Skip to main content

Deposition, Adhesion, and Release of Bioaerosols

  • Chapter
Atmospheric Microbial Aerosols

Abstract

Bioaerosols typically consist of a range of particle sizes and shapes. Further, each particle, even if it is a single, “simple” bacterium, may have a complex surface morphology. The degree of hydration as well as the size of the particle or cluster often changes with time after the aerosol is generated. This can lead to significant changes in its mechanical, elastic, or surface properties. For such reasons, it is not possible to provide a detailed picture of all types of bioaerosol-surface interactions. To approximate the situation, it is necessary to introduce several simplifying assumptions, which are guided by knowledge of less complex aerosol systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

A:

Hamaker constant

A(t):

random force

a, b :

ellipse axes

C s :

Cunningham slip correction factor

D :

particle surface distance

D E :

Einstein diffusion coefficient

d :

particle diameter

E g :

gravitational energy

E i :

collector efficiency

E T :

thermal energy

Fr:

Froude number

Fp.o. :

pull-off force

f g :

gravitational force

f v :

friction force

f s :

LvdW force

g :

gravitational constant

h :

characteristic distance

k B :

Boltzmann constant

LvdW:

London-van der Waals

m :

particle mass

N g :

gravity number

Pe:

Peclet number

p :

pressure

P0 :

equilibrium liquid vapor pressure

Q :

electric charge

q e :

electron charge

R :

gas constant

Re:

Reynolds number

r :

particle radius

r m :

mean radius of curvature

St:

Stokes number

T :

temperature

t :

time

U :

contact potential

U 0 :

free-stream velocity

V :

volume

v :

particle velocity

v c :

critical capture velocity

v g :

deposition velocity

v s :

terminal velocity

x s :

stopping distance

x 2›:

mean square particle displacement

Y :

compressibility modulus

y c :

critical parameter for impaction on spherical collector

α:

dynamical shape constant

γ:

surface tension, or surface energy

0 :

permittivity of free space

η:

air viscosity

ν:

kinematic viscosity

ρ:

particle mass density

σ:

Schmidt number

τ:

relaxation time

References

  • Aylor, D. E. 1975. Force required to detach conida of Helminthosporium maydis. Plant Physiol. 55: 99–101.

    PubMed  CAS  Google Scholar 

  • Aylor, D. E. 1978. Dispersal in time and space: Aerial pathogens. In J. G. Horsfall and E. B. Cowling (eds.), Plant disease. An advanced treatise. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Bagnold, R. A. 1941. The physics of blown sand and desert dunes. Methuen & Co. London.

    Google Scholar 

  • Batchelor, G. K. 1976. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid. Mech. 74: 1–29.

    Google Scholar 

  • Binnig, G., and H. Rohrer. 1986. Scanning tunneling microscopy. IBM J. Res. Develop. 30: 355–369.

    Google Scholar 

  • Binnig, G., C. F. Quate, and Ch. Gherber. 1986. Atomic force microscopy. Phys. Rev. Lett. 56: 930–933.

    Google Scholar 

  • Boehme, G., H. Krupp, H. Rabenhorst, and G. Sandstede. 1962. Adhesion measurements involving small particles. Trans. Inst. Chem. Engrs. 40: 252–259.

    Google Scholar 

  • Bongrand, P. (ed.). 1988. Physical basis of cell—cell adhesion. CRC Press, Boca Raton

    Google Scholar 

  • Bowling, R. A. 1985. An analysis of particle adhesion on semiconductor surfaces. J. Electrochem. Soc. Solid-State Sci. Technol. 132: 2209–2214.

    Google Scholar 

  • Bradley, R. S. 1932. The cohesive force between solid surfaces and the surface energy of solids. Philos. Mag. 13: 853–862.

    Google Scholar 

  • Brenner, H., and M. E. O’Neil. 1972. Stokes resistance of multiparticle systems in a linear shear field. Chem. Eng. Sci. 27: 1421–1439.

    Google Scholar 

  • Brenner, S. S., H. A. Wriedt, and R. A. Oriani. 1981. Impact adhesion of iron at elevated temperatures. Wear 68: 169–190.

    CAS  Google Scholar 

  • Burris, R. H. 1989. Field testing genetically modified organisms. National Academy Press.

    Google Scholar 

  • Cevc, G., and D. Marsh. 1987. Phospholipid bilayers. John Wiley & Sons, New York.

    Google Scholar 

  • Chamberlain, A. C. 1967. Deposition of particles to natural surfaces. In P. H. Gregory and J. L. Monteith (eds.), Airborne microbes. Cambridge University Press, Cambridge, pp. 138–164.

    Google Scholar 

  • Chan, P., and B. Dahneke. 1981. Free-molecule drag on straight chains of uniform spheres. J. Appl. Phys. 52: 3106–3110.

    Google Scholar 

  • Chaudhury, M. K., and G. M. Whitesides. 1991. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7: 1013–1025.

    CAS  Google Scholar 

  • Chen, Y. L., C. A. Helm, and J. N. Israelachvili. 1991. Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem. 95: 10736–10747.

    Google Scholar 

  • Cleaver, J. W., and B. Yates. 1975. A sublayer model for the deposition of particles from a turbulent flow. Chem. Eng. Sci. 30: 983–992.

    Google Scholar 

  • Clough, W. S. 1975. The deposition of particles on moss and grass surfaces. Atmos. Environ. 9: 1113–1119.

    Google Scholar 

  • Cooper, D. W., and H. L. Wolfe. 1990. Electrostatic removal of particle singlets and doublets from conductive surfaces. Aerosol Sci Tech. 12: 508–517.

    CAS  Google Scholar 

  • Corino, E. R., and R. S. Brodkey. 1969. A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37 (Part I): 1–30.

    Google Scholar 

  • Corn, M. 1961a. The adhesion of solid particles to solid surfaces. I. A review. J. Air Pollut. Control Assoc. 11: 523–528.

    Google Scholar 

  • Corn, M. 1961b. The adhesion of solid particles to solid surfaces. II. J. Air Pollut. Control Assoc. 11: 566–575.

    Google Scholar 

  • Corn, M. and F. Stein. 1965. Re-entertainment of particles from a plane surface. Amer. Ind. Hyg. Assoc. J. 26: 325–336.

    Google Scholar 

  • Dahneke, B. 1971. The capture of aerosol particles by surfaces. J. Colloid Interface Sci. 37: 342–353.

    CAS  Google Scholar 

  • Dahneke, B. 1973. Measurements of bouncing of small latex particles. J. Colloid Interface Sci. 45: 584–590.

    CAS  Google Scholar 

  • Davies, C. N. 1966. Deposition of aerosols from turbulent flow through pipes. Proc. Roy. Soc. ( London) A 289: 235–246.

    Google Scholar 

  • Davis, M. H. 1969. Electrostatic field and force on a dielectric sphere near a conducting plane-A note on the application of electrostatic theory to water droplets. Amer. J. Phys. 37: 26–29.

    Google Scholar 

  • Derjaguin, B. V., I. I. Abrikosov, and E. M. Lifshitz. 1956. Direct measurement of molecular attraction between solids separated by a narrow gap. Quart. Rev. Chem. Soc. 10: 295–329.

    Google Scholar 

  • Derjaguin, B. V., V. M. Muller, and Yu. P. Toporov. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53: 314–326.

    CAS  Google Scholar 

  • Deryaguin, B. V., and A. D. Zimon. 1961. Adhesion of powder particles to plane surfaces. ( Consultants Bureau translation ). Kolloid Zh. 23: 544–552.

    Google Scholar 

  • Ducker, W. A., T. J. Senden, and R. M. Pashley. 1991. Direct measurement of colloidal forces using an atomic force microscope. Nature 353: 239–241.

    CAS  Google Scholar 

  • Dzyaloshinskii, I. E., E. M. Lifshitz, and L. P. Pitaevskii. 1961. The general theory of Van der Waals forces. Adv. Phys. 10: 165–209.

    Google Scholar 

  • Fernandez de la Mora, J., and D. E. Rosner. 1982. Effects of inertia on the diffusional deposition of small particles to spheres and cylinders at low Reynolds numbers. J. Fluid Mech. 125: 379–395.

    Google Scholar 

  • Fisher, L. R., and J. N. Israelachvili, 1980. Determination of the capillary pressure in menisci of molecular dimensions. Chem. Phys. Lett. 76: 325–328.

    Google Scholar 

  • Fisher, L. R., and J. N. Israelachvili. (1981b). Direct measurement of the effect of meniscus forces on adhesion: A study of the applicability of the macroscopic thermodynamics to microscopic liquid interfaces. Colloids Surfaces 3: 303–319.

    Google Scholar 

  • Friedlander, S. K. 1957. Mass and heat transfer to single spheres and cylinders at low Reynolds numbers. Amer. Inst. Chem. Engrs. 3: 43–48.

    Google Scholar 

  • Friedlander, S. K., and H. F. Johnstone. 1957. Deposition of suspended particles from turbulent gas streams. hid. Eng. Chem. 49: 1151–1156.

    Google Scholar 

  • Fuchs, N. A. 1964. The mechanics of aerosols. Dover Publications, New York.

    Google Scholar 

  • Garland, J. A., and L. C. Cox. 1982. Deposition of small particles to grass. Atmos. Environ. 16: 2699–2702.

    Google Scholar 

  • Giddings, L. V. (ed.). 1988. New developments in biotechnology-field-testing engineered organisms: Genetic and ecological issues. Vol. 3. ( New developments in biotechnology). U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Gillespie, T., and W. J. Settineri. 1967. The effect of capillary liquid on the force of adhesion between spherical solid particles. J. Colloid Interface Sci. 24: 199–202.

    CAS  Google Scholar 

  • Gupta, D., and M. H. Peters. 1985. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. J. Colloid Interface Sci. 104:375–389; erratum 110: 301–303.

    Google Scholar 

  • Gupta, D., and M. H. Peters. 1986. On the angular dependence of aerosol diffusional deposition onto spheres. J. Colloid Interface Sci. 110: 286–291.

    CAS  Google Scholar 

  • Gutfinger, C., and G. I. Tardos. 1979. Theoretical and experimental investigations on granular bed dust filters. Atmos. Environ. 13: 853–867.

    Google Scholar 

  • Hamaker, H. C. 1937. The London-Van der Waals attraction between spherical particles. Physica 4: 1058–1072.

    CAS  Google Scholar 

  • Happel, J., and H. Brenner. 1986. Low Reynolds number hydrodynamics• with special applications to particulate media, 2nd ed. (paperback). Kluluner, Boston.

    Google Scholar 

  • Hartmann, G. C., L. M. Marks, and C. C. Yang. 1976. Physical models for photoactive pigment electrophotography. J. Appl. Phys. 47: 5409–5420.

    Google Scholar 

  • Hays, D. A. 1988. Electric field detachment of charged particles. In K. N. Mittal, ed., Particles on Surfaces, Vol. 1. pp. 351–360. Plenum, New York.

    Google Scholar 

  • Hertz, H. 1881. J. Reine Agew. Math. 92:156; English translation reprinted in collection: Miscellaneous Papers. MacMillan, London (1896), p. 146–181.

    Google Scholar 

  • Hidy, G. M., and J. R. Brock. 1970. The dynamics of aerocolloidal systems. Pergamon Press, Oxford.

    Google Scholar 

  • Hiemenz, P. C. 1986. Principles of colloid and surface chemistry. 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  • Hinds, W. C. 1982. Aerosol technology. John Wiley & Sons, New York.

    Google Scholar 

  • Horn, R. G., J. N. Israelachvili, and F. Pribac. 1987. Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci. 115: 480–492.

    CAS  Google Scholar 

  • Hough, D. B., and L. R. White. 1980. The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14: 3–41.

    Google Scholar 

  • Hughes, B. D., and L. R. White. 1979. “Soft” contact problems in linear elasticity. Quart J. Mech. Appl. Math. 33: 445–471.

    Google Scholar 

  • Hughes, B. D., and L. R. White. 1980. Implications of elastic deformation on the direct measurement of surface forces. J. Chem. Soc. Faraday Trans. I 76: 963–978.

    Google Scholar 

  • Ingold, C. T. 1960. Dispersal by air and water: the take-off. J. G. Horsfall and A. E. Diamond (eds.), In Plant pathology. Vol. III: The diseased population, epidemics and control. Academic Press, New York, pp. 137–168.

    Google Scholar 

  • Israelachvili, J. N. 1972. Calculation of van der Waals dispersion forces between macroscopic bodies. Proc. Roy. Soc. ( Lond. ) A331: 39–55.

    Google Scholar 

  • Israelachvili, J. N. 1985. Intermolecular and surface forces. Academic Press, London.

    Google Scholar 

  • Israelachvili, J. 1987. Solvation forces and liquid structure as probed by direct force measurements. Accounts. Chem. Res. 20: 415–421.

    Google Scholar 

  • Israelachvili, J. N., and G. E. Adams. 1978. Measurement of forces between two micasurfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Trans. Faraday Soc. I 74: 975–1001.

    Google Scholar 

  • Israelachvili, J. N., and D. Tabor. 1973. Van der Waals forces: Theory and experiment. Prog. Surf. Memb. Sci. 7: 1–55.

    Google Scholar 

  • Johnson, K. L. 1985. Contact mechanics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Johnson, K. L., K. Kendall, and A. D. Roberts. 1971. Surface energy and the contact of elastic solids. Proc. Roy. Soc. ( Lond. ) A324: 301–313.

    Google Scholar 

  • Kline, S. J., W. C. Reynolds, F. A. Schraub, and P. W. Runstadler. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30 (Part 4): 741–773.

    Google Scholar 

  • Kordecki, M. C., and C. Orr. 1960. Adhesion of solid particles to solid surfaces. Arch. Environ. Health 1: 1–9.

    Google Scholar 

  • Krupp, H. 1967. Particle adhesion. Adv. Colloid Interface Sci. 1: 111–239.

    Google Scholar 

  • Kraemer, H. F., and H. F. Johnston. 1955. Collection of aerosol particle in presence of electrostatic fields. Ind. Eng. Chem. 47: 2426–2434.

    Google Scholar 

  • Landman, U., W. D. Luedtke, N. A. Burnham, and R. J. Coulton. 1990. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248: 454–461.

    PubMed  CAS  Google Scholar 

  • Leckband, D. E., Y.-L. Chen, J. N. Israelachvili, H. H. Wickman, and M. Fletcher. 1992. Measurements of conformational changes during adhesion of lipid and protein (polylysine and S-layer) surfaces. Biotech. and Bioeng. 42: 167–177.

    Google Scholar 

  • Levich, V. G. 1962. Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Little, P. 1977. Deposition of 2.75, 5.0 and 8.5 µm particles to plant and soil surfaces. Environ. Pollut. 12: 293–305.

    Google Scholar 

  • Loeb, L. B. 1958. Static electrification, Springer-Verlag, Berlin.

    Google Scholar 

  • London, F. 1937. The general theory of molecular forces. Trans. Faraday Soc. 33:8–26. Mahanty, J., and B. W. Ninham. 1976. Dispersion Forces. Academic Press, New York.

    Google Scholar 

  • Marshall, K. C. 1986. Adsorption and adhesion processes in microbial growth at interfaces. Adv. Colloid Interface Sci. 25: 59–86.

    Google Scholar 

  • Marra, J. 1986. Direct measurements of attractive van der Waals and adhesive forces between uncharged lipid balances in aqueous solutions. J. Colloid Interpace Sci. 109: 11–20.

    CAS  Google Scholar 

  • May, K. R., and R. Clifford. 1967. The impaction of aerosol particles on cylinders, spheres, ribbons and discs. Ann. Occup. Hygiene 10: 83–95.

    Google Scholar 

  • McFarlane, J. S., and D. Tabor. 1950. Adhesion of solids and the effect of surface films. Proc. Roy. Soc. ( Lond. ) 202: 224–243.

    Google Scholar 

  • McLachlan, A. D. 1963a. Retarded dispersion forces between molecules. Proc. Roy. Soc. ( Lond. ) A271: 387–401.

    Google Scholar 

  • McLachlan, A. D. 1963b. Retarded dispersion forces in dielectrics at finite temperatures. Proc. Roy. Soc. ( Lond. ) A274: 80–90.

    Google Scholar 

  • McLachlan, A. D. 1963c. Three-body dispersion forces. Mol. Phys. 6: 423–427.

    Google Scholar 

  • Mittal, K. L. (ed.). 1988, 1991. Particles on surfaces. Plenum Press, New York, Vols. 1 (1988), 2 (1989), Vol. 3 (1991).

    Google Scholar 

  • Muller, V. M., V. S. Yuschenko, and B. V. Derjaguin. 1980. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77: 91–101.

    CAS  Google Scholar 

  • Muller, V. M., V. S. Yushchenko, and B. V. Derjaguin. 1983. General theoretical considerations of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. J. Colloid Interface Sci. 92: 92–101.

    CAS  Google Scholar 

  • Nazaroff, W. W., and G. R. Cass. 1989. Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Technol. 23: 157–166.

    Google Scholar 

  • Nicholson, K. W. 1988a. A review of particle resuspension. Atmos. Environ. 22: 26392651.

    Google Scholar 

  • Nicholson, K. W. 1988b. The dry deposition of small particles: A review of experimental measurements. Atmos. Environ. 22: 2653–2666.

    Google Scholar 

  • Nielsen, K. A., and Hill, J. C. 1976. Collection of inertialess particles on spheres with electrical forces. Ind. Eng. Fund. 15: 149–157.

    Google Scholar 

  • Ounis, H., G. Ahmadi and J. B. McLaughlin. 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J. Colloid Interface Sci. 143: 266–277.

    CAS  Google Scholar 

  • Parsegian, V. A., and G. H. Weiss. 1981. Spectroscopic parameters of computation of van der Waals forces. J. Colloid Interface Sci. 81: 285–289.

    CAS  Google Scholar 

  • Paw, U, K. T. 1983. The rebound of particles from natural surfaces. J. Colloid Interface Sci. 93: 442–452.

    Google Scholar 

  • Pum, D., M. Sara, and U. B. Sleytr. 1989. Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulens E38–66. J. Bacteriol. 171: 5296–5303.

    PubMed  CAS  Google Scholar 

  • Ranade, M. B. 1987. Adhesion and removal of fine particles on surfaces. Aerosol. Sci. Technol. 7: 161–176.

    Google Scholar 

  • Reist, P. C. 1984. Introduction to aerosol science. Macmillan Publishing Co., New York.

    Google Scholar 

  • Robinson, K. S., and W. Y. Fowlkes. 1989. Multipolar interactions of dielectric spheres. J. Electrostatics 6: 207–224.

    Google Scholar 

  • Rogers, L. N., and J. Reed. 1984. The adhesion of particles undergoing an elastic-plastic impact with a surface. J. Phys. D. ( Appl. Phys. ) 17: 677–689.

    Google Scholar 

  • Ruelle, D. 1990. Chance and chaos. Princeton University Press, Princeton, NJ. Sarid, D. 1991. Scanning force microscopy. Oxford University Press, New York. Schlicting, H. 1960. Boundary layer thèory. 4th ed. McGraw-Hill, New York.

    Google Scholar 

  • Schröder, H. 1960. Dispersal by air and water-the flight and landing. In J. G. Horsfall and A. E. Dimond (eds.), Plant pathology. Vol. III. Academic Press, New York, pp. 169–227.

    Google Scholar 

  • Sehmel, G. A. 1980. Particle resuspension: A review. Environment Internat. 4: 107–127.

    Google Scholar 

  • Shapiro, M., H. Brenner, and D. C. Guell. 1990. Accumulation and transport of Brownian particles at solid surfaces: Aerosol and hydrosol deposition processes. J. Colloid Interface Sci. 136: 552–573.

    Google Scholar 

  • Shimada, M., K. Okuyama, Y. Kousaka, Y. Okuyama, and J. H. Seinfeld. 1989. Enhancement of Brownian and turbulent deposition of charged aerosol particles in the presence of an electric field. J. Colloid Interface Sci. 128: 157–168.

    CAS  Google Scholar 

  • Sleytr, U. B., and A. M. Glauert. 1982. Bacterial cell walls and membranes. In J. R. Harris (ed.), Electron microscopy of proteins. Vol. 3. Academic Press, London, pp. 41–78.

    Google Scholar 

  • Sleytr, U. B., P. Messner, D. Pum, and M. Sara. (eds.). 1988. Crystalline bacterial cell surface layers. Springer-Verlag. Berlin.

    Google Scholar 

  • Sleytr, U. B., and P. Messner. 1988. Minireview: Crystalline surface layers in procaryotes. J. Bacteriol. 170: 2891–2897.

    Google Scholar 

  • Sleytr, U. B., M. Sara, and D. Pum. 1991. Application potentials of two-dimensional protein crystals. Phillips Electron Optics Bull. 126: 9–14.

    Google Scholar 

  • Sleytr, U. B., M. Sara, Z. Kupcu and P. Messner. 1986. Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Archiv. Microbiol. 146: 19–24.

    Google Scholar 

  • Smith II, W. J., F. W. Whicker, and H. R. Meyer. 1982. Review and categorization of saltation, suspension, and resuspension models. Nuclear Safety 23: 685–699.

    Google Scholar 

  • Spumy, K., and J. Pich. 1965. Diffusion and impaction precipitation of aerosol particles by membrane filters. Collect. Czech. Chem. Comm. 30: 2276–2287.

    Google Scholar 

  • Tardos, G. I., N. Abuaf, and C. Gutfinger. 1978. Dust deposition in granular bed filters: Theories and experiments. J. Air Pollut. Control Assoc. 28: 354–363.

    Google Scholar 

  • Tsai, C-J., D. Y. H. Pui, and B. Y. H. Liu. 1991. Elastic flattening and particle adhesion. Aerosol Sci. Tech. 15: 239–255.

    Google Scholar 

  • Tsai, C-J., D. Y. H. Pui, and B. Y. H. Liu. 1990. Capture and rebound of small latex particles upon impact with solid surfaces. Aerosol Sci. Tech. 12: 497–507.

    Google Scholar 

  • Visser, J. 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-Van Der Waals constants. Adv. Colloid Interface Sci. 3: 331–363.

    Google Scholar 

  • Wall, S., W. John, and S. L. Goren. 1988. Impact adhesion theory applied to measurements of particle kinetic energy loss. J. Aerosol Sci. 19: 789–792.

    CAS  Google Scholar 

  • Wells, A. C., and A. C. Chamberlain. 1967. Transport of small particles to vertical surfaces. Brit. J. Appl. Phys. 18: 1793–1799.

    Google Scholar 

  • White, H. J. 1963. Industrial electrostatic precipitation. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Yeh, H. C., and B. Y. H. Liu. 1974. Aerosol filtration by fibrous filters. J. Aerosol Sci. 5: 191–217.

    Google Scholar 

  • Ying, R., and M. H. Peters. 1991. Interparticle and particle—surface gas dynamic interactions. Aerosol Sci. Technol. 14: 418–433.

    Google Scholar 

  • Zimon, A. D. 1982. Adhesion of dust and powder. 2nd ed. Consultants Bureau, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Wickman, H.H. (1994). Deposition, Adhesion, and Release of Bioaerosols. In: Lighthart, B., Mohr, A.J. (eds) Atmospheric Microbial Aerosols. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6438-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6438-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6440-5

  • Online ISBN: 978-1-4684-6438-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics