids—Ancient fossils with carbonate skeleton, in: New Material on the Stratigraphy and Paleontology of Siberia (S. V. Sukhov, ed.), Trudy Sibirsk. Nauchno-Issled. Inst. Geol. Gefiz. Mineral 260:77–83.

    Google Scholar 

  • Allison, C. W., and Hilgert, J. W., 1986, Scale microfossils from the Early Cambrian of Northwest Canada, J. Paleontol. 60:973–1015.

    Google Scholar 

  • Babcock, L. E., and Feldmann, R. M., 1986, The phylum Conulariida, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Clarendon Press, Oxford, pp. 135–147.

    Google Scholar 

  • Bedford, R., and Bedford, W. R., 1934, New species of Archaeocyathinae, Mem. Kyancutta Mus. 1:1–7.

    Google Scholar 

  • Bedford, R., and Bedford, J., 1936, Further notes on Cyathospongia (Archaeocyathi) and other organisms from the Lower Cambrian of Beltana, South Australia, Mem. Kyancutta Mus. 3:21–26.

    Google Scholar 

  • Bendix-Almgren, S. E., and Peel, J. S., 1988, Hadimopanella from the Lower Cambrian of North Greenland: Structure and affinities, Bull. Geol. Soc. Den. 37:83–103.

    Google Scholar 

  • Bengtson, S., 1968, The problematic genus MobergeIJa from the Lower Cambrian of the Baltic area, Lethaia 1:325–351.

    Article  Google Scholar 

  • Bengtson, S., 1970, The Lower Cambrian fossil Tommotia, Lethaia 3:363–392.

    Article  Google Scholar 

  • Bengtson, S., 1976, The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function, Lethaia 9:185–206.

    Article  Google Scholar 

  • Bengtson, S., 1977, Early Cambrian button-shaped phosphatic microfossils from the Siberian Platform, Palaeontology 20:751–762.

    Google Scholar 

  • Bengtson, S., 1983, The early history of the Conodonta, Fossils Strata 15:5–19.

    Google Scholar 

  • Bengtson, S., 1985, Taxonomy of disarticulated fossils, J. Paleontol. 59:1350–1358.

    Google Scholar 

  • Bengtson, S., 1986, The problem of the Problematica, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Clarendon Press, Oxford, pp. 3–11.

    Google Scholar 

  • Bengtson, S., 1990, Maikhanella and Siphogonuchites: Problems of skeleton formation in Cambrian metazoans, in: Palaeontological Association, Durham 1990, Abstracts, p. 3.

    Google Scholar 

  • Bengtson, S., and Conway Morris, S., 1984, A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia, Lethaia 17:307–329.

    Article  Google Scholar 

  • Bengtson, S., and Missarzhevsky, V. V., 1981, Coeloscleritophora—A major group of enigmatic Cambrian metazoans, in: Short Papers for the Second International Symposium on the Cambrian System 1981 (M. E. Taylor, ed.), U. S. Geological Survey Open-File Report 81-743, pp. 19-21.

    Google Scholar 

  • Bengtson, S., Matthews, S. C., and Missarzhevsky, V. V., 1986, The Cambrian netlike fossil Microdic-tyon, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Clarendon Press, Oxford, pp. 97–115.

    Google Scholar 

  • Bengtson, S., Fedorov, A. B., Missarzhevsky, V. V., Rozanov, A. Yu., Zhegallo, E. A., and Zhuravlev, A. Yu., 1987, Tumulduria incomperta and the case for Tommotian trilobites, Lethaia 20:361–370.

    Article  Google Scholar 

  • Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N., 1990, Early Cambrian fossils from South Australia, Mem. Australas. Assoc. Palaeontol. 9:1–364.

    Google Scholar 

  • Bergquist, P. R., 1985, Poriferan relationships, in: The Origins and Relationships of Lower Invertebrates (S. Conway Morris, J. D. George, R. Gibson, and H. M. Platt, eds.), Clarendon Press, Oxford, pp. 14–27.

    Google Scholar 

  • Bergström, J., 1991, Metazoan evolution around the Precambrian-Cambrian transition, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris, eds.), Cambridge University Press, Cambridge, pp. 25–34.

    Google Scholar 

  • Bischoff, G. C. O., 1989, Byroniida new order from early Palaeozoic strata of eastern Australia (Cnidaria, thecate scyphopolyps), Senckenb. Lethaea 69:467–521.

    Google Scholar 

  • Boersma, A., 1978, Foraminifera, in: Introduction to Marine Micropaleontology (B. U. Haq and A. Boersma, eds.), Elsevier, New York, pp. 19–77.

    Google Scholar 

  • Boogard, M., van den, 1989, Isolated tubercles of some Palaeoscolecida, Scripta Geol. 90:1–12.

    Google Scholar 

  • Bovee, E. C., 1981, Distribution and forms of siliceous structures among Protozoa, in: Silicon and Siliceous Structures in Biological Systems (T. L. Simpson and B. E. Volcani, eds.), Springer, New York, pp. 233–279.

    Chapter  Google Scholar 

  • Brasier, M. D., and Hewitt, R. A., 1979, Environmental setting of fossiliferous rocks from the uppermost Proterozoic-lower Cambrian of central England, Palaeogeogr. Palaeoclimatol. Palaeoecol. 27:35–57.

    Article  Google Scholar 

  • Brasier, M. D., and Singh, P., 1987, Microfossils and Precambrian-Cambrian boundary stratigraphy at Maldeota, Lesser Himalayas, Geol. Mag. 124:323–345.

    Article  Google Scholar 

  • Broecker, W. S., 1971, A kinetic model for the chemical composition of sea water, Quaternary Research 1:188–207.

    Article  CAS  Google Scholar 

  • Butterfield, N. J., 1990, A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott, Paleobiology 16:287–303.

    Google Scholar 

  • Carlisle, E. M., 1981, Silicon in bone formation, in: Silicon and Siliceous Structures in Biological Systems (T. L. Simpson and B. E. Volcani, eds.), Springer, New York, pp. 69–94.

    Chapter  Google Scholar 

  • Carter, J. G., Lutz, R. A., and Tevesz, M. J. S., 1990, Shell microstructural data for the Bivalvia. Part VI. Orders Modiomorphoida and Mytiloida, in: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (J. G. Carter, ed.), pp. 391–411, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Chang, S.-B. R., and Kirschvink, J. L., 1989, Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization, Ann. Rev. Earth Planet. Sci. 1989(17):169–195.

    Article  Google Scholar 

  • Chen Junyuan, Hou Xianguang, and Lu Haozhi, 1989a, Early Cambrian netted scale-bearing worm-like sea animal, Acta Palaeontol. Sinica 28(1):1–16 [in Chinese].

    Google Scholar 

  • Chen Junyuan, Hou Xianguang, and Lu Haozhi, 1989b, Lower Cambrian leptomitids (Demospongae), Chengjiang, Yunnan, Acta Palaeontol. Sinica 28(1):17–31 [in Chinese].

    Google Scholar 

  • Chen Junyuan, Hou Xianguang, and Li Guoxiang, 1990, New Lower Cambrian demosponges—Quad-rolaminiella gen. nov. from Chengjiang, Yunnan, Acta Palaeontol. Sinica 29(4):402–414.

    Google Scholar 

  • Chen Menge, 1982, The new knowledge of the fossil assemblages from Maidiping section, Emei County, Sichuan with reference to the Sinian-Cambrian boundary, Scientia Geol. Sinica 1982:253–262 [in Chinese].

    Google Scholar 

  • Cherchi, A., and Schroeder, R., 1985, Middle Cambrian Foraminifera and other microfossils from SW Sardinia, Boll Soc. Paleontol. Ital. 1985(23):149–160.

    Google Scholar 

  • Conway Morris, S., 1977, A new metazoan from the Cambrian Burgess Shale of British Columbia, Palaeontology 20:623–640.

    Google Scholar 

  • Conway Morris, S., 1985, The Middle Cambrian Metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada, Philos. Trans. R. Soc. Lond. B 307:507–586.

    Article  Google Scholar 

  • Conway Morris, S., 1986, The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale), Palaeontology 29:423–467.

    Google Scholar 

  • Conway Morris, S., and Chen Menge, 1989, lower Cambrian anabaritids from South China, Geol. Mag. 126:615–632.

    Article  Google Scholar 

  • Conway Morris, S., and Chen Menge, 1990a, Blastulospongia polytreta n. sp., an enigmatic organism from the Lower Cambrian of Hubei, China, J. Paleontol. 64:26–30.

    Google Scholar 

  • Conway Morris, S., and Chen Menge, 1990b, Tommotiids from the Lower Cambrian of South China, J. Paleontol. 64:169–184.

    Google Scholar 

  • Conway Morris, S., and Chen Menge, 1991, Cambroclaves and paracarinachitids, early skeletal prob-lematica from the Lower Cambrian of South China, J. Paleontol. 34:357–397.

    Google Scholar 

  • Conway Morris, S., and Peel, J. S., 1990, Articulated halkieriids from the Lower Cambrian of north Greenland, Nature 345:802–805.

    Article  Google Scholar 

  • Cook, P. J., and Shergold, J. H., 1984, Phosphorus, phosphorites and skeletal evolution at the Pre-cambrian-Cambrian boundary, Nature 308:231–236.

    Article  CAS  Google Scholar 

  • Cook, P. J., and Shergold, J. H. (eds.) 1986, Phosphatic Deposits of the World, Vol. 1, Proterozoic and Cambrian Phosphorites, Cambridge University Press, Cambridge.

    Google Scholar 

  • Danielli, H. M. C., 1981, The fossil alga Girvanella Nicholson & Etheridge, Bull. Br. Mus. Nat. Hist. (Geol.) 35:79–107.

    Google Scholar 

  • Debrenne, F., and Vacelet, J., 1984, Archaeocyatha: Is the sponge model consistent with their structural organization?, in: Recent Advances in the Paleobiology and Geology of the Cnidaria (W. A. Oliver, Jr., W. J. Sando, S. D. Cairns, A. G. Coates, et al., eds.), Palaeontogr. Am. 54:358–369.

    Google Scholar 

  • Debrenne, F., and Wood, R., 1990, A new Cambrian sphinctozoan sponge from North America, its relationship to archaeocyaths and the nature of early sphinctozoans, Geol. Mag. 127:435–443.

    Article  Google Scholar 

  • Debrenne, F., Termier, H., and Termier, G., 1970, Radiocyatha. Une nouvelle classe d’organismes primitifs du Cambrien inférieur, Bull. Soc. Géol. Fr. 7 Ser. 12:120–125.

    Google Scholar 

  • Debrenne, F., Termier, H., and Termier, G., 1971, Sur de nouveaux représentans de la classe des Radiocyatha. Essai sur l’évolution des Métazoaires primitifs, Bull. Soc. Géol. Fr. 7 Ser. 13:439–444.

    Google Scholar 

  • Debrenne, F., Rozanov, A. Yu., and Webers, G. F., 1984, Upper Cambrian Archaeocyatha from Antarctica, Geol. Mag. 121:291–299.

    Article  Google Scholar 

  • Debrenne, F., Zhuravlev, A. Yu., and Rozanov, A. Yu., 1989, Regular archaeocyathans, Trudy Paleontol. Inst. Akad. Nauk SSSR 233:1–196.

    Google Scholar 

  • Debrenne, F., Lafuste, J., and Zhuravlev, A., 1990, Coralomorphes et spongiomorphes à l’aube du Cambrien, Bull. Mus. Nat. Hist. Nat. Paris 4e Sér. 12:17–39.

    Google Scholar 

  • Degens, E. T., Kazmierczak, J., and Ittekott, V., 1985, Cellular response to Ca2+ stress and its geological implications, Acta Palaeontol. Polon. 30(3-4):115–135.

    Google Scholar 

  • Derstler, C., 1981, Morphological diversity of Early Cambrian echinoderms, in: Short Papers for the Second International Symposium on the Cambrian System 1981 (M. E. Taylor, ed.), U. S. Geological Survey Open-File Report 81-743, pp. 71-75.

    Google Scholar 

  • Ding Weiming and Qian Yi, 1988, Late Sinian to Early Cambrian small shelly fossils from Yangjiaping, Shimen, Hunan, Acta Micropalaeontol. Sinica 5(1):39–55 [in Chinese].

    Google Scholar 

  • Dzik, J., 1986, Chordate affinities of the conodonts, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Clarendon Press, Oxford, pp. 240–254.

    Google Scholar 

  • Fedonkin, M. A., 1985, The non-skeletal fauna of the Vendian: A promorphological analysis, in: The Vendian System, Vol. 1, Paleontology (B. S. Sokolov and A. B. Ivanovskij, eds.), Nauka, Moscow, pp. 10–69 [in Russian].

    Google Scholar 

  • Fedorov, A. B., Egorova, L. I., and Savitskij, V. E., 1979, First find of oldest trilobites in the lower parts of the Lower Cambrian Tommotian Stage (R. Aldan), Doklady Akad. Nauk SSSR 249:1187–1190 [in Russian].

    Google Scholar 

  • Finks, R. M., 1983, Fossil Hexactinellida, in: Sponges and Spongiomorphs—Notes for a Short Course (T. Broadhead, ed.), University of Tennessee, Department of Geological Sciences, Studies in Geology, No. 7, pp. 101–115.

    Google Scholar 

  • Fisher, D. W., 1962, Small conoidal shells of uncertain affinities, in: Treatise on Invertebrate Paleontology, Part W., Miscellanea (R. C. Moore, ed.), American Geological Society and University of Kansas Press, Lawrence, Kansas, pp. W98–W143.

    Google Scholar 

  • Fonin, V. D., and Smirnova, T. N., 1967, A new group of problematic Early Cambrian organisms and some methods of preparing them, Paleontol. Zh. 1967(2):15–27 [in Russian].

    Google Scholar 

  • Fortey, R. A., and Holdsworth, B. K., 1971, The oldest well-preserved Radiolaria, Boll Soc. Paleontol Ital 10(1):35–41.

    Google Scholar 

  • Føyn, S., and Glaessner, M. F., 1979, Platysolenites, other animal fossils, and the Precambrian-Cambrian transition in Norway, Norsk Geol Tidsskrift 59:25–46.

    Google Scholar 

  • Germs, G. J. B., 1972, The stratigraphy and paleontology of the Lower Nama Group, South West Africa, Univ. Cape Town Dept Geol Precambrian Res. Unit Bull 12:1–250.

    Google Scholar 

  • Glaessner, M. F., 1963, Major trends in the evolution of the Foraminifera, in: Evolutionary Trends in Foraminifera (G. H. R. von Koenigswald, ed.), Elsevier, Amsterdam, pp. 9–24.

    Google Scholar 

  • Glaessner, M. F., 1976, Early Phanerozoic annelid worms and their geological and biological significance. J. Geol. Soc. Lond. 132:259–275.

    Article  Google Scholar 

  • Gorjansky, W. Ju., and Popov, L. Ye., 1986, On the origin and systematic position of the calcareous-shelled inarticulate brachiopods, Lethaia 19:233–240.

    Article  Google Scholar 

  • Grant, S. W. F., 1990, Shell structure and distribution of CJoudina, a potential index fossil for the terminal Proterozoic, Am. J. Sci. 290(A):261–294.

    PubMed  Google Scholar 

  • Grant, S. W. F., Knoll, A. H., and Germs, G. J. B., 1991, Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: Origin, diagenesis, and implications, J. Paleontol. 65:1–18.

    PubMed  CAS  Google Scholar 

  • Grigor’eva, N. V., 1980, On the question of microstructural investigations of hyolithelminths, in: 26th International Geological Congress. Paleontological and Stratigraphie Reports of Soviet Geologists, Nauka, Moscow, pp. 49–55 [in Russian].

    Google Scholar 

  • Grigor’eva, N. V., and Zhegallo, E. A., 1979, To the study of the microstructure of some Tommotian fossils, Paleontol Zh. 1979(2):142–144 [in Russian].

    Google Scholar 

  • He Tinggui, 1987, Early Cambrian conulariids from the Yangtze Platform and their early evolution, J. Chengdu College Geol 14(2):7–18 [in Chinese].

    Google Scholar 

  • He Tinggui, Pei Fang, and Fu Guanghong, 1984, Some small shelly fossils from the Lower Cambrian Xinji Formation in Fangcheng County, Henan Province, Acta Palaeontol. Sinica 23:350–357 [in Chinese].

    Google Scholar 

  • Hill, D., 1972, Archaeocyatha, in: Treatise on Invertebrate Paleontology, Part El, 2nd ed. (C. Teichert, ed.), Geological Society of America and University of Kansas Press, Lawrence, Kansas, pp. El–E158.

    Google Scholar 

  • Hinz, I., 1987, The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England, Pa-laeontogr. A 198(l-3):41–100.

    Google Scholar 

  • Hinz, I., Kraft, P., Mergl, M., and Müller, K. J., 1990, The problematic Hadimopanella, Kaimenella, Milaculum and Utahphospha identified as sclerites of Palaeoscolecida, Lethaia 23:217–221.

    Article  Google Scholar 

  • Hou Xianguang, 1987a, Two new arthropods from Lower Cambrian, Chengjiang, eastern Yunnan, Acta Palaeontol Sinica 26:236–256 [in Chinese].

    Google Scholar 

  • Hou Xianguang, 1987b, Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan, Acta Palaeontol. Sinica 26:272–285 [in Chinese].

    Google Scholar 

  • Hou Xianguang, 1987c, Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan, Acta Palaeontol Sinica 26:286–298 [in Chinese].

    Google Scholar 

  • Hou Xianguang, 1987d, Oldest Cambrian bradoriids from eastern Yunnan, in: Stratigraphy and Palaeontology of Systemic Boundaries in China—Precambrian-Cambrian Boundary 1, Nanjing University Publishing House, Nanjing, China, pp. 537–545.

    Google Scholar 

  • Hou Xianguang and Chen Junyuan, 1989, Early Cambrian tentacled worm-like animals (Facivermis gen. nov.) from Chengjiang, Yunnan, Acta Palaeontol. Sinica 28:32–41 [in Chinese].

    Google Scholar 

  • Huber, B., 1991, Micropaleontology, Geotimes 1991(2):34–35.

    Google Scholar 

  • Hurd, D. C., 1973, Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific, Geochim. Cosmochim. Acta 37:2257–2282.

    Article  CAS  Google Scholar 

  • James, N. P., and Klappa, C. F., 1983, Petrogenesis of Early Cambrian reef limestones, Labrador, Canada, J. Sedment. Petrol 53:1051–1096.

    CAS  Google Scholar 

  • Jankauskas, T. V., 1972, Lower Cambrian cribricyathans from Siberia, in: Problems in the Biostratigraphy and Paleontology of the Lower Cambrian of Siberia (I. T. Zhuravleva, ed.), Nauka, Moscow, pp. 161–183 [in Russian].

    Google Scholar 

  • Jell, J. S., 1984, Cambrian cnidarians with mineralized skeletons, in: Recent Advances in the Paleobiology and geology of the Cnidaria (W. A. Oliver, Jr., W. J. Sando, S. D. Cairns, A. G. Coates, et al., eds.), Palaeontogr. Am. 54:105–109.

    Google Scholar 

  • Jell, J. S., 1979, Plumulites and the machaeridian problem, Alcheringa 3:253–259.

    Article  Google Scholar 

  • Jell, P. A., 1981, Thambetolepis delicata gen. et sp. nov., an enigmatic fossil from the Early Cambrian of South Australia, Alcheringa 5:85–93.

    Article  Google Scholar 

  • Johnson, R. C., 1964, The community approach to paleoecology, in: Approaches to Paleoecology (J. Imbrie and N. Newell, eds.), Wiley, New York, pp. 107–134.

    Google Scholar 

  • Jones, P. J., and McKenzie, K. C., 1980, Queensland Middle Cambrian Bradoriida (Crustacea): New taxa, palaeobiogeography and biological affinities, Alcheringa 4:203–225.

    Article  Google Scholar 

  • Jones, W. C., 1970, The composition, development, form and orientation of calcareous sponge spicules, Symp. Zool. Soc. Lond. 25:91–123.

    Google Scholar 

  • Jones, W. C., 1979, The microstructure and genesis of sponge biominerals, in: Biologie des spongiaires, Colloq. Int. CNRS 291:425–447.

    CAS  Google Scholar 

  • Kazmierczak, J., and Degens, E. T., 1986, Calcium and the early eukaryotes, Mitt. Geol. Palaeontol. Inst. Univ. Hamburg 61:1–20.

    Google Scholar 

  • Kazmierczak, J., Ittekott, V., and Degens, E. T., 1985, Biocalcification through time: Environmental challenge and cellular response, Palaeontol. Z. 59:15–33.

    Google Scholar 

  • Kerber, M., 1988, Mikrofossilien aus unterkambrischen Gesteinen der Montagne Noire, Frankreich, Palaeontogr. Abt. A 202:127–203.

    Google Scholar 

  • Klein, C., Beukes, N. J., and Schopf, J. W., 1987, Filamentous microfossils in the Early Proterozoic Transvaal Supergroup: Their morphology, significance, and paleoenvironmental setting, Pre cambrian Res. 36:81–94.

    Article  Google Scholar 

  • Kraft, P., and Mergl, M., 1989, Worm-like fossils (Palaeoscolecida;? Chaetognatha) from the Lower Ordovician of Bohemia, Sb. Geol. Ved. Paleontol. 30:9–36.

    Google Scholar 

  • Lafuste, J., Debrenne, F., and Zhuravlev, A., 1990, Les fuscinules, type nouveau de biocristaux dans le squelette d’Hydroconus Korde 1963, Coralomorphe du Cambrien inférieur, C. R. Acad. Sci. Paris II 310:1553–1559.

    Google Scholar 

  • Lambert, G., Lambert, C. C., and Lowenstam, H. A., 1990, Protochordate biomineralization, in: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (J. G. Carter, ed.), pp. 461–469, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Landing, E., 1984, Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica), J. Paleontol. 58:1380–1398.

    Google Scholar 

  • Landing, E., Nowlan, G. S., and Fletcher, T. P., 1980, A microfauna associated with Early Cambrian trilobites of the Callavia Zone, northern Antigonish Highlands, Nova Scotia, Can. J. Earth Sci. 17:400–418.

    Article  Google Scholar 

  • Landing, E., Narbonne, G. M., Myro, P., Benus, A. P., and Anderson, M. M., 1988, Faunas and depositional environments of the upper Precambrian through Lower Cambrian, southeastern Newfoundland, in: Trace Fossils, Small Shelly Fossils and the Precambrian—Cambrian Boundary (E. Landing, G. M. Narbonne, and P. Myrow, eds.), New York State Museum Bulletin 463, pp. 18-52.

    Google Scholar 

  • Laurie, J. R., 1986, Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia, Alcheringa 10:431–454.

    Article  Google Scholar 

  • Lipps, J. H., and Sylvester, A. G., 1968, The enigmatic Cambrian fossil Vblborthella and its occurrence in California, J. Paleontol. 42:329–336.

    Google Scholar 

  • Lowenstam, H. A., and Margulis, L., 1980a, Calcium regulation and the appearance of calcareous skeletons in the fossil record, in: The Mechanisms of Biomineralization in Animals and Plants (M. Omori and N. Watabe, eds.), Tokai University Press, Tokyo, pp. 289–300.

    Google Scholar 

  • Lowenstam, H. A., and Margulis, L., 1980b, Evolutionary prerequisites for early Phanerozoic calcareous skeletons, Biosystems 12:27–41.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1985, Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons, Science 227:51–53.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989, On Biomineralization, Oxford University Press, Oxford.

    Google Scholar 

  • Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin, et al., 1982, The Sinian-Cambrian Boundary in Eastern Yunnan, China, Kunming, China [in Chinese].

    Google Scholar 

  • Mambetov, A. M., and Repina, L. N., 1979, The Lower Cambrian of Talasskij Ala-Too and its correlation with the sections of Malyj Karatau and the Siberian Platform, Trudy Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 406:9–158 [in Russian].

    Google Scholar 

  • Marek, L., and Yochelson, E. L., 1976, Aspects of the biology of Hyolitha (Mollusca), Lethaia 9:65–82.

    Article  Google Scholar 

  • Missarzhevskij, V. V., 1973, Conodont-shaped organisms from the Precambrian-Cambrian boundary beds of the Siberian Platform and Kazakhstan, in: Problems in the Paleontology and Stratigraphy of Siberia and the Far East (I. T. Zhuravleva, ed.), Trudy Inst. Geol. Geof. SO Akad. Nauk SSSR 49:53–57 [in Russian].

    Google Scholar 

  • Missarzhevskij, V. V., 1974, New data on the oldest Lower Cambrian fossils of the Siberian Platform, in: Lower Cambrian Biostratigraphy and Paleontology of Europe and Northern Asia (I. T. Zhuravleva and A. Yu. Rozanov, eds.), Nauka, Moscow, pp. 179–189 [in Russian].

    Google Scholar 

  • Missarzhevskij, V. V., 1977, Conodonts (?) and phosphatic problematica from the Cambrian of Mongolia and Siberia, in: Paleozoic Invertebrates of Mongolia (L. P. Tatarinov et al., eds.), Trans. Joint Soviet-Mongolian Paleontol. Expedition 1977:10–19 [in Russian].

    Google Scholar 

  • Missarzhevskij, V. V., 1989, The oldest skeletal fossils and stratigraphy of the Precambrian-Cambrian boundary beds, Trudy Geol. Inst. Akad. Nauk SSSR 443:1–237 [in Russian].

    Google Scholar 

  • Missarzhevskij, V. V., and Mambetov, A. M., 1981, Stratigraphy and fauna of the Precambrian-Cambrian boundary beds in Malyj Karatau, Trudy Geol. Inst. Akad. Nauk SSSR 326:1–92 [in Russian].

    Google Scholar 

  • Müller, K. J., 1983, Crustacea with preserved soft parts from the Upper Cambrian of Sweden, Lethaia 16:93–109.

    Article  Google Scholar 

  • Müller, K. J., and Miller, J. F., 1976, The problematic microfossil Utahphospha from the Upper Cambrian of the western United States, Lethaia 9:391–395.

    Article  Google Scholar 

  • Müller, K. J., and Walossek, D., 1985, Skaracarida, a new order of Crustacea from the Upper Cambrian of Västergötland, Sweden, Eossils Strata 17:1–65.

    Google Scholar 

  • Müller, K. J., and Walossek, D., 1987, Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden, Fossils Strata 19:1–124.

    Google Scholar 

  • Müller, K. J., and Walossek, D., 1988, External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirahilis, Fossils Strata 23:1–70.

    Google Scholar 

  • Nazarov, B. B., 1973, Radiolarians from the Lower Cambrian beds of Bateny Hills, in: Problems in the Paleontology and Biostratigraphy of Siberia and the Far East (I. T. Zhuravleva, ed.), Trudy Inst. Geol. Geofiz. Sihirsk. Otd. Akad. Nauk SSSR 49:1–13 [in Russian].

    Google Scholar 

  • Nazarov, B. B., 1975, Lower-Middle Palaeozoic radiolarians of Kazakhstan, Trudy Geol. Inst. Akad. Nauk SSSR 275:1–203 [in Russian].

    Google Scholar 

  • Nazarov, B. B., and Ormiston, A. R., 1985, Evolution of Radiolaria in the Paleozoic and its correlation with the development of other marine fossil groups, Senckenb. Lethaea 66:203–215.

    Google Scholar 

  • Nicol, D., 1977, The number of living animal species likely to be fossilized, Florida Sci. 40(2):135–139.

    Google Scholar 

  • Nitecki, M. H., and Debrenne, F., 1979, The nature of radiocyathids and their relationship to recep-taculitids and archaeocyathids, Geobios 12(1):5–27.

    Article  Google Scholar 

  • Nowlan, G. S., Narbonne, G. M., and Fritz, W. H., 1985, Small shelly fossils and trace fossils near the Precambrian-Cambrian boundary in the Yukon Territory, Canada, Lethaia 18:233–256.

    Article  Google Scholar 

  • Oliver, W. A., 1984, Conchopeltis: Its affinities and significance, in: Recent Advances in the Pa-leobiology and Geology of the Cnidaria (W. A. Oliver, Jr., W. J. Sando, S. D. Cairns, A. G. Coates, et al., eds.), Palaeontogr. Am. 54:141–147.

    Google Scholar 

  • Paul, C. R. C., and Smith, A. B., 1984, The early radiation and phylogeny of echinoderms, Biol. Rev. Camb. Philos. Soc. 59:443–481.

    Article  Google Scholar 

  • Peel, J. S., 1988, Spirellus and related helically coiled microfossils (cyanobacteria) from the Lower Cambrian of North Greenland, Grønlands Geol. Undersøgelse Rapp. 137:5–32.

    Google Scholar 

  • Pel’man, Yu. L., 1976, Early-Middle Cambrian stenothecoids and new skeletal remains of uncertain systematic position from the stratotypic region of the Aldan and Lena Rivers, Trudy Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 296:176–179 [in Russian].

    Google Scholar 

  • Poulsen, V., 1963, Notes on Hyolithellus Billings, 1871, class Pogonophora Johannson, 1937, Biol. Medd. K. Dan. Vidensk. Selsk. 23(12):1–15.

    Google Scholar 

  • Qian Yi, 1977, Hyolitha and some problematica from the Lower Cambrian Meishucunian Stage in central and southwestern China, Acta Palaeontol. Sinica 16:255–275 [in Chinese].

    Google Scholar 

  • Qian Yi, 1983, Sinian-Cambrian boundary in China, in: Studies on Stratigraphie Boundaries in China, p. 1-11 [in Chinese].

    Google Scholar 

  • Qian Yi, 1984, Several groups of bizarre sclerte fossils from the earliest Cambrian in eastern Yunnan, Bull. Nanjing Inst. Geol. Paleontol. Acad. Sinica 1983(6):85–99 [in Chinese].

    Google Scholar 

  • Qian Yi and Bengtson, S., 1989, Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China, Fossils Strata 24:1–156.

    Google Scholar 

  • Qian Yi and Yin Gongzheng, 1984, Zhijinitidae and its stratigraphical significance, Acta Palaeontol. Sinica 23:215–223 [in Chinese].

    Google Scholar 

  • Qian Yi and Zhang Shi-ben, 1983, Small shelly fossils from the Xihaoping member of the Tongying Formation in Fangxian County of Hubei Province and their stratigraphical significance, Acta Palaeontol Sinica 22:82–94 [in Chinese].

    Google Scholar 

  • Ramsköld, L., and Hou Xianguang, 1991, New early Cambrian animal and onychophoran affinities of enigmatic metazoans, Nature 351:225–228.

    Article  Google Scholar 

  • Raup, D. M., 1975, Taxonomic diversity estimation using rarefaction, Paleobiology 1:333–342.

    Google Scholar 

  • Reiswig, H. M., 1971, The axial symmetry of sponge spicules and its phylogenetic significance, Cahiers Biol. Mar. 12:505–514.

    Google Scholar 

  • Reitlinger, E. A., 1948, Cambrian foraminifers of Yakutia, Byull. Mosk. Obshch. Ispyt. Prir. Otd. Geol. 23(2):77–81.

    Google Scholar 

  • Rhodes, F. H. T., and Bloxam, T. W., 1971, Phosphatic organisms in the Paleozoic and their evolutionary significance, in: Phosphate in fossils (E. L. Yochelson, ed.), Proceedings of the North American Paleontologicai Convention, Chicago, 1969, K:1485–1513.

    Google Scholar 

  • Riding, R., 1977, Calcified Plectonema (blue-green algae), a Recent example of Girvanella from Al-dabra Atoll, Palaeontology 20:33–46.

    Google Scholar 

  • Riding, R., and Voronova, L. G., 1982, Calcified cyanophytes and the Precambrian-Cambrian transition, Naturwissenschaften 69:498–499.

    Article  Google Scholar 

  • Riding, R., and Voronova, L. G., 1984, Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia, Geol. Mag. 121:205–210.

    Article  Google Scholar 

  • Rieger, R. M., and Sterrer, W., 1975, New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna, Z. Zool. Syst. Evolutionsforsch. 13:207–278.

    Article  Google Scholar 

  • Rigby, J. K., 1983, Fossil Demospongia, in: Sponges and Spongiomorphs—Notes for a Short Course (T. Broadhead, ed.), University of Tennessee, Department of Geological Sciences, Studies in Geology, No. 7, pp. 12-39.

    Google Scholar 

  • Rigby, J. K., 1986, Sponges of the Burgess Shale (Middle Cambrian), British Columbia, Palaeontogr. Can. 2:1–105.

    Google Scholar 

  • Round, F. E., 1981, Morphology and phyletic relationships of the silicified algae and the archetypal diatom—Monophyly or polyphyly, in: Silicon and Siliceous Structures in Biological Systems (T. L. Simpson and B. E. Volcani, eds.), Springer, New York, pp. 97–128.

    Chapter  Google Scholar 

  • Rowell, A. J., 1982, The monophyletic origin of the Brachiopoda, Lethaia 15:299–307.

    Article  Google Scholar 

  • Rozanov, A. Yu., 1973, Regularities in the morphological evolution of archaeocyathans and questions regarding the stage division of the Lower Cambrian, Trudy Geol. Inst. Akad. Nauk SSSR 241:1–164 [in Russian].

    Google Scholar 

  • Rozanov, A. Yu., Missarzhevskij, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidorov, A. D., 1969, The Tommo-tian Stage and the problem of the lower boundary of the Cambrian, Trudy Geol. Institute! Akad. Nauk SSSR 206:1–380 [in Russian].

    Google Scholar 

  • Runnegar, B., 1985a, Shell microstructure of Cambrian molluscs replicated by calcite, Alcheringa 9:245–257.

    Article  Google Scholar 

  • Runnegar, B., 1985b, Collagen gene construction and evolution, J. Molec. Evol. 22:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Runnegar, B., and Bentley, C., 1983, Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell, J. Paleontol. 57:73–92.

    Google Scholar 

  • Runnegar, B., Pojeta, J. Jr., Morris, N. J., Taylor, J. D., Taylor, M. E., and McClung, G., 1975, Biology of the Hyolitha, Lethaia 8:181–191.

    Article  Google Scholar 

  • Sangster, A. G., and Parry, D. W., 1981, Ultrastructure of silica deposits in higher plants, in: Silicon and Siliceous Structures in Biological Systems (T. L. Simpson and B. E. Volcani, eds.), Springer, New York, pp. 383–407.

    Chapter  Google Scholar 

  • Schopf, W. J., and Klein, C. (eds.), In press, The Proterozoic Biosphere—A Multidisciplinary Study, Cambridge University Press, Cambridge.

    Google Scholar 

  • Scrutton, C. T., 1979, Early fossil cnidarians, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Academic Press, New York, pp. 161–207.

    Google Scholar 

  • Sdzuy, K., 1969, Unter-und mittelkambrische Porifera (Chancelloriida und Hexactinellida), Palaeon-tol. Z. 43(3/4):115–147.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1978, A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders, Paleobiology 4:223–251.

    Google Scholar 

  • Simkiss, K., 1964, Phosphates as crystal poisons of calcification, Biol. Rev. 39:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, T. L., and Volcani, B. E., 1981, Introduction, in: Silicon and Siliceous Structures in Biological Systems (T. L. Simpson and B. E. Volcani, eds.), Springer, New York, pp. 3–12.

    Chapter  Google Scholar 

  • Sokolov, B. S., 1965, The oldest Early Cambrian deposits and sabelliditids, in: Reports. All-Union Symposium on Precambrian and Cambrian Paleontology, Institute of Geology and Geophysic, Siberian Branch, USSR Academy of Sciences, Novosibirsk, USSR., pp. 78–92 [in Russian].

    Google Scholar 

  • Sokolov, B. S., 1967, The oldest pogonophorans, Doklady Akad. Nauk SSSR 177:201–204 [in Russian].

    Google Scholar 

  • Sokolov, B. S., and Zhuravleva, I. T. (eds.), 1983, Stage division of the Lower Cambrian of Siberia. Atlas of fossils, Trudy Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 558:1–216.

    Google Scholar 

  • Song Xueliang, 1984, Obruchevella from the early Cambrian Meishucun Stage of the Meishucan section, Jinning, Yunnan, China, Geol. Mag. 121:179–183.

    Article  Google Scholar 

  • Sun Weiguo and Hou Xianguang, 1987a, Early Cambrian medusae from Chengjiang, Yunnan, China, Acta Palaeontol. Sinica 26:257–271 [in Chinese].

    Google Scholar 

  • Sun Weiguo and Hou Xianguang, 1987b, Early Cambrian worms from Chengjiang, Yunnan, China: Maotianshania gen. nov., Acta Palaeontol. Sinica 26:299–305 [in Chinese].

    Google Scholar 

  • Szaniawski, H., 1982, Chaetognath grasping spines recognized among Cambrian protocondonts, J. Paleontol. 56:806–810.

    Google Scholar 

  • Szaniawski, H., 1987, Preliminary structural comparisons of protoconodont, paraconodont, and eu-conodont elements, in: Palaeobiology of Conodonts (R. J. Aldridge, ed.), Ellis Horwood, Chichester, England, pp. 35–47.

    Google Scholar 

  • Tynan, M. C., 1983, Coral-like microfossils from the Lower Cambrian of California, J. Paleontol. 57:1188–1211.

    Google Scholar 

  • Urbanek, A., and Mierzejewska, G., 1977, The fine structure of zooidal tubes in Sabelliditida and Pogonophora with reference to their affinity, Acta Palaeontol. Polon. 22:223–240.

    Google Scholar 

  • Vacelet, J., 1985, Coralline sponges and the evolution of the Porifera, in: The Origins and Relationships of Lower Invertebrates (S. Conway Morris, J. D. George, R. Gibson, and H. M. Platt, eds.), Clarendon Press, Oxford, pp. 1–13.

    Google Scholar 

  • Valentine, J. W., 1989, How good was the fossil record? Clues from the Californian Pleistocene, Paleobiology 15:83–94.

    Google Scholar 

  • Val’kov, A. K., 1982, Lower Cambrian Biostratigraphy of the East Siberian Platform, Nauka, Moscow [in Russian].

    Google Scholar 

  • Val’kov, A. K., and Karlova, G. A., 1984, The fauna of the transitional Vendian-Cambrian beds in the lower reaches of the River Gonam, in: Late Precambrian and Early Paleozoic Stratigraphy, Middle Siberia (V. V. Khomentovsky, ed.), pp. 12–41 [in Russian].

    Google Scholar 

  • Val’kov, A. K., and Sysoiev, V. A., 1970, Cambrian angustiochreids from Siberia, in: Stratigraphy and Paleontology of the Proterozoic and Cambrian of the East Siberian Platform (A. K. Bobrov, ed.), Yakutsk Publishing House, Yakutsk, USSR., pp. 94–100 [in Russian].

    Google Scholar 

  • Vologdin, A. G., 1932, Siberian Archaeocyathans, Part 2, The Fauna of the Cambrian Limestones of Altaj, State Scientific-Technical Geologic Exploratory Publishing House, Moscow [in Russian].

    Google Scholar 

  • Voronin, Yu. I., Voronova, L. G., Grigor’eva, N. V., Drozdova, N. A., Zhegallo, E. A., Zhuravlev, A. Yu., Ragozina, A. L., Rozanov, A. Yu., Sayutina, T. A., Sysoev, V. A., and Fonin, V. D., 1982, The Precambrian-Cambrian boundary in the géosynclinal regions (reference section Salany-Gol, MPR), in: Joint Soviet-Mongolian Paleontol. Expedition 18:1–150 [in Russian].

    Google Scholar 

  • Voronova, L. G., and Missarzhevskij, V. V., 1969, Finds of algae and worm tubes in the Precambrian-Cambrian boundary beds in the northern part of the Siberian Platform, Doklady Akad. Nauk SSSR 184(1):207–210.

    Google Scholar 

  • Voronova, L. G., and Radionova, Eh. P., 1976, Palaeozoic algae and microphytolites, Trudy Geol. Inst. Akad. Nauk SSSR 294:1–220 [in Russian].

    Google Scholar 

  • Walcott, C. D., 1920, Cambrian geology and paleontology IV:6—Middle Cambrian Spongiae, Smithson. Misc. Collect. 67(6):261–364.

    Google Scholar 

  • Waller, T. R., 1983, Dahllite in the periostracum of Lithophaga nigra (Mollusca: Bivalvia) and its taxonomic and functional implications, Am. Malacol. Bull. 1:101.

    Google Scholar 

  • Walliser, O. H., 1958, Rhombocorniculum comleyense n. gen., n. sp. (Incertae sedis, Unterkambrium, Shropshire), Palaeontol. Z. 32:176–180.

    Google Scholar 

  • Watabe, N., 1990, Calcium phosphate structures in invertebrates and protozoans, in: Skeletal Bio-mineralization: Patterns, Processes and Evolutionary Trends (J. G. Carter, ed.), pp. 35–44, Van Nostrand Reinhold, New York.

    Google Scholar 

  • White, R. D., 1986, Cambrian Radiolaria from Utah, Journal of Paleontology 60:778–780.

    Google Scholar 

  • Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Wilmot, N. V., and Fallick, A. E., 1989, Original mineralogy of trilobite exoskeletons, Palaeontology 32:297–304.

    Google Scholar 

  • Wright, A. D., 1979, Brachiopod radiation, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Academic Press, New York, pp. 235–252.

    Google Scholar 

  • Wrona, R., 1982, Early Cambrian phosphatic microfossils from southern Spitsbergen (Hornsund Region), Palaeontol. Polon. 43:9–16.

    Google Scholar 

  • Wrona, R., 1987, Cambrian microfossil Hadimopanella Gedik from glacial erratics in West Antarctica, Palaeontol. Polon. 49:37–48.

    Google Scholar 

  • Xing Yusheng, Chen Yiyuan, Zhang Shusen, Liu Guizhi, Xiong Xingwu, Chen Ping, Luo Huilin, Jiang Zhiwen, Wu Xiche, et al., 1984, The Sinian-Cambrian boundary of China, Bull. Inst. Geol. Chin. Acad. Geol. Sci. Spec. Issue 10:1–260 [in Chinese].

    Google Scholar 

  • Yochelson, E. L., 1977, Agmata, a proposed extinct phylum of Early Cambrian age, J. Paleontol. 51:437–454.

    Google Scholar 

  • Yu Wen, 1984, Early Cambrian molluscan faunas of Meishucun Stage with special reference to Pre-cambrian-Cambrian boundary, in: Developments in Geoscience. Contributions to the 27th International Geological Congress, 1984 Moscow, Academia Sinica, Science Press, Beijing, pp. 21–35.

    Google Scholar 

  • Yu Wen, 1987, Yangtze Micromolluscan Fauna in Yangtze Region of China with notes on Precambrian-Cambrian boundary, in: Stratigraphy and Palaeontology of Systemic Boundaries in China—Pre-cambrian-Cambrian Boundary 1, Nanjing University Publishing House, Nanjing, China, pp. 19–344.

    Google Scholar 

  • Yue Zhao, 1991, Discovery of fused sclerites of Early Cambrian Phyllochites and its relation with zhijinitids, Kexue Tonghao 1991(1):47–50 [in Chinese].

    Google Scholar 

  • Zhong Hua (Chen Menge), 1977, Preliminary study of the ancient fauna of south China and its strati-graphic significance, Scientia Geol. Sinica 1977:118–128 [in Chinese].

    Google Scholar 

  • Zhuravlev, A. Yu., 1986, Radiocyathids, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Clarendon Press, Oxford, pp. 35–44.

    Google Scholar 

  • Zhuravleva, I. T., 1960, Archaeocyathans of the Siberian Platform, USSR Academy of Sciences, Moscow [in Russian].

    Google Scholar 

  • Zhuravleva, I. T., and Myagkova, E. I., 1981, Material for the study of Archaeata, in: Problematics of the Phanerozoic (B. S. Sokolov, ed.), Trudy Inst. Geol. Geofiz. Sihirsk. Otd. Akad. Nauk SSSR 481:41–74 [in Russian].

    Google Scholar 

  • Zhuravleva, I. T., and Okuneva, O. G., 1981, On the nature of cribricyathans, in: Problematics of the Phanerozoic (B. S. Sokolov, ed.), Trudy Inst. Geol. Sihirsk. Otd. Akad. Nauk SSSR 481:23–30 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bengtson, S., Morris, S.C. (1992). Early Radiation of Biomineralizing Phyla. In: Lipps, J.H., Signor, P.W. (eds) Origin and Early Evolution of the Metazoa. Topics in Geobiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2427-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2427-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2429-2

  • Online ISBN: 978-1-4899-2427-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics