Skip to main content

Dynamics of Rigid Bodies Systems with Unilateral or Frictional Constraints

Formulation And Well-Posedness

  • Chapter
Advances in Mechanics and Mathematics

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 1))

Abstract

The classical theory of rigid bodies systems dynamics is extended into two directions. First, systematic formulation of the dynamics of systems undergoing perfect unilateral constraints is derived. The general admissible form of the impact constitutive equation is obtained. Well-posedness of the evolution problem is proved under the assumption that the data are analytic. Second, systematic formulation of systems undergoing frictional bilateral constraints is discussed. Well-posedness of the associated evolution problem is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Abraham and J.E. Marsden (1985), Foundations of Mechanics, Addison-Wesley.

    Google Scholar 

  2. P. Ballard (2000), The dynamics of discrete mechanical systems with perfect unilateral constraints, Archive for Rational Mechanics and Analysis, 154, pp 199–274.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Bressan (1960), Incompatibilità dei Teoremi di Esistenza e di Unicità del Moto per un Tipo molto Comune e Regolare di Sistemi Meccanici, Annali della Scuola Normale Superiore di Pisa, Serie III, Vol. XIV, pp 333348.

    Google Scholar 

  4. H. Brezis (1973), Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Company.

    Google Scholar 

  5. I. Chavel (1993), Riemannian Geometry: a Modern Introduction, Cambridge University Press.

    Google Scholar 

  6. E.A. Coddington and N. Levinson (1955), Theory of Ordinary Differential Equations, McGraw-Hill Book Company.

    Google Scholar 

  7. P. L Ötstedt (1981), Coulomb Friction in Two-Dimensional Rigid Body Systems, Z. Angew. Math. u. Mech., 61, pp 605–615.

    Article  Google Scholar 

  8. P. Lötstedt (1982), Mechanical Systems of Rigid Bodies subject to Unilateral Constraints, SIAM J. Appl. Math., 42, no 2, pp 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.D.P. Monteiro Marques (1993), Differential Inclusions in Non-smooth Mechanical Problems, Birkhaüser Verlag, Basel-Boston-Berlin.

    Google Scholar 

  10. J.J. Moreau (1983), Standard inelastic shocks and the dynamics of unilateral constraints, in Unilateral problems in structural analysis ( G. Del Piero and F. Macen Eds), Springer-Verlag, Wien, New-York, pp 173–221.

    Google Scholar 

  11. J. J. Moreau (1988), Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications, CISM Courses and Lectures No 302 ( J.J. Moreau and P.D. Panagiotopoulos Eds), Springer-Verlag, Wien, New-York, pp 1–82.

    Google Scholar 

  12. J.J. Moreau (1988), Bounded variation in time, in Topics in Non-smooth Mechanics ( J.J. Moreau, P.D. Panagiotopoulos, G. Strang, Eds.), Birkhaüser Verlag, Basel-Boston-Berlin, pp 1–74.

    Google Scholar 

  13. D. Percivale (1985), Uniqueness in the Elastic Bounce Problem, I, Journal of Differential Equations, 56, pp 206–215.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Percivale (1991), Uniqueness in the Elastic Bounce Problem, II, Journal of Differential Equations, 90, pp 304–315.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.T. Rockafellar (1970), Convex Analysis, Princeton University Press.

    Google Scholar 

  16. W. Rudin (1966), Real and complex analysis, McGraw-Hill.

    Google Scholar 

  17. M. Schatzman (1978), A Class of Nonlinear Differential Equations of Second Order in Time, Nonlinear Analysis, Theory, Methods and Applications, 2, No 2, pp 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Schatzman (1998), Uniqueness and continuous dependence on data for one dimensional impact problems, Mathematical and Computational Modelling, 28, No. 4–8, pp 1–18.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ballard, P. (2002). Dynamics of Rigid Bodies Systems with Unilateral or Frictional Constraints. In: Gao, D.Y., Ogden, R.W. (eds) Advances in Mechanics and Mathematics. Advances in Mechanics and Mathematics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4435-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4435-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5229-5

  • Online ISBN: 978-1-4757-4435-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics