Skip to main content

Acetylcholinesterase and Its Inhibition

  • Chapter
Insecticide Biochemistry and Physiology

Abstract

Acetylcholinesterase (AChE) (3.1.1.7) belongs to the very large group of enzymes called hydrolases, defined as enzymes which split substrates by the introduction of the elements of water. The hydrolases which split acetylcholine are called cholinesterases; they catalyze the reaction

$$ \begin{array}{*{20}{c}} {C{{H}_{3}}COOC{{H}_{2}}C{{H}_{2}}\mathop{N}\limits^{ + } {{{(C{{H}_{3}})}}_{3}}\mathop{ \to }\limits^{{{{H}_{2}}O}} C{{H}_{3}}CO{{O}^{ - }} + {{H}^{ + }} + HOC{{H}_{2}}C{{H}_{2}}\mathop{N}\limits^{ + } {{{(C{{H}_{3}})}}_{3}}} \\ {{\text{acetylcholine acetate choline}}} \\ \end{array} $$
((1))

The reaction is reversible, but under usual conditions it lies far to the right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aharoni, A. H., and O’Brien, R. D., 1968, The inhibition of acetylcholinesterases by anionic organophosphorus compounds, Biochemistry 7:1538.

    Article  PubMed  CAS  Google Scholar 

  • Aldridge, W. N., 1953, The differentiation of true and pseudocholinesterase by organophosphorus compounds, Biochem.J. 53:62.

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N., and Davison, A. N., 1952a, The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 2. Diethyl p-nitrophenyl thiophosphate (E605) and analogues, Biochem. J. 52:663.

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N., and Davison, A. N., 1952b, The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 1. E600 analogues, Biochem. J. 51:62.

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N., and Davison, A. N., 1953, The mechanism of inhibition of cholinesterases by organophosphorus compounds, Biochem. J. 55:763.

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N., and Reiner, E., 1972, Enzyme Inhibitors as Substrates, North-Holland/American Else vier, Amsterdam and New York.

    Google Scholar 

  • Becker, E. L., Fukuto, T. R., Boone, B., Canham, D. C., and Boger, E., 1963, The relationship of enzyme inhibitory activity to the structure of n-alkylphosphonate and phenylalkyl phosphonate esters, Biochemistry 2:72.

    Article  PubMed  CAS  Google Scholar 

  • Belleau, B., Ditullio, V., and Tasai, Y.-H., 1970, Kinetic effects of leptocurares and pachycurares on the methanesulfonylation of acetylcholinesterase, Mol. Pharmacol 6:41.

    PubMed  CAS  Google Scholar 

  • Berends, F., Posthumus, C. H., van der Sluys, I., and Deierkauf, F. A., 1959, The chemical basis of the “aging process” of DFP inhibited pseudocholinesterase, Biochim. Biophys. Acta 34:576.

    Article  CAS  Google Scholar 

  • Bernsohn, J., Barron, K. D., and Hedrick, M. T., 1963, Some properties of isozymes of brain acetylcholinesterase, Biochem. Pharmacol. 12:761.

    Article  PubMed  CAS  Google Scholar 

  • Booth, G. M., and Lee, A. H., 1971, Distribution of cholinesterases in insects, Bull. WHO 44:91.

    PubMed  CAS  Google Scholar 

  • Bracha, P., and O’Brien, R. D., 1970, Hydrophobic bonding of trialkyl phosphates and phosphorothiolates to acetylcholinesterase, Biochemistry 9:741.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. P., Weil, C. S., Palm, P. E., Woodside, M. W., Nair, J. H., III, and Smyth, H. F., Jr., 1961, Mammalian toxicity of 1-naphthyl-N-methylcarbamate (sevin insecticide), J. Agr. Food Chem. 9:30.

    Article  CAS  Google Scholar 

  • Chadwick, L. E., 1963, Actions on insects and other invertebrates, in: Handbuch der experimentallen Pharmakologie, Ergaenzungswerk, Vol. 15, pp. 741-798, Springer, Berlin. Chiu, Y. C., and O’Brien, R. D., 1971, Separate binding sites on acetylcholinesterase for indophenyl and other esters, Pestic. Biochem. Physiol. 1:434.

    Google Scholar 

  • Davies, D. R., Holland, P., and Rumens, N. J., 1960, Relation between the chemical structure and neurotoxicity of alkyl organophosphorus compounds, Br. J. Pharmacol. 15:271.

    CAS  Google Scholar 

  • Davis, G. A., and Agranoff, B. W., 1968, Metabolic behavior of isozymes of acetylcholinesterase, Nature (London) 220:211.

    Article  Google Scholar 

  • DeCandole, C. A., Douglas, W. W., Evans, C. L., Holms, R., Spencer, K. E. V., Torrance, R. W., and Wilson, K. M., 1953, The failure of respiration in death by anticholinesterase poisoning, Br. J. Pharmacol. 8:466.

    CAS  Google Scholar 

  • Dittert, L. W., and Higuchi, T., 1963, Rates of hydrolysis of carbamate and carbonate esters in alkaline solution, J. Pharm. Sci. 52:852.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, M. E., and O’Brien, R. D., 1967, Permeability of the abdominal nerve cord of the American cockroach, Periplaneta americana (L.), to quaternary ammonium salts, J. Exp. Biol. 46:1.

    CAS  Google Scholar 

  • Faeder, I. R., O’Brien, R. D., and Salpeter, M. M., 1970, A re-investigation of evidence for cholinergic neuromuscular transmission in insects, J. Exp. Zool. 173:187.

    Article  PubMed  CAS  Google Scholar 

  • Fleisher, J. N., and Harris, L. W., 1965, Dealkylation as a mechanism for aging of cholinesterase after poisoning with pinacolyl methylphosphonofluoridate, Biochem. Pharmacol. 14:641.

    Article  PubMed  CAS  Google Scholar 

  • Fukuto, T. R., and Metcalf, R. L., 1956, Structure and insecticidal activity of some diethyl substituted phenyl phosphates, J. Agr. Food Chem. 4:930.

    Article  CAS  Google Scholar 

  • Fukuto, T. R., and Metcalf, R. L., 1959, The effect of structure on the reactivity of alkylphosphonate esters, J. Am. Chem. Soc. 81:372.

    Article  CAS  Google Scholar 

  • Gazzard, M. F., Sainsbury, G. L., Swanson, D. W., Sellers, D., and Watts, P., 1974, The anticholinesterase ability of diethyl S n-propyl phosphorothiolate: Errors caused by the presence of an active impurity, Biochem. Pharmacol. 23:751.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, P. A., 1958, The action of drugs on the nervous system of the locust (Locusta migratoria), Ann. Appl. Biol. 46:55.

    Article  CAS  Google Scholar 

  • Hart, G. J., and O’Brien, R. D., 1973, Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate, Biochemistry 12:2940.

    Article  PubMed  CAS  Google Scholar 

  • Hart, G. J., and O’Brien, R. D., 1974, Stopped-flow studies of the inhibition of acetylcholinesterase by organophosphates in the presence of substrate, Pestic. Biochem. Physiol. 4:239.

    Article  CAS  Google Scholar 

  • Hart, G. J., and O’Brien, R. D., 1975, Trialkyl phosphates and phosphorothiolates—Lack of hydrophobic interaction with acetylcholinesterase, Biochem. Pharmacol. 24:540.

    Article  PubMed  CAS  Google Scholar 

  • Hellenbrand, K., and Krupka, R. M., 1970, Kinetic studies on the mechanism of insect acetylcholinesterase, Biochemistry 9:4665.

    Article  PubMed  CAS  Google Scholar 

  • Hetnarski, B., and O’Brien, R. D., 1972, The role of charge-transfer complex formation in the inhibition of acetylcholinesterases by aromatic carbamates, Pestic. Biochem. Physiol. 2:132.

    Article  CAS  Google Scholar 

  • Hetnarski, B., and O’Brien, R. D., 1973, Charge-transfer in cholinesterase inhibition: Role of the conjugation between carbamyl and aryl groups of aromatic carbamates, Biochemistry 12:3883.

    Article  PubMed  CAS  Google Scholar 

  • Hetnarski, B., and O’Brien, R. D., 1975a, The charge-transfer constant; a new substituent constant for structure-activity relationships, J. Med. Chem. 18:29.

    Article  PubMed  CAS  Google Scholar 

  • Hetnarski, B., and O’Brien, R. D., 1975b, Electron-donor and affinity constants and their application to the inhibition of acetylcholinesterase by carbamates, J. Agr. Food Chem. 23:709.

    Article  CAS  Google Scholar 

  • Hobbiger, F., 1955, Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphate group, Br. J. Pharmacol 10:356.

    CAS  Google Scholar 

  • Hobbiger, F., 1957, Protection against the lethal effects of organophosphates by pyridine-2-aldoxime methiodide, Br. J. Pharmacol. 12:438.

    CAS  Google Scholar 

  • Kabachnik, M. I., Brestkin, A. P., Godovikov, N. N., Michelson, M. J., Rozengart, E. V., and Rozengart, V. I., 1970, Hydrophobic areas on the active surface of cholinesterases, Pharmacol. Rev. 22:255.

    Google Scholar 

  • Ketelaar, J. A. A., 1953, Chemical structure and insecticidal activity of organic phosphorus compounds, Trans. 9th Int. Congr. Entomol. 1951 2:318.

    Google Scholar 

  • Kitz, R. J., Braswell, L. M., and Ginsburg, S., 1970, On the question: Is acetylcholinesterase an allosteric protein? Mol. Pharmacol. 6:108.

    PubMed  CAS  Google Scholar 

  • Kolbezen, M. J., Metcalf, R. L., and Fukuto, T. R., 1954, Insecticidal activity of carbamate cholinesterase inhibitors, J. Agr. Food Chem. 2:864.

    Article  CAS  Google Scholar 

  • Lawler, H. C., 1961, Turnover time of acetylcholinesterase, J. Biol. Chem. 236:2296.

    PubMed  CAS  Google Scholar 

  • Main, A. R., 1964, Affinity and phosphorylation constants for the inhibition of esterases by organophosphates, Science 144:992.

    Article  PubMed  CAS  Google Scholar 

  • Main, A. R., and Iverson, F. I., 1966, Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by di-isopropyl phosphorofluoridate, Biochem. J. 100:525.

    PubMed  CAS  Google Scholar 

  • Mayer, R. T., and Himel, C. M., 1972, Dynamics of fluorescent probe-cholinesterase reactions, Biochemistry 11:2082.

    Article  PubMed  CAS  Google Scholar 

  • Mengle, D. C., and O’Brien, R. D., 1960, The spontaneous and induced recovery of the fly brain cholinesterase after inhibition by organophosphates, Biochem. J. 75:201.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L., and Fukuto, T. R., 1965, Effect of chemical structure on intoxication and detoxication of phenyl N-methylcarbamates in insects, J. Agr. Food Chem. 13:220.

    Article  CAS  Google Scholar 

  • Miller, T., and Kennedy, J. M., 1972, Flight motor activity of houseflies as affected by temperature and insecticides, Pestic. Biochem. Physiol. 2:206.

    Article  CAS  Google Scholar 

  • O’Brien, R. D., 1960, Toxic Phosphorus Esters, Academic Press, New York.

    Google Scholar 

  • O’Brien, R. D., 1961, Esterase inhibition in organophosphorus poisoning of houseflies, J. Econ. Entomol. 54:1161.

    Google Scholar 

  • O’Brien, R. D., 1968, Kinetics of the carbamylation of cholinesterase, Mol. Pharmacol. 4:121.

    PubMed  Google Scholar 

  • O’Brien, R. D., 1969, Binding sites of cholinesterases—Alkylation by an aziridinium derivative, Biochem. J. 113:713.

    PubMed  Google Scholar 

  • O’Brien, R. D., 1971, The design of organophosphate and carbamate inhibitors of cholinesterases, in: Drug Design (E. J. Ariens, ed.), pp. 162–212, Academic Press, New York.

    Google Scholar 

  • O’Brien, R. D., Hilton, B. D., and Gilmour, L., 1966, The reaction of carbamates with cholinesterase, Mol. Pharmacol. 2:593.

    PubMed  Google Scholar 

  • O’Connor, A. K., O’Brien, R. D., and Salpeter, M. M., 1965, Pharmacology and fine structure of peripheral muscle innervation in the cockroach Periplaneta americana, J. Insect Physiol. 11:1351.

    Article  PubMed  Google Scholar 

  • Purdie, J. E., and Mclvor, R. A., 1966, The properties of acetylcholinesterase modified by interaction with the alkylating agent N, N-dimethyl-2-phenylaziridinium ion, Biochim. Biophys. Acta 128:590.

    Article  CAS  Google Scholar 

  • Roufogalis, B. D., and Thomas, J., 1968, The acceleration of acetylcholinesterase activity at low ionic strength by organic and inorganic cations, Mol. Pharmacol. 4:181.

    PubMed  CAS  Google Scholar 

  • Soeda, Y., Eldefrawi, M. E., and O’Brien, R. D., 1975, Lobster axon acetylcholinesterase: A comparison with acetylcholinesterases of bovine erythrocytes, housefly head and Torpedo electroplax, Comp. Biochem. Physiol. 50C:163.

    Google Scholar 

  • Spencer, E. Y., and O’Brien, R. D., 1953, Enhancement of anticholinesterase activity in octamethylpyrophosphoramide by chlorine, J. Agr. Food Chem. 1:716.

    Article  CAS  Google Scholar 

  • Tripathi, R. K., 1976, Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant housefly strain to organophosphates and carbamates, Pestic. Biochem. Physiol., in press.

    Google Scholar 

  • Tripathi, R. K., and O’Brien, R. D., 1973a, Effects of organophosphates in vivo upon acetylcholinesterase isozymes from housefly head and thorax, Pestic. Biochem. Physiol. 2:418.

    Article  CAS  Google Scholar 

  • Tripathi, R. K., and O’Brien, R. D., 1973b, Insensitivity of acetylcholinesterase as a factor in resistance to the organophosphate RabonR in houseflies, Pestic. Biochem. Physiol. 3:495.

    Article  CAS  Google Scholar 

  • Tripathi, R. K., Chiu, Y. G., and O’Brien, R. D., 1973, Reactivity in vitro towards substrates and inhibitors of acetylcholinesterase isozymes from electric eel electroplax and housefly brain, Pestic. Biochem. Physiol. 3:55.

    Article  CAS  Google Scholar 

  • van Asperen, K., and Dekhuijzen, H. M., 1958, Quantitative analysis of the kinetics of cholinesterase inhibition in tissue homogenate of mice and houseflies, Biochim. Biophys. Acta 28:603.

    Article  Google Scholar 

  • Wigglesworth, V. B., 1958, The distribution of esterase in the nervous system and other tissues of insect Rhodnius prolixus, Quart. J. Microsc. Sci. 99:441.

    Google Scholar 

  • Wilson, I. B., 1951, Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition, J. Biol. Chem. 190:111.

    PubMed  CAS  Google Scholar 

  • Wilson, I. B., Harrison, M. A., and Ginsburg, S., 1961, Carbamyl derivatives of acetylcholinesterase, J. Biol. Chem. 236:1498.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Brien, R.D. (1976). Acetylcholinesterase and Its Inhibition. In: Wilkinson, C.F. (eds) Insecticide Biochemistry and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2212-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2212-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2214-4

  • Online ISBN: 978-1-4899-2212-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics