Skip to main content

The Regulation of Membrane Fluidity in Bacteria by Acyl Chain Length Changes

  • Chapter
Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

Abstract

It has been appreciated for many years that certain organisms, notably poikilotherms including bacteria, alter the fatty acyl composition of their lipids in response to changes in environmental temperature. Publication of the “fluid mosaic model” of membrane structure (Singer and Nicolson, 1972) signaled a decade in which our comprehension of the physiological significance of these fatty acyl changes has grown very considerably. The application of physical techniques, such as electron spin resonance (ESR) and nuclear magnetic resonance, to membranes and their lipids has in particular shown how membrane fluidity is modulated by lipid acyl composition. These findings are embodied in the widely accepted “mosaic” model of membrane structure in which intrinsic proteins are embedded in or traverse a lipid bilayer; thus, lipid acyl chains are in contact with polypeptide chains and may regulate the activity of enzyme active sites directly or indirectly. The nature of the phospholipid (or glycolipid) head group may also be important in lipid-protein interactions. But much less is known about the role of head groups in membrane lipid fluidity, and this aspect will not be dealt with in this review (see Keough and Davis, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldassare, J. J., Rhinehart, K. B., and Silbert, D. F., 1976, Modification of membrane lipid: physical properties in relation to fatty acid structure, Biochemistry 15:2986.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, D. G., Gudgin, E. F., and Mantsch, H. H., 1981, Dependence of acyl chain packing of phospholipids on the head group and acyl chain length, Biochemistry 20:4496.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D., 1975, Phase transitions and fluidity characteristics of lipids and cell membranes, Q. Rev. Biophys. 8:185.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. C., and Sturtevant, J. M., 1981, Thermotropic behaviour of bilayers formed from mixed-chain phosphatidylcholines, Biochemistry 20:713.

    Article  PubMed  CAS  Google Scholar 

  • Cossins, A. R., and Prosser, C. L., 1978, Evolutionary adaptation of membranes to temperature, Proc. Natl. Acad. Sci. USA 75:2040.

    Article  PubMed  CAS  Google Scholar 

  • Cronan, J. E., Jr., 1978, Molecular biology of bacterial membrane lipids, Annu. Rev. Biochem. 47:163.

    Article  PubMed  CAS  Google Scholar 

  • Cronan, J. E., Jr., and Vagelos, P. R., 1972, Metabolism and function of the membrane phospholipids of Escherichia coli, Biochim. Biophys. Acta 265:25.

    PubMed  CAS  Google Scholar 

  • Cronan, J. E., Jr., Weisberg, J. L., and Allen, R. G., 1975, Regulation of membrane lipid synthesis in Escherichia coli. Accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis, J. Biol. Chem. 250:5835.

    PubMed  CAS  Google Scholar 

  • Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399.

    PubMed  CAS  Google Scholar 

  • D’Agnolo, G., Rosenfeld, I. S., Awaya, J., Omura, S., and Vagelos, P. R., 1973, Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of β-ketoacyl acyl carrier protein synthetase, Biochim. Biophys. Acta 326:155.

    PubMed  Google Scholar 

  • Davis, J. H., Nichol, C. P., Weeks, G., and Blood, M., 1979, Study of the cytoplasmic and outer membranes of Escherichia coli by deuterium magnetic resonance, Biochemistry 18:2103.

    Article  PubMed  CAS  Google Scholar 

  • Davis, P. J., Fleming, B. D., Coolbear, K. P., and Keough, K. M. W., 1981, Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines, Biochemistry 20:3633.

    Article  PubMed  CAS  Google Scholar 

  • Engleman, D. M., 1970, X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii, J. Mol. Biol. 47:115.

    Article  Google Scholar 

  • Fulco, A. J., and Fujii, D. K., 1980, Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperatures, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 77–98, Humana Press, Clifton, N.J.

    Google Scholar 

  • Garwin, J. L., and Cronan, J. E., Jr., 1980, Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis, J. Bacteriol. 141:1457.

    PubMed  CAS  Google Scholar 

  • Garwin, J. L., Klages, A. L., and Cronan, J. E., Jr., 1980, β-Ketoacyl-acyl carrier protein synthetase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis, J. Biol. Chem. 255:3263.

    PubMed  CAS  Google Scholar 

  • Gelmann, E. P., and Cronan, J. E., Jr., 1972, Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid, J. Bacteriol. 112:381.

    PubMed  CAS  Google Scholar 

  • Harder, M. E., and Banaszak, L. J., 1979, Small angle X-ray scattering from the inner and outer membranes from Escherichia coli, Biochim. Biophys. Acta 552:89.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, Y., Kawada, N., and Nosoh, Y., 1980, Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature, Arch. Microbiol. 126:103.

    Article  PubMed  CAS  Google Scholar 

  • Kainuma-Kuroda, R., Goelz, S., and Cronan, J. E., Jr., 1980, Regulation of membrane phospholipid synthesis in Escherichia coli during temperature up-shift, J. Bacteriol. 142:362.

    PubMed  CAS  Google Scholar 

  • Kaneda, T., 1977, Fatty acids of the genus Bacillus: an example of branched-chain preference, Bacteriol. Rev. 41:391.

    PubMed  CAS  Google Scholar 

  • Keough, K. M. W., and Davis, P. J., 1979, Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines, Biochemistry 18:1453.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C, Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C. E., and Foyt, D. C, 1978, Rotational relaxation of 1,6-diphenyl-hexatriene in membrane lipids of cells acclimated to high and low growth temperatures, Biochemistry 17:3587.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara, M., Ishinaga, M., Kato, M., and Kito, M., 1976, Temperature-sensitive formation of the phospholipid molecular species in Escherichia coli membranes, Biochim. Biophys. Acta 431:54.

    PubMed  CAS  Google Scholar 

  • Odriozola, J. M., Ramos, J. A., and Bloch, K., 1977, Fatty acid synthetase activity in Mycobacterium smegmatis: Characterization of the acyl carrier protein-dependent elongating system, Biochim. Biophys. Acta 488:207.

    PubMed  CAS  Google Scholar 

  • Okuyama, H., Yamada, K., Kameyama, Y., Ikezawa, H., Akamatsu, Y., and Nojima, S., 1977, Regulation of membrane lipid synthesis in Escherichia coli after shifts in temperature, Biochemistry, 16:2668.

    Article  PubMed  CAS  Google Scholar 

  • Raetz, C. R. H., 1978, Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev. 42:614.

    PubMed  CAS  Google Scholar 

  • Russell, N. J., 1972, Alteration in fatty acid chain length in Micrococcus cryophilus grown at different temperatures, Biochim. Biophys. Acta 231:254.

    Google Scholar 

  • Russell, N. J., 1978, The positional specificity of a desaturase in the psychrophilic bacterium Micrococcus cryophilus (ATCC 15174), Biochim. Biophys. Acta 531:179.

    PubMed  CAS  Google Scholar 

  • Russell, M. J., and Volkman, J. K., 1980, The effect of growth temperature on wax ester composition in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174, J. Gen. Microbiol. 118:131.

    CAS  Google Scholar 

  • Sandercock, S. P., and Russell, N. J., 1980, The elongation of exogenous fatty acids and the control of phospholipid acyl chain length in Micrococcus cryophilus, Biochem. J. 188:585.

    PubMed  CAS  Google Scholar 

  • Shaw, M. K., and Ingraham, J. I., 1965, Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature, J. Bacteriol. 90:141.

    PubMed  CAS  Google Scholar 

  • Silvius, J. R., and McElhaney, R. N., 1980, Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B, Proc. Natl. Acad. Sci. USA 77:1255.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J. R., Mak, N., and McElhaney, R. N., 1980, Lipid and protein composition and ther-motropic lipid phase transitions in fatty acid-homogeneous membrane of Acholeplasma laidlawii B, Biochim. Biophys. Acta 597:199.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.

    Article  PubMed  CAS  Google Scholar 

  • Tadayon, R. A., and Carroll, K. K., 1971, Effect of growth conditions on the fatty acid composition of Listeria monocytogenes and comparison with the fatty acids of Erysipelothrix and Corynebacterium, Lipids 6:820.

    Article  PubMed  CAS  Google Scholar 

  • Thilo, L., Traüble, H., and Overath, P., 1977, Mechanistic interpretation of the influence of lipid phase transitions on transport functions, Biochemistry 16:1283.

    Article  PubMed  CAS  Google Scholar 

  • Veerkamp, J. H., 1971, Fatty acid composition of Bifidobacterium and Lactobacillus strains, J. Bacteriol. 108:861.

    PubMed  CAS  Google Scholar 

  • Weerkamp, A., and Heinen, W., 1972, Effect of temperature on the fatty acid composition of the extreme thermophiles Bacillus caldolyticus and Bacillus caldotenax, J. Bacteriol. 109:443.

    PubMed  CAS  Google Scholar 

  • Yang, L. L., and Haug, A., 1979, Structure of membrane lipids and physicobiochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to grow at 37°C, Biochim. Biophys. Acta 573:308.

    PubMed  CAS  Google Scholar 

  • Zinov’era, M. E., Simakova, I. M., and Kaprel’yants, A. S., 1979, Lateral heterogeneity of the bacterial membrane, Biokhimiya 44:931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Russell, N.J. (1984). The Regulation of Membrane Fluidity in Bacteria by Acyl Chain Length Changes. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics