Skip to main content

Marine Microorganisms: A New Biomedical Resource

  • Chapter
Pharmaceutical and Bioactive Natural Products

Abstract

Microorganisms have had a profound effect on medicinal science since the discovery that not only are they the cause of infection, but they produce organic substances that can cure infection. The discovery of penicillin in 1929 heralded the era of antibiotics and the realization that microorganisms are a rich source of clinically useful natural products [see Betina (1983) for an outline of the history of antibiotics]. Since that time, between 30,000 and 50,000 natural products have been discovered from microorganisms. Of these substances, more than 10,000 are biologically active and more than 8000 are antibiotics (Berdy, 1989; Betina, 1983). This tremendous rate of discovery is testament to the inherent ability of microorganisms to produce bioactive metabolites and the heavy investment of industry in microbial resources. Due to this investment, over 100 microbial products are in use today as antibiotics, antitumor agents, and agrichemicals. Despite the many discoveries, most antibiotics of microbial origin come from terrestrial bacteria belonging to one taxonomic group, the order Actinomycetales. Although these bacteria continue to be studied extensively, it is clear that the rate of discovering novel metabolites from terrestrial actinomycetes is decreasing and that new sources of bioactive natural products must be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, R. J., Wolfe, M. S., and Faulkner, D. J., 1974, Autotoxic antibiotic production by a marine Chromobacterium, Mar. Biol. 24: 281–285.

    Google Scholar 

  • Antia, N. J., and Bilinski, E., 1967, A bacterial-toxin (lecithinase C) in a marine phytoplanktonic chrysomonad, Fish. Res. Board Can. J. 24: 201–204.

    CAS  Google Scholar 

  • Atlas, R. M., and Bartha, R., 1987, Microbial Ecology: Fundamentals and Applications, 2nd ed., Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Aubert, M., and Gauthier, M., 1966, Origine et nature des substances antibiotiques présentes dans le mileau marin VII. Note sur l’activité antibactérienne d’une diatomée marine Chaetoceros teres (Clève), Rev. Int. Oceanogr. Méd. 4: 33–37.

    Google Scholar 

  • Aubert M., Gauthier, M., and Daniel, S., 1966, Origine et nature des substances antibiotiques présentes dans le mileau marin III. Activité antibactérienne d’une diatomée marine Asterionella japonica (Clève), Rev. Int. Oceanogr. Méd 1: 35–43.

    Google Scholar 

  • Austin, B., 1989, Novel pharmaceutical compounds from marine bacteria, J. Appl. Bacteriol. 67: 461–470.

    PubMed  CAS  Google Scholar 

  • Austin, B., and Billaud, A.-C., 1990, Inhibition of the fish pathogen, Serratia liquefaciens, by an antibiotic-producing isolate of Planococcus recovered from seawater, J. Fish Dis. 13: 553–556.

    Google Scholar 

  • Baam, R. B., Gandhi, N. M., and Freitas, Y. M., 1966, Antibiotic activity of marine microorganisms: The antibacterial spectrum, Helgol. Wiss. Meeresunters. 13: 188–191.

    Google Scholar 

  • Barja, J. L., Lemos, M. L., and Toranzo, A. E., 1989, Purification and characterization of an antibacterial substance produced by a marine Alteromonas species, Antimicrob. Agents Chemothen 33: 1674–1679.

    CAS  Google Scholar 

  • Baslow, M. H., 1969, Marine Pharmacology, Williams and Wilkins, Baltimore, pp. 8–55.

    Google Scholar 

  • Baumann, L., Baumann, P., Mandel, M., and Allen, R. D., 1972, Taxonomy of aerobic marine eubacteria, J. Bacteriol. 110: 402–429.

    PubMed  CAS  Google Scholar 

  • Baumann, P., and Baumann, L., 1981, The marine Gram-negative eubacteria: Genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes, in: The Prokaryotes, Vol. II ( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 1302–1331.

    Google Scholar 

  • Berdy, J., 1982, Search and discovery methods for novel antimicrobials, in: Bioactive Metabolites from Microorganisms ( M. E. Bushell and U. Grafe, eds.), Elsevier, Amsterdam, pp. 3–25.

    Google Scholar 

  • Betina, V., 1983, The Chemistry and Biology of Antibiotics, Elsevier, Amsterdam.

    Google Scholar 

  • Boyle, P, Maki, J. S., and Mitchell, R., 1987, Mollicute identified in novel association with aquatic invertebrate, Curr. Microbiol. 15: 85–89.

    CAS  Google Scholar 

  • Burkholder, P. R. Pfister, R. M., and Leitz, E P, 1966, Production of a pyrrole antibiotic by a marine bacterium, Appl. Microbiol. 14: 649.

    PubMed  CAS  Google Scholar 

  • Capriulo, G. M., 1990, Ecology of Marine Protozoa, Oxford University Press, Oxford.

    Google Scholar 

  • Carr, N. G., and Whitton, B. A., 1982, The Biology of Cyanobacteria, University of California Press, Berkeley.

    Google Scholar 

  • Cavanaugh, C. M., Levering, P. R., Maki, J. S., Mitchell, R., and Lidstrom, M. E., 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts, Science 213: 340–342.

    PubMed  CAS  Google Scholar 

  • Cox, E. R., 1980, Phytojlagellates, Elsevier, New York.

    Google Scholar 

  • Crawford, R. L., and Hanson, R. S. (eds.), 1974, Microbial Growth on Cl Compounds (Proceedings of the 4th International Symposium), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Da Costa, M. S., Duarte, J. C., and Williams, R. A. D., 1988, Microbiology of Extreme Environments and its Potential for Biotechnology (FEMS Symposium No. 49 ), Elsevier Applied Science, London.

    Google Scholar 

  • Do, H. K., Kogure, K., and Simidu, U., 1990, Identification of deep-sea-sediment bacteria which produce tetrodotoxin, Appl. Environ. Microsc. 56: 1162–1163.

    CAS  Google Scholar 

  • Doggett, R. G., 1968, New anti-Pseudomonas agent isolated from a marine Vibrio, J. Bacteriol. 95: 1972–1973.

    PubMed  CAS  Google Scholar 

  • Duff, D. C. B., Bruce, D. L., and Antia, N. J., 1966, The antibacterial activity of marine planktonic algae, Can. J. Microbiol. 12: 877–884.

    PubMed  CAS  Google Scholar 

  • Fenchel, T., 1987, Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists. Springer-Verlag, New York.

    Google Scholar 

  • Fujioka, R. S., Lok, P. C., and Lau, L. S., 1980, Survival of human enteroviruses in the Hawaiian ocean environment, Appl. Environ. Microbiol. 39: 1105–1110.

    PubMed  CAS  Google Scholar 

  • Fusetani, N., Ejima, D., Matsunaga, S., Hashimoto, K., Itagaki, K., Akagi, Y., Taga, N., and Suzuki, K., 1987, 3-Amino-3-deoxy-D-glucose: An antibiotic produced by a deep-sea bacterium, Experientia 43: 464–465.

    Google Scholar 

  • Galtsoff, P. S., Brown, H. H., Smith, C. L., and Smith, E. G. W, 1939, Sponge mortality in the Bahamas, Nature 143: 807–808.

    Google Scholar 

  • Gandhi, N. M., Patel!, J. R., Gandhi, J. N., De Souza, J., and Kohl, H., 1976, Prodigiosin metabolites of a marine Pseudomonas species, Mar. Biol. (Berl.) 34: 233.

    Google Scholar 

  • Gauthier, M. J., and Flateau, G. N., 1976, Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds, Can. J. Microbiol. 22: 1612–1619.

    PubMed  CAS  Google Scholar 

  • Gil-Thrnes, M. S., 1988, Antimicrobial metabolites produced by epibiotic bacteria: Their role in microbial competition and host defense, Ph.D. Dissertation, University of California-San Diego, La Jolla, California.

    Google Scholar 

  • Gil-Turnes, M. S., Hay, M. E., and Fenical, W, 1989, Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus, Science 246: 116–118.

    PubMed  CAS  Google Scholar 

  • Goff, L. J., and Glasgow, J. C., 1980, Pathogens of Marine Plants, Center for Coastal Marine Studies, University of California, Santa Cruz, California.

    Google Scholar 

  • Gomi, S., Ikeda, D., Nakamura, H., Naganawa, H., Yamashita, E, Hotta, K., Kondo, S., Okami, Y., and Umezawa, H., 1984, Isolation and structure of a new antibiotic, indolizimycin, produced by a strain SK2–52 obtained by interspecies fusion treatment, J. Antibiotics 37: 1491–1494.

    CAS  Google Scholar 

  • Goodfellow, M., and Haynes, J. A., 1984, Actinomycetes in marine sediments, in: Biological, Biochemical, and Biomedical Aspects of Actinomycetes ( L. Oritiz-Oritz, L. F. Bojalil, and V. Yakoleff, eds.), Academic Press, Orlando, Florida, pp. 453–472.

    Google Scholar 

  • Grein, A., and Meyers, S. P, 1958, Growth characteristics and antibiotic production of actinomycetes isolated from littoral sediments and material suspended in sea water, J. Bacteriol. 76: 457–463.

    PubMed  CAS  Google Scholar 

  • Guerriero, A., D’Ambrosio, M., Cuomo, V., Vanzanella, F., and Pietra, F., 1988, Dendrophiellin A, the first fungal trinor-eremophilane. Isolation from the marine deuteromycete Dendrophiella saliva (Sutherland) Pugh et Nicot, Hell/. Chim. Acta 71: 57–61.

    CAS  Google Scholar 

  • Guerriero, A., D’Ambrosio, M., Cuomo, V., Vanzanella, F., and Pietra, F., 1989, Novel trinoreremophilanes (Dendrophiellin B, C and D), eremophilanes (Dendrophiellin E, F and G), and branched C9-carboxylic acids (Dendrophiellic Acid A and B) from the marine deuteromycete Dendrophiella saliva (Sutherland) Pugh et Nicot, Hell/ Chim. Acta 72: 438–446.

    CAS  Google Scholar 

  • Gundersen, K. A., Brandeberg, S., Magnussen, S., and Lycke, E., 1967, Characterization of a marine bacterium associated with virus inactivating capacity, Acta Pathol. Microbiol. Scand. 71: 274–280.

    PubMed  Google Scholar 

  • Gunn, B. A., and Colwell, R. R., 1983, Numerical taxonomy of staphylococci isolated from the marine environment, Int. J. Syst. Bacteriol. 33: 751–759.

    CAS  Google Scholar 

  • Gustafson, K., Roman, M., and Fenical, W, 1989, The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium, J. Am. Chem. Soc. 111: 7519–7524.

    CAS  Google Scholar 

  • Harashima, K., Shiba, T., and Murata, N., 1989, Aerobic Photosynthetic Bacteria, Springer-Verlag, Berlin.

    Google Scholar 

  • Holland, G. S., Jamieson, D. D., Reicheldt, J. L., Viset, G., and Wells, R. J., 1984, Three aromatic acids from a marine bacterium, Chem. Ind. 1984 (3 December).

    Google Scholar 

  • Hotta, K., Yoshida, M., Hamada, M., and Okami, Y., 1980, Studies on new aminoglycoside antibiotics, istamycins, from an actinomycete isolated from a marine environment, J. Antibiot. 33: 1515.

    PubMed  CAS  Google Scholar 

  • Hoyt, P. R., and Sizemore, R. K., 1982, Competitive dominance by a bacteriocin-producing Vibro harveyi strain, Appl. Environ. Microbiol. 44: 653–658.

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W, and Wirsen, C. 0., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers, Bioscience 29: 592–598.

    CAS  Google Scholar 

  • Javor, B., 1989, Hypersaline Environments: Microbiology and Biogeochemistry, Springer-Verlag, New York.

    Google Scholar 

  • Jensen, P, Dwight, R., and Fenical, W., 1991, The distribution of actinomycetes in near-shore tropical marine sediments, Appl. Environ. Microbiol. 57: 1102–1108.

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., 1981, Introduction to the spirocheates, in: The Prokaryotes, Vol. I ( M. P Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 582–591.

    Google Scholar 

  • Jones, E. B. G., 1974, Recent Advances in Aquatic Mycology, Elek, London.

    Google Scholar 

  • Kameyama, T., Takahashi, A., Kurasawa, S., Ishizuka, M., Okami, Y., Takeuchi, T, and Umezawa, H., 1987, Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. I Taxonomy of the producing organism, isolation and biological properties, J. Antibiot. 40: 1664–1670.

    PubMed  CAS  Google Scholar 

  • Kandler, E. 0., 1982, Archaebacteria (Proceedings of the 1st International Workshop on Archaebacteria), Gustav Fisher, New York.

    Google Scholar 

  • Katzenelson, E., 1978, Survival of viruses, in: Indicators of Viruses in Food and Water ( G. Berg ed.), University of Michigan Press, Ann Arbor, Michigan, pp. 39–50.

    Google Scholar 

  • Kirk, P., Catalfomo, P, Blick, J. H., and Constantine, G. H., 1974, Metabolites of higher marine fungi and their possible ecological significance, Veroeff. Inst. Meeresforsch. Bremerhaven 1974 (Suppl. 5): 509.

    Google Scholar 

  • Kitahara, 1, Naganawa, H., Okazaki, T, Okami, Y., and Umezawa, H., 1975, The structure of SS-229Y, an antibiotic from Chainia sp., J. Antibiot. 28: 280.

    Google Scholar 

  • Kohl, H., Bhat, S. V, Patell, J. R., Gandhi, N. M., Nazareth, J. Divekar, P. V., DeSousa, N. J., Berscheid, H. G., and Fehlhaber, H.-W., 1974, Structure of magnesidin, a new magnesium-containing antibiotic from Pseudomonas magnesiorubra, Tetrahedron Lett. 1974: 983–986.

    Google Scholar 

  • Kohlmeyer, J., and Kohlmeyer, E., 1979, Marine Mycology: The Higher Fungi, Academic Press, New York.

    Google Scholar 

  • Kodama, M., Ogata, T, and Sato, S., 1988, Bacterial production of saxitoxin, Agric. Biol. Chem. 52: 1075–1077.

    CAS  Google Scholar 

  • Kodama, M., Ogata, T, Sato, S., and Sakamota, S., 1990, Possible association of marine bacteria with paralytic shellfish toxicity in bivalves, Mar. Ecol. Prog. Ser. 61: 203–206.

    CAS  Google Scholar 

  • Kosuge, T, Zenda, H., Ochiai, A., Masaki, N., Noguchi, M., Kimura, S., and Narita, H., 1972, Isolation and structure determination of a new marine toxin, surugatoxin from the Japanese ivory shell Babylonia japonica, Tetrahedron Lett. 1972: 2545–2548.

    Google Scholar 

  • Kosuge, T, Tsuji, K., Harai, K., and Fukuyama, T, 1985, First evidence of toxin production by bacteria in a marine organism, Chem. Pharm. Bull. 33: 3059–3061.

    PubMed  CAS  Google Scholar 

  • Krieg, N. R., and Holt, J. G., 1984, Bergey’s Manual of Systematic Bacteriology, Vol. 1, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kriss, A. E., 1963, Marine Microbiology (Deep Sea), Wiley, New York.

    Google Scholar 

  • Kupka, J., Anke, T., Steglich, W, and Zechlin, L., 1981, Antibiotics from basidomycetes XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J and E. Kohlmeyer, J. Antibiot. 34: 298–304.

    PubMed  CAS  Google Scholar 

  • Leifson, E., Cosenza, B. J., Murchelano, R., Cleverdon, R. C., 1964, Motile marine bacteria: I. Techniques, ecology, and general characteristics, J. Bacteriol. 87: 652–666.

    PubMed  CAS  Google Scholar 

  • Lemos, M. L., Toranzo, A. E., and Barja, J. L., 1985, Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds, Microb. Ecol. 11: 149–163.

    CAS  Google Scholar 

  • Lewin, R. A., 1977, Prochloron, type genus of the Prochlorophyta, Phycologia 16: 217.

    Google Scholar 

  • Lewin, R. A., and Cheng, L., 1989, Prochloron: A Microbial Enigma, Chapman and Hall, New York. Lovell, E M., 1966, The structure of a bromine-rich antibiotic, J. Am. Chem. Soc. 88: 4510–4511.

    Google Scholar 

  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., and McLaughlin, J. L., 1982, Brine shrimp: A convenient general bioassay for active plant constituents, J. Med. Plant Res. 45: 31–34.

    CAS  Google Scholar 

  • Meseguer, I., Rodriguez-Valera, F, and Ventosa, A., 1986, Antagonistic interactions among halo-bacteria due to halocin production, FEBS Lett. 36: 177–182.

    CAS  Google Scholar 

  • Moore, R. E., Patterson, G. M. L., and Carmichael, W. W, 1988, New pharmaceuticals from cultured blue-green algae, in: Biomedical Importance of Marine Organisms ( D. G. Fautin, ed.), California Academy of Science, San Francisco, pp. 143–150.

    Google Scholar 

  • Moss, S. T., 1986, The Biology of Marine Fungi, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nair, S., and Simidu, U., 1987, Distribution and significance of heterotrophic marine bacteria with antibacterial activity, Appl. Environ. Microbiol. 53: 2957–2962.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., Iitaka, Y., Kitahara, T., Okazaki, T., and Okami, Y., 1977, Structure of aplasmomycin, J. Antibiot. 30: 714–719.

    PubMed  CAS  Google Scholar 

  • Needham, J., Andersen, R., and Kelly, M. T., 1991, Oncorhyncolide, a novel metabolite of a bacterium isolated from seawater, Tetrahedron Lett. 32: 315–318.

    CAS  Google Scholar 

  • Noguchi, T., Jeon, J.-K., Arakawa, O., Sugita, H., Deguchi, Y., Shida, Y., and Hashimoto, K., 1986, Occurrence of tetrodotoxin and anhydrotetrodotoxin in Vibrio sp. isolated from the intestines of a xanthid crab Atergatis floridus, J. Biochem. 99: 311–314.

    PubMed  CAS  Google Scholar 

  • Ogata, T., Sato, S., and Kodama, M., 1989, Paralytic shellfish toxins in bivalves which are not associated with dinoflagellates, Toxicon. 27: 1241–1244.

    PubMed  CAS  Google Scholar 

  • Okami, Y., 1986, Marine microorganisms as a source of bioactive agents, Microb. Ecol. 12: 65–78.

    CAS  Google Scholar 

  • Okami, Y., 1988, Bioactive metabolites of marine microorganisms, in: Horizons on Antibiotic Research, Japan Antibiotic Research Association, Tokyo, pp. 213–227.

    Google Scholar 

  • Okami, Y., and Okazaki, T., 1972, Studies on marine microorganisms I. Isolation from the Japan Sea, J. Antibiot. 25: 456–460.

    PubMed  CAS  Google Scholar 

  • Okami, Y., Okazaki, T., Kitahara, T., and Umezawa, H., 1976, Studies on marine microorganisms V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud, J. Antibiot. 29: 1019–1025.

    PubMed  CAS  Google Scholar 

  • Okami, Y., Hotta, K., Yoshida, M., Ikeda, D., Kondo, S., and Umezawa, H., 1979, New aminoglycoside antibiotics, istamycins A and B, J. Antibiot. 32: 964–966.

    PubMed  CAS  Google Scholar 

  • Okazaki, T., and Okami, Y., 1972, Studies on marine microorganisms II. Actinomycetes in Sagami Bay and their antibiotic substances, J. Antibiot. 25: 261–266.

    Google Scholar 

  • Okazaki, T., Kitahara, T., and Okami, Y., 1975, Studies on marine microorganisms IV. A new antibiotic SS-228Y produced by Chainia isolated from shallow sea mud, J. Antibiot. 28: 176–184.

    PubMed  CAS  Google Scholar 

  • Okutani, K., 1977, Biotoxin produced by a strain of Aspergillus isolated from marine mud, Bull. Jpn. Soc. Sci. Fish. 43: 995.

    CAS  Google Scholar 

  • Omura, S., 1984, Macrolide Antibiotics, Academic Press, Orlando, Florida.

    Google Scholar 

  • Pallenberg, A. J., and White, J. D., 1986, The synthesis and absolute configuration of (+)-leptosphaerin, Tetrahedron Lett. 27: 5591–5594.

    Google Scholar 

  • Pathirana, C., Tapiolas, D. M., Jensen, P R., Dwight, R., and Fenical, W, 1991, Structure of maduralide: A new 24-membered ring macrolide glycoside produced by a marine bacterium, Tetrahedron Lett. 32 (21): 2323–2326.

    CAS  Google Scholar 

  • Patterson, G. M. L., Baldwin, C. L., Bolis, C. M., Caplan, F R., Karuso, H., Larsen, L. K., Levine, I. A., Moore, R. E., Nelson, C. F., Pschappat, K. D., Twang, G. D., Furusawa, E., Furusawa, S., Norton, T. R., and Raybourne, R. B., 1991, Antineoplastic activity of cultured blue-green algae (Cyanophyta), J. Phycol. 27: 530–536.

    Google Scholar 

  • Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21: 285–324.

    PubMed  CAS  Google Scholar 

  • Poch, G. K., and Gloer, J. B., 1989a, Helicascolides A and B: New lactones from the marine fungus Helicascus kanaloanus, J. Nat. Prod. 52: 257–260.

    PubMed  CAS  Google Scholar 

  • Poch, G. K., and Gloer, J. B., 19896, Obionin A: A new polyketide metabolite from the marine fungus Leptosphaeria obiones, Tetrahedron Lett. 30: 3483–3486.

    Google Scholar 

  • Poch, G. K., and Gloer, J. B., 1991, Auranticins A and B: Two new depsidones from a mangrove isolate of the fungus Preussia aurantiaca, J. Nat. Prod. 54: 213–217.

    PubMed  CAS  Google Scholar 

  • Reichenbach, H., and Hofle, G., 1989, The gliding bacteria: A treasury of secondary metabolites, in: Bioactive Metabolites from Microorganisms ( M. E. Bushell, and U. Grafe, eds.), Elsevier, Amsterdam, pp. 79–100.

    Google Scholar 

  • Rodriguez-Valera, F., 1988, Halophilic Bacteria, Vol. 2, CRC press, Boca Raton, Florida. Rosenfeld, W. D., and Zobell, C., 1947, Antibiotic production by marine microorganisms, J. Bacteriol. 54: 393–398.

    Google Scholar 

  • Round, F. E., 1973, The Biology of the Algae, 2nd ed., St. Martin’s Press, New York.

    Google Scholar 

  • Rychnovsky, D. S., Skalitzky, D. J., Fenical, W, Gustafson, K., and Pathirana, C., 1991, Stereochemistry of the macrolactin family of macrocycles: A degradative study, in: Abstracts 201st National Meeting of the American Chemical Society, Atlanta, Georgia, Abstract 187.

    Google Scholar 

  • Sato, K., Okazaki, T., Maeda, K., and Okami, Y., 1978, New antibiotics, aplasmomycins B and C, J. Antibiot. 31: 632.

    PubMed  CAS  Google Scholar 

  • Schiehser, G. A., 1980, The isolation and structure of leptosphaerin: A metabolite of the marine ascomycete Leptosphaeria oraemaris, Ph.D. Dissertation, Oregon State University, Corvallis, Oregon [University Microfilm, Ann Arbor, Michigan QK 623, L46,SC4].

    Google Scholar 

  • Schiehser, G. A. White, J. D., Matsumoto, G., Pezzanite, J. O., and Clardy, J., 1986, The structure of leptosphaerin, Tetrahedron Lett. 27: 5587–5590.

    CAS  Google Scholar 

  • Shiba, T., Simidu, U., and Taga, N., 1979, Distribution of aerobic bacteria which contain bacteriochlorophyll a, Appl. Environ. Microbiol. 38: 43–45.

    PubMed  CAS  Google Scholar 

  • Shin, J., and Fenical, W., 1987, Isolation of gliovictin from the marine deuteromycete Asteromyces cruciatus, Phytochemistry 26: 33–47.

    Google Scholar 

  • Short, F. T., Muehlstein, L. K., and Porter, D., 1987, Eelgrass wasting disease: Cause and recurrence of a marine epidemic, Biol. Bull. 173: 557–562.

    Google Scholar 

  • Sieburth, J. M., 1960, Acrylic acid and “antibiotic” principle in Phaeocystis blooms in Antarctic waters, Science 132:676–677.

    Google Scholar 

  • Sieburth, J. M., 1961, Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol. 82: 72–79.

    PubMed  CAS  Google Scholar 

  • Sieburth, J. M., 1974, Antibacterial substances produced by marine algae, Dev. Ind. Microbiol. 5: 124–134.

    Google Scholar 

  • Sieburth, J. M., 1975, Microbial Seascapes, University Park Press, Baltimore.

    Google Scholar 

  • Sieburth, J. M., 1979, Sea Microbes,Oxford University Press, Oxford.

    Google Scholar 

  • Simidu, U., Kita-Tsukamoto, K., Yasumoto, T, and Yotsu, M., 1990, Taxonomy of four marine bacterial stains that produce tetrodotoxin, Int. J. Syst. Bacteriol. 40: 331–336.

    PubMed  CAS  Google Scholar 

  • Skerman, V. B. D., McGowan, V, and Sneath, P H. A., 1980, Approved lists of bacterial names, Int. J. Syst. Bacteriol. 30: 225–240.

    Google Scholar 

  • Sneath, P H. A., Mair, N. S., Sharpe, M. E., and Holt, J. G., 1986, Bergey’s Manual of Systematic Bacteriology, Vol. 2, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Southward, E. C., 1987, Contribution of symbiotic chemoautotrophs to nutrition of benthic invertebrates, in: Microbes in the Sea ( M. A. Sleigh, ed.), Halstead Press, New York, pp. 83–118.

    Google Scholar 

  • Sparks, A. K., 1985, Synopsis of Invertebrate Pathology: Exclusive of Insects, Elsevier, Amsterdam. Staley, J. T., Hirsch, P, and Schmidt, J. M., 1981, Introduction to the budding and/or appendaged bacteria, in: The Prokaryotes, Vol. I (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 451–455.

    Google Scholar 

  • Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G., 1989, Bergey’s Manual of Systematic Bacteriology, Vol. 3, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Stanier, R. Y., Pfennig, N., and Truper, H. G., 1981, Introduction to the phototrophic prokaryotes, in: The Prokaryotes, Vol. I ( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 197–211.

    Google Scholar 

  • Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., and Painter, P. R., 1986, The Microbial World, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Starr, M. P, Stolp, H., Truper, H. G., Balows, A., Schlegel, H. G. (eds.), 1981, The Prokaryotes, Vols. I and II, Springer-Verlag, Berlin.

    Google Scholar 

  • Steemann-Nielsen, E., 1955, The production of antibiotics by plankton algae and its effect upon bacterial activities in the sea, Deep-Sea Res. 3 (Suppl): 281–286.

    Google Scholar 

  • Stein, J. R., 1975, Handbook of Phycological Methods: Culture Methods and Growth Measurements, Cambridge University Press, Cambridge.

    Google Scholar 

  • Stierle, A. C., Cardellina, J. H., II, and Singleton, F. L., 1988, A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis, Experientia 44: 10–21.

    Google Scholar 

  • Strongman, D. B., Miller, J. D., Calhoun, L., Findlay, J. A., and Whitney, N. J., 1987, The biochemical basis for interference competition among some lignicolous marine fungi, Bot. Mar. 30: 21–26.

    Google Scholar 

  • Takahashi, A., Nakamura, H., Kameyama, T, Kurasawa, S., Naganawa, H., Okami, Y., Takeuchi, T., Umezawa, H., and Iitaka, Y., 1987, Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. II Physico-chemical properties and structure determination, J. Antibiot. 40: 1671–1676.

    PubMed  CAS  Google Scholar 

  • Takahashi, A., Kurosawa, S., Ikeda, D., Okami, Y., and Takeuchi, T., 1989a, Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physicochemical and biological properties, J. Antibiot. 42: 1556–1561.

    PubMed  CAS  Google Scholar 

  • Takahashi, A., Ikeda, D., Nakamura, H., Naganawa, H., Kurasawa, S., Okami, Y., Takeuchi, T., and litaka, Y., 1989b, Altemicidin a new acaricidal and antitumor substance. II Structure determination, J. Antibiot. 42: 1562–1566.

    PubMed  CAS  Google Scholar 

  • Tapiolas, D. M., Roman, M., Fenical, W, Stout, T. J., and Clardy, J., 1991, Octalactins A and B, cytotoxic eight-membered ring lactones from a marine bacterium, Streptomyces sp.,. 1.. Am. Chem. Soc. 113: 4682–4683.

    Google Scholar 

  • Toranzo, A. E., Barja, J. L., and Hetrick, F. M., 1982, Antiviral activity of antibiotic-producing marine bacteria, Can. J. Microbiol. 28: 231–238.

    PubMed  CAS  Google Scholar 

  • Trischman, J., Tapiolas, D. M., Fenical, W, Dwight, R., Jensen, P. R., McKee, T, Ireland, C. R., Stout, T., and Clardy, J., 1992, Structure of the salinamides, novel bicyclic depsipeptides from a surface-derived marine bacterium, J. Am. Chem. Soc., submitted.

    Google Scholar 

  • Umezawa, H., Okami, Y., Kurasawa, S., Ohnuki. T., Ishizuki, M., Takeuchi, T, Shiio, T., and Yuigari, Y., 1983, Marinactan, antitumor polysaccharide produced by marine bacteria, J. Antibiot. 36: 471–477.

    CAS  Google Scholar 

  • Wilkinson, C. R., 1987, Significance of microbial symbionts in sponge evolutionary ecology, Symbiosis 4: 135–146.

    Google Scholar 

  • Williams, S. T., Sharpe, M. E., and Holt, J. T, 1989, Bergey’s Manual of Systematic Bacteriology, Vol. 4, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Woese, C. R., and Fox, G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA 74: 50–88.

    Google Scholar 

  • Woese, C. R., Magrum, L. J., and Fox, G. E., 1978, Archaebacteria, J. Mol. Evol. 11: 245–252.

    PubMed  CAS  Google Scholar 

  • Wood, E. J. F., 1965, Marine Microbial Ecology Chapman Hall, London.

    Google Scholar 

  • Wratten, S. J., Wolfe, M. S., Andersen, R. J., and Faulkner, D. J., 1977, Antibiotic metabolites from a marine pseudomonad, Antimicrob. Agents Chemother. 11: 411.

    PubMed  CAS  Google Scholar 

  • Yamashita, F., Hotta, K., Kurasawa, S., Okami, Y., and Umezawa, H.,1985, New antibiotic producing actinomycetes, selected by antibiotic resistance as a marker. I. New antibiotic production

    Google Scholar 

  • generated by protoplast fusion treatment between Streptomyces griseus and S. tenjimariensis, J. Antibiot. 38:58–63.

    Google Scholar 

  • Yasumoto, T, Yasumura, D., Yotsu, M., Michishita, T., Endo, A., and Kotaki, Y., 1986, Bacterial production of tetrodotoxin and anhydrotetrodotoxin, Agric. Biol. Chem. 50: 793–795.

    CAS  Google Scholar 

  • Yotsu, M., Yamazaki, T, Meguro, Y., Endo, A., Murata, M., Naoki, H., and Yasumoto, T., 1987, Production of tetrodotoxin and its derivatives by Pseudomonas sp. isolated from the skin of the pufferfish, Toxicon. 25: 225–228.

    PubMed  CAS  Google Scholar 

  • Zimmer, R. L., and Woollacott, R. M., 1983, Mycoplasma-like organisms: Occurrence with larvae and adults of a marine bryozoan, Science 220: 208–210.

    PubMed  CAS  Google Scholar 

  • Zobell, C. E., and Allen, E. C., 1935, The significance of marine bacteria in the fouling of submerged surfaces, J. Bacteriol. 29: 239–251.

    PubMed  CAS  Google Scholar 

  • Zobell, C. E., and Upham, H. C., 1944, A list of marine bacteria including sixty new species, Bull. Scripps Inst. Oceanogr. 5: 239–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fenical, W., Jensen, P.R. (1993). Marine Microorganisms: A New Biomedical Resource. In: Attaway, D.H., Zaborsky, O.R. (eds) Pharmaceutical and Bioactive Natural Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2391-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2391-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2393-6

  • Online ISBN: 978-1-4899-2391-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics