Skip to main content

Role of Thiols in Protection Against Biological Reactive Intermediates

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Thanks to the pioneering work of Elizabeth and James Miller1 it is now well established that the cytotoxic and carcinogenic effects of a wide variety of chemicals are mediated by reactive products formed during their biotransformation in the organism. It is equally clear that there exist a number of protective systems which can trap, or inactivate, toxic metabolites and thereby prevent their accumulation within the tissues and subsequent toxic effects. Although phase I reactions, in particular those mediated by the cytochrome P-450-linked monooxygenase system, are most often responsible for the production of toxic metabolites, there are now many examples of metabolic activation via phase II reactions, despite the fact that the latter normally serve a protective function. Hence, it is obvious that the formation of toxic metabolites cannot be attributed to any single enzyme or enzyme system, and that the balance between metabolic activation and inactivation is absolutely critical in deciding whether exposure to a potentially toxic compound will result in toxicity, or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.A. Miller and E.C. Miller, The metabolic activation of carcinogenic aromatic amines and amides, Progr. Exp. Tumor Res. 11: 273 (1969).

    CAS  Google Scholar 

  2. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, eds., “Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects”, Raven Press, New York (1983).

    Google Scholar 

  3. J.R. Gillette, J.R. Mitchell, and B.B. Brodie, Biochemical basis for drug toxicity, Ann. Rev. Pharmacol. 14: 271 (1974).

    Article  CAS  Google Scholar 

  4. J.R. Mitchell, D.J. Jollow, W.Z. Potter, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Ther. 187: 211 (1973).

    PubMed  CAS  Google Scholar 

  5. N.S. Kosower and E.M. Kosower, The glutathione status of cells, Int. Rev. Cytol. 54: 109 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. A. Meister and M. Anderson, Glutathione, Ann. Rev. Biochem. 52: 711 (1983)

    Article  PubMed  CAS  Google Scholar 

  7. A. Meister, S.S. Tate, and L.L. Ross, Membrane bound γ-glutamyl trans-peptidase, in: “The Enzymes of Biological Membranes”, A. Martinosi, ed., Plenum Press, New York (1976).

    Google Scholar 

  8. W.B. Jakoby, The glutathione-S-transferases: a group of multifunctional detoxification proteins, Adv. Enzymol. 46: 383 (1978)

    PubMed  CAS  Google Scholar 

  9. A. Wendel, Glutathione peroxidase, in: “Enzymatic Basis of Detoxication”, W.B. Jakoby, ed., Academic Press, New York (1980).

    Google Scholar 

  10. L. Eklöw, P. Moldéus, and S. Orrenius, Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1nitrosourea, Eur. J. Biochem. 138: 459 (1984)

    Article  PubMed  Google Scholar 

  11. S.K. Srivastava and E. Beutler, The transport of oxidized glutathione from human erythrocytes, J. Biol. Chem. 244: 9 (1969).

    PubMed  CAS  Google Scholar 

  12. T.P.M. Akerboom, M. Bilzer, and H. Sies, Competition between transport of glutathione disulfide (GSSG) and glutathione-S-conjugates from perfused rat liver into the bile, FEBS Lett. 140: 73 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. P. Nicotera, M. Moore, G. Bellomo, F. Mirabelli, and S. Orrenius, Demonstration and partial characterization of glutathione disulfide-stimulated ATPase activity in the plasma membrane fraction from rat hepatocytes, J. Biol. Chem. 260: 1999 (1985).

    PubMed  CAS  Google Scholar 

  14. P. Nicotera, C. Baldi, S.-A. Svensson, R. Larsson, G. Bellomo, and S. Orrenius, Glutathione-S-conjugates stimulate ATP hydrolysis in the plasma membrane fraction of rat hepatocytes, FEBS Lett. in press, (1985).

    Google Scholar 

  15. F.G. Hopkins, An autooxidable constituent of the cell, Biochem. J. 15: 296 (1921).

    Google Scholar 

  16. E. Lundsgaard, Biochem. Z. 217: 162 (1930).

    CAS  Google Scholar 

  17. D.J. Jollow, J.R. Mitchell, W.Z. Potter, D.C. Davis, J.R. Gillette, and B.B. Brodie, Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther. 187: 195 (1973).

    PubMed  CAS  Google Scholar 

  18. L. Ernster, DT-diaphorase, Meth. Enzymol. 10: 309 (1967).

    Article  CAS  Google Scholar 

  19. H. Thor, M.T. Smith, P. Hartzell, G. Bellomo, S.A. Jewell, and S. Orrenius, The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biol. Chem. 257: 12419 (1982).

    PubMed  CAS  Google Scholar 

  20. D. Di Monte, D. Ross, G. Bellomo, L. Eklöw, and S. Orrenius, Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes, Arch. Biochem. Biophys. 235: 334 (1984).

    Article  PubMed  Google Scholar 

  21. D. Di Monte, G. Bellomo, H. Thor, P. Nicotera, and S. Orrenius, Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 235: 343 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. S.A. Jewell, G. Bellomo, H. Thor, S. Orrenius, and M.T. Smith, Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis, Science, 217: 1257 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. F.C. Bygrave, Intracellular calcium and its regulation in liver, in: “Progress in Clinical and Biological Research”, F. Bronner and M. Peterlik, eds., A.R. Liss, New York.

    Google Scholar 

  24. E. Carafoli and M. Crompton, The regulation of intracellular Ca2+, Curr. Top. Membr. Transp. 10: 151 (1978).

    Article  CAS  Google Scholar 

  25. A.C. Lehninger, A. Vercesi, and E.P. Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA, 75: 1690 (1978).

    Article  PubMed  CAS  Google Scholar 

  26. A.E. Vercesi, Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria, Biochem. Biophys. Res. Commun. 119: 305 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. P. Goldstone and H. Crompton, Evidence for ß-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria, Biochem. J. 204: 369 (1982).

    PubMed  CAS  Google Scholar 

  28. L. Moore, T. Chen, H.R. Knapp, and E.J. Landon, Energy dependent calcium sequestration activity in rat liver microsomes, J. Biol. Chem. 250: 4562 (1975).

    PubMed  CAS  Google Scholar 

  29. P.B. Moore and N. Kraus-Friedman, Hepatic microsomal Ca2+-dependent ATPase, Biochem. J. 214: 69 (1983).

    PubMed  CAS  Google Scholar 

  30. N. Kraus-Friedman, J. Biber, H. Murer, and E. Carafoli, Calcium uptake in isolated hepatic plasma membrane vesicles, Eur. J. Biochem. 129: 7 (1982).

    Article  Google Scholar 

  31. H.J. Berridge and R.F. Irwin, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, London, 312: 315 (1984).

    Article  CAS  Google Scholar 

  32. G. Bellomo, S.A. Jewell, and S. Orrenius, The metabolism of menadione impairs the ability of rat liver mitochondria to take up and retain calcium, J. Biol. Chem. 257: 11558 (1982)

    PubMed  CAS  Google Scholar 

  33. H. Thor, P. Hartzell, S.-Åson, S. Orrenius, F. Mirabelli, V. Marinoni, and G. Bellomo, On the role of thiol groups in the inhibitor of liver microsomal Ca2+ sequestration by toxic agents, Biochem. Pharmac. in press (1985).

    Google Scholar 

  34. P. Nicotera, M. Moore, F. Mirabelli, G. Bellomo, and S. Orrenius, Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols, FEBS Lett. 181: 149 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Nicotera, P., Orrenius, S. (1986). Role of Thiols in Protection Against Biological Reactive Intermediates. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics