Skip to main content

Saponin Detoxification by Plant Pathogenic Fungi

  • Chapter
Saponins Used in Traditional and Modern Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 404))

Abstract

Saponins are common plant secondary metabolites (glycosylated triterpenoid or steroid molecules) which are found in a wide range of dicotyledonous plant species, and also in some monocots1–5. Many saponins have been demonstrated to have potent antifungal activities and often occur in healthy plants at levels which are anticipated to be toxic to saponin-sensitive fungi6. This has led to speculation that saponins may act as pre-formed determinants of resistance to fungal attack. Van Etten et al.7 have proposed the term “phytoanticipin” to distinguish pre-formed antimicrobial substances from those induced de novo in response to pathogen attack (phytoalexins). By this definition saponins fall into the category of phytoanticipins. However, in some instances the concentrations of saponins have been reported to increase in response to microbial attack8,9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.B. Mahato, S. Sarkar, and G. Poddar, Triterpenoid saponins, Phytochemistry 27: 3037 (1988).

    Article  CAS  Google Scholar 

  2. S.B. Mahato and A.K. Nandy, Triterpenoid saponins discovered between 1987 and 1989, Phytochemistry 30: 1357 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. K. Hostettmann, M. Hostettmann, and A. Marston, Saponins, Methods in Plant Biochemistry 7: 435 (1991).

    CAS  Google Scholar 

  4. K.R. Price, I.T. Johnson, and G.R. Fenwick, The chemistry and biological significance of saponins in food and feedingstuffs, CRC Crit. Rev. Food Sci. Nutr. 26: 27 (1987).

    Article  CAS  Google Scholar 

  5. G.R. Fenwick, K.R. Price, C. Tsukamota, and K. Okubo, Saponins, in: Toxic Substances in Crop Plants, J.P. D’Mello, C.M. Duffus, and J.H. Duffus, eds., The Royal Society of Cambridge, Cambridge, pp. 285–327, (1992).

    Google Scholar 

  6. F. Schönbeck and E. Schlösser, Preformed substances as plant protectants, in: Physiological Plant Pathology, R. Heitefuss and P.H. Williams, eds., Springer-Verlag, Berlin, pp. 653–678 (1976).

    Chapter  Google Scholar 

  7. H.D. VanEtten, J.W. Mansfield, J.A. Bailey, and E.E. Farmer, Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”, The Plant Cell 9: 1191 (1994).

    Google Scholar 

  8. D.J. McCance and R.B. Drysdale, Production of tomatine and rishitin in tomato plants inoculated with Fusarium oxysporum f.sp. lycopersici, Physiol. Mol. Plant Pathol. 7: 221 (1975).

    Article  CAS  Google Scholar 

  9. G.F. Pegg, G.F. and S. Woodward, Synthesis and metabolism of a-tomatine in tomato isolines in relation to resistance to Verticillium albo-atrum, Physiol. Mol. Plant. Pathol. 28: 187 (1986).

    Article  CAS  Google Scholar 

  10. A.D. Bangham, and R.W. Home, Action of saponin on biological membranes, Nature, 196: 952 (1962).

    Article  PubMed  CAS  Google Scholar 

  11. R.R. Dourmaskin, R.M. Dougherty, and R.J.C. Harris, Electron microscopic observations on Rous sarcoma virus and cell membranes, Nature 194: 1116 (1962).

    Article  Google Scholar 

  12. J.G. Roddick, and R.B. Drysdale, Destablization of liposome membranes by the steroidal glycoalkaloid a-tomatine, Phytochemistry 23: 543 (1984).

    Article  CAS  Google Scholar 

  13. C.C. Steel and R.B. Drysdale, Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine, Phytochemistry 27: 1025 (1988).

    Article  CAS  Google Scholar 

  14. H.U. Lüning and E. Schlösser, Role of saponins in antifungal resistance V. Enzymatic activation of avenacosides, Z. Pflanzenkrankh. Pflanzenschutz 82: 699 (1975).

    Google Scholar 

  15. R. Tschesche and W. Wiemann, Desgluco-avenacosid-A und -B, biologisch aktive Nuatigeninglycoside, Chem. Ber. 110: 2416 (1977).

    Article  CAS  Google Scholar 

  16. A. Nisius, The stromacentre in Avena plastids and aggregation of β-glucosidase responsible for the activation of oat-leaf saponins, Planta 173: 474 (1988).

    Article  CAS  Google Scholar 

  17. S. Gus-Mayer, H. Brunner, H.A.W. Schneider-Poetsch, and W. Rüdiger, Avenacosidase from oat: purification, sequence analysis and biochemical characterisation of a new member of the BGA family of β-glucosidases, Plant Mol. Biol. 26: 909 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. S. Gus-Mayer, H. Brunner, H.A.W. Schneider-Poetsch, F. Lottspeich, C. Eckerskorn, R. Grimm, and W. Rüdiger, The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a β-glucosidase, FEBS Letts. 347: 51 (1994).

    Article  CAS  Google Scholar 

  19. E. Schlösser, Role of saponins in antifungal resistance. III. Tomatin dependant development of fruit rot organisms on tomato fruits, Z. Pflanzenkrankh. Pflanzenschutz 82: 476 (1975).

    Google Scholar 

  20. P.A. Arneson and R.D. Durbin, The sensitivity of fungi to α-tomatine, Phytopathology 58: 536 (1968).

    Google Scholar 

  21. A.E. Osbourn, P. Bowyer, G. Bryan, P. Lunness, B.R. Clarke, and M.J. Daniels, Detoxification of plant saponins by fungi, in: Advances in Molecular Genetics of Plant-Microbe Interactions, M.J. Daniels, J.A. Downie, and A.E. Osbourn, eds., Kluwer, Dordrecht, Vol.3, pp. 215–221 (1994).

    Chapter  Google Scholar 

  22. E.M. Turner, An enzymic basis for pathogen specificity in Ophiobolus graminis, J. Exp. Bot. 12: 169 (1961).

    Article  CAS  Google Scholar 

  23. W.M.L. Crombie, L. Crombie, J.B. Green, and J.A. Lucas, Pathogenicity of take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins, Phytochemistry 25: 2075 (1986).

    Article  CAS  Google Scholar 

  24. A.E. Osbourn, B.R. Clarke, J.M. Dow, J.M., and M.J. Daniels, Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae, Physiol. Mol. Plant Pathol. 38: 301 (1991).

    Article  CAS  Google Scholar 

  25. P. Bowyer, B.R. Clarke, P. Lunness, M.J. Daniels, and A.E. Osbourn, Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme, Science 267: 371 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. R.D. Durbin and J.F. Uchytil, Purification and properties of a fungal β-glucosidase acting on a-tomatine, Biochim. Biophys. Acta 191: 176 (1969).

    Article  PubMed  CAS  Google Scholar 

  27. J.E. Ford, DJ. McCance, and R.B. Drysdale, The detoxification of a-tomatine by Fusarium oxysporum f.sp. lycopersici, Phytochemistry 16: 545 (1977).

    Article  CAS  Google Scholar 

  28. K. Verhoeff and J.I. Liem, Toxicity of tomatine to Botrytis cinerea, in relation to latency, Phytopath. Z. 82: 333 (1975).

    Article  CAS  Google Scholar 

  29. L. Crombie, W.M.L. Crombie, and D.A. Whiting, Isolation of avenacins A-1, A-2, B-1 and B-2 from oat roots: structures of their aglycones, the avenestergenins, J. Chem. Soc., Chem. Commun. 244: 246 (1984).

    Article  Google Scholar 

  30. L. Crombie, W.M.L. Crombie, and D.A. Whiting, Structures of the oat root resistance factors to take-all disease, avenacins A-1, A-2, B-1 and B-2 and their companion substances, J. Chem. Soc. Perkin Trans. I: 1917 (1986).

    Article  Google Scholar 

  31. W.M.L. Crombie and L. Crombie, Distribution of the avenacins A-1, A-2, B-1 and B-2 in oat roots: their fungicidal activity towards take-all fungus, Phytochemistry 25: 2069 (1986).

    Article  CAS  Google Scholar 

  32. E.M. Turner, The nature of the resistance of oats to the take-all fungus. III. Distribution of the inhibitor in oat seeedlings, J. Exp. Bot. 11: 403 (1960).

    Article  CAS  Google Scholar 

  33. R.H. Goodwin and B.M. Pollock, Studies on mots. I. Properties and distribution of fluorescent constituents in Avena roots, Am. J. Bot. 4: 516 (1954).

    Article  Google Scholar 

  34. A.E. Osbourn, B.R. Clarke, P. Lunness, P.R. Scott and M.J. Daniels, An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici, Physiol. Mol. Plant Pathol. 45: 457 (1994).

    Article  CAS  Google Scholar 

  35. J.V. Maizel, H.J. Burkhardt, and H.K. Mitchell, Avenacin, an antimicrobial substance isolated from Avena sativa, Biochemistry 3: 424 (1964).

    Article  PubMed  CAS  Google Scholar 

  36. H.U. Lüning and E. Schlösser, Saponine in Avena saliva, Angewandte Botanik 50: 49 (1976).

    Google Scholar 

  37. T.D. Fontaine, J.S. Ard, and R.M. Ma, Tomatidine, a steroid secondary amine, J. Amer. Chem. Soc. 73: 878 (1951).

    Article  CAS  Google Scholar 

  38. J.M. Henson, N.K. Blake, and A.L. Pilgeram, Transformation of Gaeumannomyces graminis to benomyl resistance, Curr. Genet. 14: 113 (1988).

    Article  CAS  Google Scholar 

  39. B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J. 280: 309 (1991).

    PubMed  CAS  Google Scholar 

  40. C.C. Barnett, R.M. Berka, and T. Fowler, Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates, Bio/Technology 9: 562 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. M. Machida, I. Ohtsuki, S. Fukui, and I. Yamashita, Nucleotide sequence of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae, Appl. Env. Microbiol. 54: 3147 (1988).

    CAS  Google Scholar 

  42. C. Kohchi and A. Tohe, Nucleotide sequence of Candida pelliculosa β-glucosidase gene, Nucleic Acids Res. 13: 6273 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. E. Bause and G. Legler, Isolation and structure of a tryptic glycopeptide from the active site of βglucosidase A3 from Aspergillus wentii, Biochim. Biophys. Acta 626: 459 (1980).

    Article  PubMed  CAS  Google Scholar 

  44. P.A. Arneson and R.D. Durbin, Studies on the mode of action of tomatine as a fungitoxic agent, Plant Physiol. 1968, 43, 683–686.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osbourn, A.E., Bowyer, P., Daniels, M.J. (1996). Saponin Detoxification by Plant Pathogenic Fungi. In: Waller, G.R., Yamasaki, K. (eds) Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology, vol 404. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1367-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1367-8_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1369-2

  • Online ISBN: 978-1-4899-1367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics