Skip to main content

Regular Functions on Certain Infinite-dimensional Groups

  • Chapter
Arithmetic and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 36))

Abstract

In the paper [18], we began a detailed study of the “smallest” group G associated to a Kac-Moody algebra g(A) and of the (in general infinite-dimensional) flag varieties Pν Λ associated to G. In the present paper we introduce and study the algebra F[G] of “strongly regular” functions on G. We establish a Peter-Weyl-type decomposition of F[G] with respect to the natural action of G × G (Theorem 1) and prove that F[G] is a unique factorization domain (Theorem 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birkhoff C.D., A theorem on matrices of analytic functions, Math. Ann. 74 (1913), 122–133.

    Article  MathSciNet  Google Scholar 

  2. Bott R., An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France 84 (1956), 251–281.

    MathSciNet  Google Scholar 

  3. Bourbaki N., Groupes et Algebres de Lie (Hermann, Paris), Chap. 4,5 and 6, 1968.

    Google Scholar 

  4. Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations, preprints (1981–82).

    Google Scholar 

  5. Demazure M., A very simple proof of Bott’s theorem, Inventiones Math. 33 (1976), 271–272.

    Article  MathSciNet  MATH  Google Scholar 

  6. Demazure M., Désingularisation des variétés de Schubert généralizees, Annales Sci. l’École Norm. Sup., 4e ser., 7 (1974), 53–88.

    MATH  Google Scholar 

  7. Gabber O., Kac V.G., On defining relations of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc., New ser., 5 (1981), 185–189.

    Article  MathSciNet  MATH  Google Scholar 

  8. Grothendieck A., Sur la classification des fibres holomorphes sur la sphere de Riemann, Amer. J. Math. 79 (1957), 121–138.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gohberg I., Feldman I.A., Convolution equations and projection methods for their solution, Transi. Math. Monographs, 41, Amer. Math. Soc., Providence 1974.

    Google Scholar 

  10. Kac V.G., Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija 2 (1968), 1271–1311.

    Article  Google Scholar 

  11. Kac V.G., Infinite-dimensional Lie algebras and Dedekind’s ri-function, J. Funct. Anal. Appl. 8 (1974), 68–70.

    Article  MATH  Google Scholar 

  12. Kac V.G., Infinite-dimensional algebras, Dedekind’s ri-function, classical Möbius function and the very strange formula, Advances in Math. 30 (1978), 85–136.

    Article  MATH  Google Scholar 

  13. Kac V.G., Peterson D.11., Spin and wedge representations of affine Lie algebras, Proc. Natl. Acad. Sci. USA 78 (1981), 3308–3312.

    Article  MATH  Google Scholar 

  14. Kac V.G., Peterson D.II., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., 50(1983).

    Google Scholar 

  15. Kac V.G., Kazhdan D.A., Lepowsky J., Wilson R.L., Realization of the basic representations of the Euclidean Lie algebras, Adv. Math., 42 (1981), 83–112.

    MathSciNet  MATH  Google Scholar 

  16. Lancaster G., Towber J., Representation-functions and flag-algebras for the classical groups I, J. of Algebra 59 (1979), 16–38.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nagata M., Local rings, Interscience Publishers, 1962.

    Google Scholar 

  18. Peterson D.H., Kac V.G., Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci. USA, 80 (1983), 1778–1782.

    Article  MATH  Google Scholar 

  19. Popov V.L., Picard groups of homogeneous spaces of linear algebraic groups and 1-dimensional homogeneous vector bundles, Math. USSR-Izvestija, 8 (1974), 301–327.

    Article  Google Scholar 

  20. Shafarevich I.R., On certain infinite-dimensional groups II, Math. USSR-Izvestija, 18 (1981), 185–194.

    Article  Google Scholar 

  21. Vinberg F.B., Popov V.L., On a class of quasihomogeneous affine varieties, Math. USSR-Izvestija 6 (1972), 743–758.

    Article  Google Scholar 

  22. Voskresenskii V.E., Picard groups of linear algebraic groups, Studies in number theory of Saratov University, 3 (1969), 7–16 (in Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Igor Rostislavovich Shafarevich on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kac, V.G., Peterson, D.H. (1983). Regular Functions on Certain Infinite-dimensional Groups. In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol 36. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-9286-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9286-7_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3133-8

  • Online ISBN: 978-1-4757-9286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics