Skip to main content

Visuomotor Coordination: Neural Models and Perceptual Robotics

  • Chapter
Visuomotor Coordination

Abstract

This paper addresses two complementary questions: What is the appropriate set of tools for the study of the networks of animal and human brains, and what are the strategies for building computers with “intelligence”? We argue that there are overall architectural principles which unite both sides of this study, namely, that a computer no longer be thought of as a unitary system but rather as a network of more specialized devices, and that many of these devices be structured as highly parallel arrays of interacting neuron-like components. We illustrate this with a discussion of the architecture of the frog’s brain as revealed in studies of the mechanisms of visuomotor coordination, and of the design of vision and motor conrol systems for robots. The following topics are treated: (1) What is a schema? (2) Schemas for Rana computatrix. (3) Tectal columns (4) Depth perception. (5) Pathplanning and detours. (6) Schemas for hand control. (7) Schemas for vision. (8) Challenges for cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amari S-I, Arbib MA (1977) Competition and cooperation in neural nets. In: Metzler J (ed) Systems neuroscience. Academic Press London New York, pp 119–165

    Google Scholar 

  • Arbib MA (1975) Artificial intelligence and brain theory. unities and diversities. Ann Biomed Eng 3: 238–274

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology–The nervous system II. Motor control. American Physiological Society Bethesda MD, pp 1449–1480

    Google Scholar 

  • Arbib MA (1987a) Levels of modeling of mechanisms of visually guided behavior. BehavBrain Sci 10: 407–465

    Google Scholar 

  • Arbib MA (1987b) Brains, machines, and mathematics, 2nd Edn, Springer-Verlag, New York

    Google Scholar 

  • Arbib MA (1989) The metaphorical brain 2: neural networks and beyond. Wiley Interscience, New York (in press)

    Google Scholar 

  • Arbib MA, Hanson AR (eds) (1987) Vision, brain, and cooperative computation. A Bradford Book/MIT Press Cambridge MA

    Google Scholar 

  • Arbib MA, House DH (1987) Depth and detours: an essay on visually-guided behavior. In: Arbib MA, Hanson AR (eds) Vision, brain, and cooperative computation. A Bradford Book/MIT Press Cambridge MA, pp 129–163

    Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodman AW, Darian-Smith I (eds) Hand function and the neocortex Springer-Verlag, New York, pp 135–170

    Google Scholar 

  • Arbib MA, Overton KJ, Lawton DT (1984) Perceptual systems for robots. Inteidiscipl Sci Rev9(1): 31–46 Barlow HB (1953) Summation and inhibition in the frog’s retina. JPhysiol (Lond) 119: 69–88

    Google Scholar 

  • Caine HS, Gruberg ER (1985) Ablation of nucleus isthmi leads to loss of specific visually guided behavior in the frog Rana pipiens. Neurosci Lett 54: 307–312

    Article  CAS  Google Scholar 

  • Cervantes-Pérez F (1985) Modelling and analysis of neural networks in the visuomotor system of anuran amphibia. PhD Thesis and COINS Techn Rep 85–27, Computer and Information Science Department, Univ of Massachusetts at Amherst MA

    Google Scholar 

  • Cervantes-Pérez F, Lara R, Arbib MA (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. J Theor Biol 113: 117–152

    Article  PubMed  Google Scholar 

  • Chipalkatti R, Arbib MA (1987) The prey localization model: a stability analysis. Biol Cybern 57: 287–300

    Article  PubMed  CAS  Google Scholar 

  • Chipalkatti R, Arbib MA (1988) The cue interaction model of depth perception: a stability analysis. JMath Biol 26: 235–262

    Article  CAS  Google Scholar 

  • Collett T (1982) Do toads plan routes? A study of the detour behaviour of Bufo viridis. J Comp Physiol 146: 261–271

    Article  Google Scholar 

  • Collett T, Udin S (1983) The role of the toad’s nucleus isthmi in prey-catching behaviour. In: Lara R, Arbib MA (eds) Proceedings of the second workshop on visuomotor coordination in frog and toad: models and experiments. COINS Techn Rep 83–19, Univ of Massachusetts at Amherst MA

    Google Scholar 

  • Dev P (1975) Perception of depth surfaces in random-dot stereograms: a neural model. Int J Man-Machine Studies 7: 511–528

    Article  Google Scholar 

  • Didday RL (1970) The simulation and modelling of distributed information processing in the frog visual system. PhD Thesis Stanford University

    Google Scholar 

  • Didday R (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci 30: 169–180

    Article  Google Scholar 

  • Epstein S (1979) Vermin users manual. Unpublished MS Thesis, Department of Computer and Information Science, Univ of Massachusetts at Amherst MA

    Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34–42

    Google Scholar 

  • Ewert J-P (1976) The visual system of the toad: behavioural and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 142–202

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Article  Google Scholar 

  • Ewert J-P, Seelen W v (1974) Neurobiologie and Systemtheorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183

    Article  PubMed  CAS  Google Scholar 

  • Hanson AR, Riseman EM (1978) VISIONS: a computer system for interpreting scenes. In: Hanson AR

    Google Scholar 

  • Riseman EM (eds) Computervision systems,Academic Press, New York, pp 129–163

    Google Scholar 

  • Hirai Y, Fukushima K (1978) An inference upon the neural network finding binocular correspondence. Biol Cybern 31: 209–217

    Article  PubMed  CAS  Google Scholar 

  • House DH (1982) The frog/toad depth perception system - A cooperative/competitive model. In: Arbib MA (ed) Proceedings of the workshop on visuomotor coordination in frog and toad: models and experiments. COINS Techn Rep 82–16, Univ of Massachusetts at Amherst MA

    Google Scholar 

  • House DH (1984) Neural models of depth perception in frog and toad. PhD Thesis, Department of Computer and Information Science, Univ of Massachusetts at Amherst MA

    Google Scholar 

  • House D (1988) A model of the visual localization of prey by frog and toad. Biol Cybern 58: 173–192

    Article  PubMed  CAS  Google Scholar 

  • Iberall T (1987) A neural model of human prehension. PhD Thesis, Department of Computer and Information Science, Univ of Massuchusetts at Amherst MA

    Google Scholar 

  • Iberall T, Arbib MA (1988) Schemas for the control of hand movements: an essay on cortical localization. In: Goodale M (ed) Vision and action: the control of grasping (in press)

    Google Scholar 

  • Iberall T, Bingham G, Arbib MA (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. EAT Brain Res Series 15: 158–173

    Google Scholar 

  • Ingle D (1975) Selective visual attention in frogs. Science 188: 1033–1035

    Article  PubMed  CAS  Google Scholar 

  • Ingle D (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140

    Google Scholar 

  • Ingle DJ (1982) Organization of visuomotor behaviors in vertebrates. In: Ingle DJ, Mansfield RJW, Goodale MA (eds) Advances in the analysis of visual behavior. The MIT Press Cambridge MA, pp 67–109

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 177–226

    Chapter  Google Scholar 

  • Jeannerod M, Biguer B (1982) Visuomotor mechanisms in reaching within extrapersonal space. In: Ingle DJ, Mansfield RJW, Goodale MA (eds) Advances in the analysis of visual behavior. The MIT Press Cambridge MA, pp 387–409

    Google Scholar 

  • Jeannerod M, Michel F, Prablanc C (1984) The control of hand movements in a case of hemianeaesthesia following a parietal lesion. Brain 107: 899–920

    Article  PubMed  Google Scholar 

  • Lam R, Arbib MA (1982) A neural model of interaction between tectum and pretectum in prey selection. Cognition and Brain TheoryS: 149–171

    Google Scholar 

  • Lam R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behaviour: a neural model. JNeurosci 2: 521–530

    Google Scholar 

  • Lam R, Carmona M, Daza F, Cruz A (1984) A global model of the neural mechanisms responsible for visuomotor coordination in toads. J Theor Bio! 110: 587–618

    Article  Google Scholar 

  • Lee Y (1986) A neural network model of frog retina: a discrete time-space approach. Computer Science Department, Univ of Southern Califonia, Los Angeles CA. Techn Report TR-86–219

    Google Scholar 

  • Lettvin JY, Maturana H, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47: 1940–1951

    Article  Google Scholar 

  • Lyons DM, Arbib MA (1988) A formal model of distributed computation for schema-based robot control. IEEE J Robotics and Automation (in press)

    Google Scholar 

  • Malsburg C vd, Schneider W (1986) A neural cocktail-party processor. Bio! Cybern 54: 29–40

    Article  Google Scholar 

  • Riseman EM, Hanson AR (1987) A methodology for the development of general knowledge-based vision systems. In: Arbib MA, Hanson AR (eds) Vision, brain and cooperative computation. A Bradford Book/ The MIT Press Cambridge MA, pp 285–328

    Google Scholar 

  • Robinson DA (1981) The use of control systems analysis in the neruophysiology of eye movements. Ann Rev Neurosci 4: 463–503

    Article  PubMed  CAS  Google Scholar 

  • Székely G, Ldzir G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434

    Chapter  Google Scholar 

  • Teeters J (1988) A simulation system for the amphibian retina. Techn Rep, Department of Computer Science, University of Southern California

    Google Scholar 

  • Weymouth TE (1986) Using object descriptions in a schema network for machine vision. PhD Thesis and COINS Techn Rep 86–24, Department of Computer and Information Science, Univ of Massachusetts at Amherst MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arbib, M.A. (1989). Visuomotor Coordination: Neural Models and Perceptual Robotics. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics