Skip to main content

The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions

  • Chapter
The Structure of Small Molecules and Ions

Abstract

As the “Coulomb explosion”1 and other techniques add to our knowledge of molecular geometry, it is appropriate to recall the debt of gratitude that many theoretical concepts owe to structural studies. Indeed, new structural data have often provided the principal stimulus for new chemical concepts. Even prior to the discovery of the electron in the last century, qualitative structural inferences based on stoichiometry, number of isomers, and other lines of indirect chemical evidence were giving rise to models of molecular connectivity and geometry (e.g., the tetrahedral carbon atom of van’t Hoff and Le Bel2) that underlie current electronic theories of valence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. See, e.g., I. Plesser, Z. Vager, and R. Naaman, Phys. Rev. Lett. 56, 1559 (1986).

    Article  CAS  Google Scholar 

  2. J. H. van’t Hoff, Archiv, ne’erland 9, 445 (1874)

    Google Scholar 

  3. J. A. Le Bel, Bull Soc. Chim. 22, 337 (1874).

    Google Scholar 

  4. G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916)

    Article  CAS  Google Scholar 

  5. G. N. Lewis, Valence and the Structure of Atoms and Molecules (The Chemical Catalog Co., New York, 1923).

    Google Scholar 

  6. L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931); cf. also Coulson, Ref. 7, pp. 203–205.

    Article  CAS  Google Scholar 

  7. J. C. Slater, Phys. Rev. 37, 481 (1931).

    Article  CAS  Google Scholar 

  8. L. Pauling, The Nature of the Chemical Bond (Cornell U. Press, Ithaca, N.Y., 1960).

    Google Scholar 

  9. C. A. Coulson, Valence, 2nd ed. (Oxford Univ. Press, New York, 1961), p. 270.

    Google Scholar 

  10. R. S. Mulliken, J. Chem. Phys. 3, 573 (1935); Ref. 7, pp. 107–110.

    Article  CAS  Google Scholar 

  11. H. A. Bent, Chem. Rev. 61, 275 (1961).

    Article  CAS  Google Scholar 

  12. L. Pauling, in, Correspondence Between Concepts in Chemistry and Quantum Chemistry (Technical Note No. 16, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden, 1958), Part II, p. 73.

    Google Scholar 

  13. H. F. Schaefer III, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results (Addison-Wesley, Reading, MA, 1972).

    Google Scholar 

  14. J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  CAS  Google Scholar 

  15. A. E. Reed and F. Weinhold, J. Chem. Phys. 78 4066 (1983)

    Article  CAS  Google Scholar 

  16. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).

    Article  CAS  Google Scholar 

  17. P.-O. Lowdin, Phys. Rev. 97, 4066 (1983).

    Google Scholar 

  18. A. E. Reed and F. Weinhold, QCPE Bull. 5, 141 (1985).

    Google Scholar 

  19. For a review of the NBO formalism, see A. E. Reed, L. A. Curtiss, and F. Weinhold, University of Wisconsin Theoretical Chemistry Institute Report WIS-TCI-727 (1987); Chem. Rev., (to be published).

    Google Scholar 

  20. J. E. Carpenter and F. Weinhold, University of Wisconsin Theoretical Chemistry Institute Report WIS-TCI-689 (1985), unpublished.

    Google Scholar 

  21. For the standard ab initio computational methods and basis set designations referred to herein, see W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (John Wiley, New York, 1986).

    Google Scholar 

  22. J. E. Carpenter and F. Weinhold, J. Am. Chem. Soc. 110, 368 (1988).

    Article  CAS  Google Scholar 

  23. See, e.g., J. K. Kochi, Adv. Free-Radical Chem. 5, 189 (1975).

    CAS  Google Scholar 

  24. J. E. Carpenter and F. Weinhold, J. Mol. Struct. (THEOCHEM) 165, 189 (1988).

    Article  Google Scholar 

  25. See, e.g., R. Pauncz, The Alternant Molecular Orbital Method (W. B. Saunders Co, Philadelphia, 1967)

    Google Scholar 

  26. J. W. Linnett, The Electronic Structure of Molecules. A New Approach (Methuen, London, 1964).

    Google Scholar 

  27. G. W. Wheland, Resonance in Organic Chemistry (John Wiley, New York, 1955).

    Google Scholar 

  28. L. Pauling, J. Chem. Phys. 51, 2767 (1961).

    Article  Google Scholar 

  29. L. A. Curtiss, C. A. Melendres, A. E. Reed, and F. Weinhold, J. Comp. Chem. 1, 294 (1986).

    Article  Google Scholar 

  30. J. T. Blair, J. C. Weisshaar, J. E. Carpenter, and F. Weinhold, J. Chem. Phys. 87, 392 (1987)

    Article  CAS  Google Scholar 

  31. J. T. Blair, J. C. Weisshaar, and F. Weinhold, J. Chem. Phys. 88, 1467 (1988).

    Article  CAS  Google Scholar 

  32. K. J. Rensberger, J. T. Blair, F. Weinhold, and F. F. Crim (in preparation).

    Google Scholar 

  33. A. E. Reed and F. Weinhold J. Am. Chem. Soc. 108, 3586 (1986).

    Article  CAS  Google Scholar 

  34. W. Kutzelnigg, Angew. Chem., Int. Ed. Engl. 23, 272 (1984).

    Article  Google Scholar 

  35. The molecules SiH4 and A1H3 are apparent exceptions, but these more ionic species exhibit rather large departures from the idealized Lewis form (cf. pL, Table I) that also reflect the “strain” in using the geometrically optimal sp 3 or sp 2 hybrids.

    Google Scholar 

  36. A. E. Reed and P. v. R. Schleyer, J. Am. Chem. Soc. 109, 7362 (1987).

    Article  CAS  Google Scholar 

  37. See, e.g., F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (John Wiley Interscience, New York, 1962), p, 198ff.

    Google Scholar 

  38. P. v. R. Schleyer, in, P.-O. Löwdin and B. Pullman (eds.), New Horizons in Quantum Chemistry (D. Reidel Publishing Co., New York, 1983), pp. 95–109.

    Chapter  Google Scholar 

  39. A. E. Reed and F. Weinhold, J. Am, Chem. Soc. 107, 1919 (1985).

    Article  CAS  Google Scholar 

  40. P. v. R. Schleyer, talk presented to the WATOC (World Association of Theoretical Organic Chemists) Congress, Budapest, Hungary, August, 1987

    Google Scholar 

  41. P. v. R. Schleyer and A. E. Reed, J. Am. Chem. Soc. 110, 4453 (1988).

    Article  CAS  Google Scholar 

  42. J. E. Carpenter, Ph.D. Thesis (University of Wisconsin, Madison, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Weinhold, F., Carpenter, J.E. (1988). The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions. In: Naaman, R., Vager, Z. (eds) The Structure of Small Molecules and Ions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7424-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7424-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7426-8

  • Online ISBN: 978-1-4684-7424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics