Skip to main content

Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Traditionally, biologists have been confined to transmission electron microscopy (TEM) and light microscopy (LM) in order to correlate biochemical and molecular data with morphology. Electron microscopy (EM) provides fine ultrastructural detail but is limited to the study of cellular structures that react with electron-dense stains deposited in fixed specimens. Immunogold labeling permits the study of non-electron-dense material, but EM sections must still be very thin to avoid problems with the penetration of the labeled antibodies and to reduce scattering of the electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, E., 1884, Flatland: A Romance of Many Dimensions, 2nd ed., Dover, London.

    Google Scholar 

  • Abdella, P.M., Smith, P.K., and Royer, G.P., 1979, A new cleavable reagent for crosslinking and reversible immobilization of proteins, Biochem. Bio-phys. Res. Comm. 87:734–42.

    Article  CAS  Google Scholar 

  • Bacallao, R. and Garfinkel, A., 1994, Volume reconstruction of confocal microscope images: Practical considerations, in press.

    Google Scholar 

  • Bacallao, R., and Stelzer, E.H.K., 1989, Preservation of biological specimens for observation in a confocal fluorescence microscope, operational principles of confocal fluorescence microscopy, Methods Cell Biol. 31:437 – 452.

    Article  PubMed  CAS  Google Scholar 

  • Bacallao, R., Dotti, C., Antony, C., Stelzer, E.H.K., Karsenti, E., and Simons, K., 1989, Subcellular organization of MDCK cells during the formation of a polarized epithelium, J. Cell Biol. 109:2817–2832.

    Article  PubMed  CAS  Google Scholar 

  • Barrnett, R.J., Perney, D.P., and Hagstrom, P.E., 1964, Additional new aldehyde fixatives for histochemistry and electron microscopy. J. Histochem. Cytochem. 12:36.

    Google Scholar 

  • Bastholm, L., Scopsi, L., and Nielsen, M.H., 1986, Silver-enhanced immunogold staining of semithin and ultrathin cryosections, J. Electron Microsc. Technique 4:175–176.

    Article  Google Scholar 

  • Benhamou, N., Noel, S., Grenier, J., and Asselin, A., 1991, Microwave energy fixation of plant tissue: An alternative approach that provides excellent preservation of ultrastructure and antigenicity, J. Electron Microsc. Technique 17: 81–94.

    Article  CAS  Google Scholar 

  • Berod, A., Hartman, B.K., and Pujol, J.F., 1981, Importance of fixation in immunohistochemistry, J. Histochem. Cytochem. 29: 844–50.

    Article  PubMed  CAS  Google Scholar 

  • Berthoud, H.-R., Jedrezejewska, A., and Powley, T.L., 1990, Simultaneous labeling of vagal innervation of the gut and afferent projections from the bisceral forebrain with dil injected into the dorsal vagal complex in the rat, J. Comp. Neurol. 301:65–79.

    Article  PubMed  CAS  Google Scholar 

  • Birrell, G.B., and Hedbert, K.K., 1987, Immunogold labeling with small gold particles: Silver enhancement provides increased detectability at low magnifications, J. Electron Microsc. Technique 5:219–220.

    Article  Google Scholar 

  • Blanchette-Mackie, E.J., and Scow, R.O., 1981, Lipolysis and lamellar structures in white adipose tissue of young rats: Lipid movement in membranes, J. Ultrastruct. Res. 77:295–318.

    Article  PubMed  CAS  Google Scholar 

  • Bock, G., Hilchenbach, M., Schauenstein, K., and Wick, G., 1985, Photometric analysis of anti-fading reagents for immunofluorescence with laser and conventional illumination sources, J. Histochem. Cytochem. 33:699–705.

    Article  PubMed  CAS  Google Scholar 

  • Bomsel, M., Prydz, K., Parton, R.G., Gruenberg, J., and Simons, K., 1989, Functional and topological organization of apical and basolateral endo-cytic pathways in MDCK cells, J. Cell Biol. 109:3243–3258.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, B., and Maser, M., 1988, Artifacts in fixation for transmission electron-microscopy. In: Artifacts in Biological Electron Microscopy (R.F.E. Crang and K.L. Klomparns, eds.), Plenum Press, New York, pp. 13–41.

    Google Scholar 

  • Boyde, A., and Maconnachie, E., 1979, Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy, Scanning 2:149–163.

    Article  CAS  Google Scholar 

  • Boyde, A., and Maconnachie, E., 1981, Morphological correlations with dimensional change during SEM specimen preparation, Scanning Electron Microsc. 4:278–34.

    Google Scholar 

  • Bradbury, S., and Meek, G.A., 1960, A study of potassium permanganate “fixation” for electron microscopy, Q. J. Microsc. Sci. 101:241–250.

    Google Scholar 

  • Brelje, T.C., and Sorenson, R.L., 1991, Role of prolactin versus growth hormone on islet B-cell proliferation in vitro: Implications for pregnancy, Endocrinology 128:45–57.

    Article  PubMed  CAS  Google Scholar 

  • Brelje, T.C., Scharp, D.W., and Sorenson, R.L., 1989, Three-dimensional imaging of intact isolated islets of langerhans with confocal microscopy, Diabetes 38:808–14.

    Article  PubMed  CAS  Google Scholar 

  • Cande, W.Z., Lazarides, E., and Mcintosh, J.R., 1977, Composition and distribution of actin and tubulin in mammalian mitotic spindle as seen by indirect immunofluorescence, J. Cell. Biol. 72:552–567.

    Article  PubMed  CAS  Google Scholar 

  • Dabora, S.L., and Sheetz, M.P., 1988, The microtubule-dependent formation of tubulovesicular network with characteristics of the endoplasmic-reticulum from cultured cell extracts, Cell 54:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Danscher, G., Rytter Nergaard, J.O., and Baatrup, E., 1987, Autometallography-tissue metals demonstrated by a silver enhancement kit, Histochemistry 71:1–16.

    Article  Google Scholar 

  • Ellisman, M.H., Deerinck, T.J., Ouyang, Y., Beck, C.F., Tanksley, S.J., Walton, P.D., Airey, J.A., and Sutko, J.L., 1990, Identification and localization of ryanodine binding proteins in the avian central nervous system, Neuron 5:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Ericsson, J.L.E., and Biberfeld, P., 1967, Studies on aldehyde fixation. Fixation rates and their relation to fine structure and some histochemical reactions in the liver, Lab. Invest. 17:281–298.

    PubMed  CAS  Google Scholar 

  • Fahimi, H.D., 1967, Perfusion and immersion fixation of rat liver with glutaral-dehyde, Lab. Invest. 16:736–750.

    PubMed  CAS  Google Scholar 

  • Fan, J., Mansfield, S.G., Redmond, T., Gordon-Weeks, P.R., and Raper, J.A., 1993, The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor, J. Cell Biol. 121:867–878.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.H., Johnson, F.B., Whiting, J., and Roller, P.P., 1985, Formaldehyde fixation, J. Histochem. Cytochem. 33:845–853.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, F.L., and Greer Wilson, T.J., 1992, The 14 kDaß-galactoside binding lectin in myoblast and myotube cultures: Localization by confocal microscopy, J. Cell Sci. 101:635–646.

    PubMed  CAS  Google Scholar 

  • Hayat, M.A., 1981, Fixation for Electron Microscopy, Academic Press, San Diego.

    Google Scholar 

  • Hayat, M.A., 1986, Glutaraldehyde: Role in electron microscopy, Micron Microsc. Acta 17:115.

    Article  CAS  Google Scholar 

  • Hayat, M.A., 1989, Chemical Fixation in Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed., CRC Press, Boca Raton, Florida, pp. 1–74.

    Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy introduced by mismatches in refractive index, J. Microsc. 169:391–405.

    Article  Google Scholar 

  • Hiramoto, R., Berneck, J., Jurand, J., and Hamlin, M., 1964, The effect of hydrogen ion concentration on fluorescent labelled antibodies, J. Histochem. Cytochem. 12:271–274.

    Article  PubMed  CAS  Google Scholar 

  • Holgate, C.S., Jackson, P., Cowen, P.N., and Bird, C.C., 1983, Immunogold-sil-ver staining: New method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem. 31:938–944.

    Article  PubMed  CAS  Google Scholar 

  • Hopwood, D., 1967, Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into the liver, J. Anat. 101:83–92.

    PubMed  CAS  Google Scholar 

  • Hopwood, D., 1975, The reactions of glutaraldehyde with nucleic acids, Histochem. J. 7:267–276.

    Article  PubMed  CAS  Google Scholar 

  • Hunziker, W., Male, P., and Mellman, I., 1990, Differential microtubule requirements for transcytosis in MDCK cells, EMBOJ. 9:3515–3525.

    CAS  Google Scholar 

  • Huxlin, K.R., Sefton, A.J., and Furby, J.H., 1992, The origin and development of retinal astrocytes in the mouse, J. Neurocytol. 21:530–544.

    Article  PubMed  CAS  Google Scholar 

  • Inoué, S., 1986, Video Microscopy, Plenum Press, New York.

    Google Scholar 

  • Ito, S., 1962, Light and electron microscopic study of membranous cytoplasmic organelles. In: The Interpretation of Ultrastructure (R.J.C. Harris, ed.), Academic Press, San Diego, pp. 129–148.

    Google Scholar 

  • Jackson, P., 1991, Microwave fixation in molecular biology, Eur. J. Morphol. 29: 57–59.

    PubMed  CAS  Google Scholar 

  • James, P.S., Rossetti, C., Smith, M.W., and Cremaschi, D., 1992, Confocal microscopical analysis of epithelial cell heterogeneity in mouse Peyer’s patches, Histochem. J. 24:243–250.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, T.J.A., 1985, Glutaraldehyde fixation chemistry. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (M. Muller, R.P. Becker, A. Boyde, and J.J. Wolosewick, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 51–62.

    Google Scholar 

  • Jorgensen, A.O., Arnold, W., Shen, A., C-Y, Yuan, S., Gaver, M., and Campbell, K.P., 1990, Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in the rabbit skeletal muscle, J. Cell Biol. 110:1173–1185.

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky, M.J., 1965, A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy, J. Cell Biol. 27:137.

    Google Scholar 

  • Kett, P., Geiger, B., Ehemann, V., and Komitowski, D., 1992, Three-dimensional analysis of cell nucleus structures visualized by confocal scanning laser microscopy, J. Microsc. 167:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Klugerman, M.R., 1965, Chemical andphysical variables affectingthe properties of fluorescein isothiocyanate and its protein conjugates, J. Immunol. 95:1165–1173.

    PubMed  CAS  Google Scholar 

  • Kubier, M.-D., Jordan, P.W., O’Neill, C.H., and Watt, F.M., 1991, Changes in the abundance and distribution of actin and associated proteins during terminal differentiation of human epidermal keratinocytes, J. Cell Sci. 100:153–165.

    Google Scholar 

  • Lackie, P.M., Hennessy, R.J., Hacker, G.W., and Polak, J.M., 1985, Investigation of immunogold-silver staining by electron microscopy, Histochemistry 83:545–550.

    Article  PubMed  CAS  Google Scholar 

  • Langanger, G., De Mey, J., and Adam, H., 1983, l,4-Diazobizyklo-[2.2.2]oktan (DABCO) verzogest das Ausbleichen von immunofluoreszenzprapa-raten, Mikroskopie 40:237–241.

    PubMed  CAS  Google Scholar 

  • Lee, C., and Chen, L.B., 1988, Dynamic behavior of endoplasmic-reticulum in living cells, Cell 54:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.M.K., 1984, A critical appraisal of the effects of fixation, dehydration and embedding on cell volume. In: The Science of Biological Specimen Preservation for Microscopy and Microanalysis (J-P. Revel, T. Barnard, G.H. Haggis, and S.A. Bhatt, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 61–70.

    Google Scholar 

  • Lee, R.M.K., Garfield, R.E., Forrest, J.B., and Daniel, E.E., 1979, The effects of fixation, dehydration and critical point drying on the size of cultured smooth-muscle cells, Scanning Electron Microsc. 3:439–448.

    Google Scholar 

  • Lee, R.M.K., Garfield, R.E., Forrest, J.B., and Daniel, E.E., 1980, Dimensional changes of cultured smooth muscle cells due to preparatory processes for transmission electron-microscopy, J. Microsc. 120:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.M.K., McKenzie, R., Kobayashi, K., Garfield, R.E, Forrest, J.B., and Daniel, E.E., 1982, Effects of glutaraldehyde fixative osmolalities on smooth-muscle cell-volume and osmotic reactivity of the cells after fixation, J. Microsc. 125:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Linares-Cruz, G., Rigaut, J.P., Vassy, J., De Oliveira, T.C., De Cremoux, P., Olofsson, B., and Calvo, F., 1994, Reflectance in situ hybridization (RISH): Detection, by confocal reflectance laser micrscopy, of gold-labelled riboprobes in breast cancer cell lines and hisotological specimens, J. Microsc. 173:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Lipsky, N., and Pagano, R.E., 1985, A vital stain for the Golgi apparatus, J. Cell Biol. 100:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, R.M., Fogarty, K.E., and Fay, F.S., 1991, Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy, J. Cell Biol. 112:385–395.

    Article  PubMed  CAS  Google Scholar 

  • Masliah, E., Ge, N., Morey, M., DeTeresa, R., Terry, R.D., and Wiley, C.A., 1992, Cortical dendritic pathology in human immunodeficiency virus encephalitis, Lab. Invest. 66:285–291.

    PubMed  CAS  Google Scholar 

  • McLean, I.W., andNakane, P.K., 1974, Periodate-lysine-formaldehyde fixative-anew fixative for immunoelectron microscopy, J. Histochem. Cytochem. 22:1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Meek, K.M., and Chapman, J.A., 1985, Demonstrable fixative interactions. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (M. Muller, R.P. Becker, A. Boyde, and J.J. Wolosewick, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 63–72.

    Google Scholar 

  • Merdes, A., Stelzer, E.H.K., and De Mey, J., 1991, Three dimensional architecture of the mitotic spindle analyzed by confocal fluorescence and electron microscopy, J. Electron Microsc. Technique 18:61–73.

    Article  CAS  Google Scholar 

  • Nakane, P., 1975, Recent progress in peroxidase-labeled antibody method, Ann. N.Y. Acad. Sci. USA 254:203–210.

    Article  CAS  Google Scholar 

  • Nowell, J.A., and Pawley, J.B., 1980, Preparation of experimental animal tissue for SEM, Scanning Electron Microsc. 11:1–20.

    Google Scholar 

  • Nowell, J.A., Pawley, J.B., and Osborn, M., 1981. In: Techniques in Cellular Physiology, Part 1 (P.F. Baker, ed.), Elsevier-North-Holland, New York, pp. 1–28.

    Google Scholar 

  • Osborn, M., and Weber, K., 1982, Immunofluorescence and immunocytochemi-cal procedures with affinity purified antibodies: Tubulin-containing structures. Methods Cell Biol. 24:97–132.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M., Franke, W., and Weber, K., 1980, Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems with the same cell by double immunofluorescence microscopy. Vimentin and cytoberatin fibers in cultured epithelial cells, Exp. Cell Res. 125:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Paddock, S.W., 1989, Tandem scanning reflected light microscopy of cell substratum adhesions and stress fibers in Swiss 3T3 cells, J. Cell Sci. 93:143–146.

    PubMed  Google Scholar 

  • Pawley, J.B., Amos, W.B., Dixon, A., and Brelje, T.C., 1993, Simultaneous, non-interfering collection of optimal fluorescent and backscattered light signals on the MRC 500/600. In: Proceedings of the Fifty-first Annual Meeting of the Microscopy Society of America (G.W. Bailey and C.L. Rieder, eds.), San Francisco Press, San Francisco, pp. 156–157.

    Google Scholar 

  • Petersen, P., 1977, Glutaraldehyde fixation for electron microscopy of needle biopsies of human livers, Acta. Pathol. Microbiol. Scand. [A] 85:373–83.

    CAS  Google Scholar 

  • Raftery, L.A., Sanicola, M., Blackman, R.K., and Gelbart, W.M., 1991, The relationship of decapentaplegic and engrailed expression in Drosophila imaginai disks: Do these genes mark the anterior-posterior compartment boundary?, Development 113:27–33.

    PubMed  CAS  Google Scholar 

  • Rambourg, A., Clermont, Y., Hermo, L., and Segretain, D., 1987, Tridimensional structure of the Golgi apparatus of non-ciliated epithelial cells of the ductuli efferentes in rat—An electron microscope stereoscopic study, Biol. Cell. 60:103–116.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, J.D., Bodenheimer, T.S., and Stage, D.E., 1963, Ultrastructure of Mauthner cell synapses and nodes in goldfish brains, J. Cell Biol. 19:159–199.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J.M., and Batten, B.E., 1989, Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy, J. Histochem. Cytochem. 37:61–1765.

    Article  Google Scholar 

  • Sabatini, D.D., Bensch, K., and Barrnett, R.J., 1962, New means of fixation for electron micoscopy and histochemistry, Anat. Rec. 142:274.

    Google Scholar 

  • Sabatini, D.D., Bensch, K., and Barrnett, R.J., 1963, Cytochemistry and electron microscopy. The preservation of cellular structure and enzymatic activity by aldehyde fixation, J. Cell Biol. 17:19.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, D.D., Bensch, K., and Barmett, R.J., 1964, Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope, J. Histochem. Cytochem. 12:57.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Ohnuki, Y., and Fujiwara, K., 1976, Immunofluoresoent anti-tubulin staining of spindle microtubules and critique for the technique. In: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 419–433.

    Google Scholar 

  • Sato, M., Sardana, M.K., Grasser, W.A., Garsky, V.M., Murray, J.M., and Gould, R.J., 1990, Echistatin is a potent inhibitor of bone resorption in culture, J. Cell Biol 111:1713–1723.

    Article  PubMed  CAS  Google Scholar 

  • Schutze, K., Maniotis, A., and Schliwa, M., 1991, The position of the micro-tubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum, Proc. Natl Acad. Sci. USA 88:8367–8371.

    Article  PubMed  CAS  Google Scholar 

  • Scopsi, L., and Larsson, L.-I., 1985, Increased sensitivity in immunocytochem-istry effects of double amplification of antibodies and of silver intensification on immunogold and peroxidase-antiperoxidase staining techniques, Histochemistry 82:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, M.P., and Spudich, J.A., 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature 303:31–35.

    Article  CAS  Google Scholar 

  • Smith, P.R., Saccomani, G., Joe, E-H., Angelides, K.J., and Benos, D.J., 1991, Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells, Proc. Natl Acad. Sci. USA 88:6971–6975.

    Article  PubMed  CAS  Google Scholar 

  • Spence, S.G., Argraves, W.S., Walters, L., Hungerford, J.E., and Little, CD., 1992, Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo, Dev. Biol. 151:473–484.

    Article  PubMed  CAS  Google Scholar 

  • Stamatoglou, S.C, Sullivan, K.H., Johansson, S., Bayley, P.M., Burdett, I.D.J., and Hughes, R.C, 1990, Localization of two fibronectin-binding glycoproteins in rat liver and primary hepatocytes. Co-distribution in vitro of integrin (a5bl) and non-integrin (AGpl 10) receptors in cell-substratum adhesion sites, J. Cell Sci. 97:595–606.

    PubMed  CAS  Google Scholar 

  • Steinbrecht, R.A., and Zierold, K., eds., 1987, Cryotechniques in Biological Electron Microscopy, Springer-Verlag, Berlin.

    Google Scholar 

  • Tashima, T., Kawakami, U., Harada, M., Sakata, T., Satoh, N., Nakagawa, T., and Tanaka, H., 1987, Isolation and identification of new oligomers in aqueous solution of glutaraldehyde, Chem. Pharm. Bull 35:4169.

    Article  CAS  Google Scholar 

  • Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B., 1984, Localization of endoplasmic-reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes, Cell 38:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf, W.E., and Hawley, R.S., 1992, Meiotic spindle assembly in Droso-phila females: Behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein, J. Cell Biol. 116:1167–1180.

    Article  PubMed  CAS  Google Scholar 

  • Thoolen, B., 1990, BrdUrd labeling of S-phase cells in testes and small intestine of mice; using microwave irradiation for immunogold-silver staining: An immunocytochemical study, J. Histochem. Cytochem. 38:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Tooze, J., 1964, Measurements of some cellular changes during fixation of amphibian erythrocytes with osmium tetroxide solutions, J. Cell Biol. 22:551–563.

    Article  PubMed  CAS  Google Scholar 

  • van Meer, G., Stelzer, E.H.K., Wijnaendts van Resandt, R.W., and Simons, K., 1987, Sorting of glycolipids in epithelial (Madin-Darby canine kidney) cells, J. Cell Biol. 105:1623–1635.

    Article  PubMed  Google Scholar 

  • von Zastrow, M., and Kobilka, B.K., 1992, Ligand-regulated internalization and recycling of human ß2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors, J. Biol. Chem. 267:3530–3538.

    Google Scholar 

  • Walsh, M.L., Jen, J., and Chen, L.B., 1979, Transport of serum components into structures similar to mitochondria, Cold Spring Harbor Conf. Cell Prolif. 6:513–520.

    Google Scholar 

  • Wangensteen, D., Bachofen, H., and Weibel, E.R., 1981, Effects of glutaraldehyde or osmium tetroxide fixation on the osmotic properties of lung cells, J.Microsc. 124:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K., Rathke, P.C., and Osborn, M., 1978, Cytoplasmic microtubular images in glutaraldehyde-fixed tissure culture cells by electron microscopy and by immunofluorescence microscopy, Proc. Natl Acad. Sci. USA 75:1820–1824.

    Article  PubMed  CAS  Google Scholar 

  • Wild, P., Bertoni, G., Schraner, E.M., and Beglinger, R., 1987, Influence of calcium and magnesium containing fixatives of the ultrastucture of parathyroids, Micron Microsc. Acta 18:259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bacallao, R., Kiai, K., Jesaitis, L. (1995). Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics