Skip to main content

Temperature Adaptation in Phytoplankton: Cellular and Photosynthetic Characteristics

  • Chapter
Primary Productivity in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 19))

Abstract

Algae, as a group, occupy a wide spectrum of thermal environments ranging from snow and ice to hot springs. In attempting to relate the physiological characteristics of organisms to their ecology, it is necessary to distinguish between what Precht (1) has termed resistance and capacity adaptations. Resistance adaptations to temperature refer to mechanisms that determine the upper and lower temperature extremes limiting growth. Various aspects of this type of adaptation in plants and microorganisms have been reviewed (2–13). Capacity adaptations occur at temperatures between the extremes, or in the so-called “normal” or “biokinetic” range. Such adaptations may be said to exist when responses or characteristics of the organism at a given temperature are dependent on the temperature experienced during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Precht, in: “Physiological Adaptation,” C.L. Proser, ed., American Physiological Society, Washington (1958).

    Google Scholar 

  2. E. Marre, in: “Physiology and Biochemistry of Algae,” R.A. Lewin, ed., Academic Press, New York (1962).

    Google Scholar 

  3. J. Farrell and A.H. Rose, in: “Thermobiology,” A.H. Rose, ed., Academic Press, New York (1967).

    Google Scholar 

  4. J. Langridge and J.R. McWilliam, in: “Thermobiology,” A.H. Rose, ed., Academic Press, New York (1967).

    Google Scholar 

  5. J. Christophersen, in: “Temperature and Life,” H. Precht, J. Christophersen, H. Hensel and W. Larcher, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  6. J.L. Ingraham, in: “Temperature and Life,” H. Precht, J. Christophersen, H. Hensel and W. Larcher, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  7. W. Larcher, U. Weber, and K.A. Santarius, in: “Temperature and Life,” H. Precht, J. Christophersen, H. Hensel and W. Larcher, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  8. V. Ya. Alexandrov, “Cells, Molecules and Temperature. Con-formational Flexibility of Macromolecules and Ecological Adaptation,” Springer-Verlag, Berlin (1977).

    Google Scholar 

  9. R.E. Amelunxen and A.L. Murdock, in: “Microbial Life in Extreme Environments,” D.J. Kushner, ed., Academic Press, New York (1978).

    Google Scholar 

  10. J.A. Baross and R.Y. Morita, in: “Microbial Life in Extreme Environments,” D.J. Kushner, ed., Academic Press, New York (1978).

    Google Scholar 

  11. T.D. Brock, “Thermophilic Microorganisms and Life at High Temperatures,” Springer-Verlag, New York (1978).

    Book  Google Scholar 

  12. W.E. Inniss and J.L. Ingraham, in: “Microbial Life in Extreme Environments,” D.J. Kushner, ed., Academic Press, New York (1978).

    Google Scholar 

  13. M.R. Tansey and T.D. Brock, in: “Microbial Life in Extreme Environments,” D.J. Kushner, ed., Academic Press, New York (1978).

    Google Scholar 

  14. E.I. Rabonowitch, “Photosynthesis and Related Processes, Vol. II, Part 2,” Interscience, New York (1956).

    Google Scholar 

  15. F.H. Johnson, H. Eyring, and B.J. Stover, “The Theory of Rate Processes in Biology and Medicine,” Wiley, New York (1974).

    Google Scholar 

  16. R.W. Eppley, Fish. Bull. 70:1063 (1972).

    Google Scholar 

  17. J.C. Goldman and E.J. Carpenter, Limnol. Oceanogr. 19:756 (1974).

    Article  Google Scholar 

  18. A. Campbell, Bacteriol. Rev. 21:263 (1957).

    Google Scholar 

  19. R.W. Eppley, in: “The Biology of Diatoms,” D. Werner, ed., University of California Press, Berkeley and Los Angeles (1977).

    Google Scholar 

  20. C. Sorokin, Nature 184:613 (1959).

    Article  Google Scholar 

  21. T. Braarud, in: “Oceanography,” M. Sears, ed., AAAS, Washington (1961).

    Google Scholar 

  22. E.M. Hulburt and R.R.L. Guillard, Ecology 49:337 (1968).

    Article  Google Scholar 

  23. R.R.L. Guillard and P. Kilham, in: “The Biology of Diatoms,” D. Werner, ed., University of California Press, Berkeley and Los Angeles (1977).

    Google Scholar 

  24. R.B. Williams and M.B. Murdoch, Limnol. Oceanogr. 11:73 (1966).

    Article  Google Scholar 

  25. S. Ichimura, Rec. Oceanogr. Works Jap. 9:115 (1967).

    Google Scholar 

  26. E.F. Mandelli, P.R. Burkholder, T.E. Doheny, and R. Brody, Mar. Biol. 7:153 (1970).

    Article  Google Scholar 

  27. M. Takahashi, K. Fujii, and T.R. Parsons, Mar. Biol. 19:102 (1973).

    Article  Google Scholar 

  28. C.S. Yentsch, C.M. Yentsch, L.R. Strube, and I. Morris, in: “Thermal Ecology,” J.W. Gibbons and R.R. Sharitz, eds., Atomic Energy Commission, Oak Ridge (1974).

    Google Scholar 

  29. E.C. Durbin, R.W. Kraweic, and T.J. Smayda, Mar. Biol. 32:271 (1975).

    Article  Google Scholar 

  30. T. Platt and A.D. Jassby, J. Phycol. 12:421 (1976).

    Google Scholar 

  31. T.C. Malone, in: “The Middle Atlantic Shelf and New York Bight,” M. Grant Gross, ed., Limnol. Oceanogr. Special Symposium 2 (1976).

    Google Scholar 

  32. T.C. Malone, Mar. Biol. 42:281 (1977).

    Article  Google Scholar 

  33. T.C. Malone, Estuar. Coast. Mar. Sci. 5:157 (1977).

    Article  Google Scholar 

  34. G.P. Harris and B.B. Piccinin, Arch. Hydrobiol. 80:405 (1977).

    Google Scholar 

  35. W.G. Harrison and T. Platt, J. Plankton Res. In press.

    Google Scholar 

  36. J.R. Cook, Biol. Bull. 131:83 (1966).

    Article  Google Scholar 

  37. F.M. Williams, in “Systems Analysis and Simulation in Ecology,” B.C. Patten, ed., Academic Press, New York (1971).

    Google Scholar 

  38. J.C. Goldman, J. Exp. Mar. Biol. Ecol. 27:161 (1977).

    Article  Google Scholar 

  39. J.C. Goldman and R. Mann, J. Exp. Mar. Biol. Ecol. In press.

    Google Scholar 

  40. H. Tamiya, K. Iwamura, K. Shibata, E. Hase, and T. Nihei, Biochim. Biophys. Acta 12:23 (1953).

    Article  Google Scholar 

  41. H. Morimura, Plant Cell Physiol. 1:49 (1959).

    Google Scholar 

  42. C. Sorokin, Biochim. Biophys. Acta 38:197 (1960).

    Article  Google Scholar 

  43. C. Sorokin and R.W. Krauss, Plant Physiol. 33:37 (1962).

    Article  Google Scholar 

  44. R.C. Dugdale, in: “The Sea, Vol. 6 Marine Modeling,” I.N. McCave, J.J. O’Brien and J.H. Steele, eds., Wiley, New York (1977).

    Google Scholar 

  45. D.W. Tempest and O.M. Neijssel, Adv. Microbial Ecol. 2:105 (1978).

    Article  Google Scholar 

  46. J.J. McCarthy and J.C. Goldman, Science 203:670 (1979).

    Article  Google Scholar 

  47. R. Bourdu et J.-L. Prioul, Physiol. Veg. 12:35 (1974).

    Google Scholar 

  48. W.K.W. Li and I. Morris. In preparation.

    Google Scholar 

  49. W.K.W. Li. Unpublished results.

    Google Scholar 

  50. J.C. Goldman, Microbial Ecol. 5:153 (1979).

    Article  Google Scholar 

  51. E. Sakshaug, J. Exp. Mar. Biol. Ecol. 28:109 (1977).

    Article  Google Scholar 

  52. J.A. Yoder, J. Phycol. 15:362 (1979).

    Google Scholar 

  53. P.G. Falkowski, J. Exp. Mar. Biol. Ecol. 27:37 (1977).

    Article  Google Scholar 

  54. E.G. Jφrgensen, Physiologia P1. 21:423 (1968).

    Article  Google Scholar 

  55. E.G. Durbin, J. Phycol. 13:150 (1977).

    Google Scholar 

  56. R.W. Eppley and P.R. Sloan, Physiologia P1. 19:17 (1966).

    Google Scholar 

  57. B.F. Johnson and T.W. James, Exp. Cell Res. 20:66 (1960).

    Article  Google Scholar 

  58. J.E. Cloern, J. Phycol. 13:389 (1977).

    Google Scholar 

  59. B.W. Wilson and B.H. Levedahl, in: “The Biology of Euglena, Vol. 1. General Biology and Ultrastructure,” D.E. Buetow, ed., Academic Press, New York (1968).

    Google Scholar 

  60. E. Hase, Y. Morimura and H. Tamiya, Arch. Biochem. Biophys. 69:149 (1957).

    Article  Google Scholar 

  61. E. Steemann-Nielsen and E.G. Jorgensen, Physiologia P1. 21:401 (1968).

    Article  Google Scholar 

  62. I. Morris and H.E. Glover, Mar. Biol. 24:147 (1974).

    Article  Google Scholar 

  63. C.S. Yentsch, Oceanogr. Mar. Biol. Ann. Rev. 12:41 (1974).

    Google Scholar 

  64. K. Banse, Mar. Biol. 41:199 (1977).

    Article  Google Scholar 

  65. R.W. Eppley, W.G. Harrison, S.W. Chisholm, and E. Stewart, J. Mar. Res. 35:671 (1977).

    Google Scholar 

  66. C.G.T. Evans, in: “Continuous Culture 6:Applications and New Fields,” A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds., Ellis Horwood, Chichester (1976).

    Google Scholar 

  67. D.W. Tempest, in: “Continuous Culture 6:Applications and New Fields,” A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds., Ellis Horwood, Chichester (1976).

    Google Scholar 

  68. D. Herbert, in: “Continuous Culture 6:Applications and New Fields,” A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds., Ellis Horwood, Chichester (1976).

    Google Scholar 

  69. J.C. Goldman and H.I. Stanley, Mar. Biol. 28:17 (1974).

    Article  Google Scholar 

  70. J.C. Goldman and J.H. Ryther, Biotech. Bioengr. 18:1125 (1976).

    Article  Google Scholar 

  71. G.-Y. Rhee, Adv. Aquatic Microbiol. 2:151 (1980).

    Google Scholar 

  72. A. Pisek, W. Larcher, A. Vegis, and K. Napp-Zinn, in: “Temperature and Life,” H. Precht, J. Christophersen, H. Hensel and W. Larcher, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  73. J.S. Bunt, Antarctic Res. Ser. 1:27 (1964).

    Article  Google Scholar 

  74. C.W. Boylen and T.D. Brock, J. Phycol. 10:210 (1974).

    Google Scholar 

  75. J.L. Mosser, A.G. Mosser, and T.D. Brock, J. Phycol. 13:22 (1977).

    Google Scholar 

  76. Y. Aruga, Bot. Mag. 78:280 (1965).

    Google Scholar 

  77. C.W. Boylen and T.D. Brock, Ecology 54:1282 (1973).

    Article  Google Scholar 

  78. T.D. Brock, Nature 214:882 (1967).

    Article  Google Scholar 

  79. E. Fairchild and R.P. Sheridan, J. Phycol. 10:1 (1974).

    Google Scholar 

  80. K.A. Cledenning, T.E. Brown, and H.C. Eyster, Can. J. Bot. 34:943 (1956).

    Article  Google Scholar 

  81. Y. Aruga, Bot. Mag. 78:360 (1965).

    Google Scholar 

  82. R.P. Sheridan and T. Ulik, J. Phycol. 12:255 (1976).

    Google Scholar 

  83. W.N. Doemel and T.D. Brock, Arch. Mikrobiol. 72:326 (1970).

    Google Scholar 

  84. S. Buckingham, C.J. Walters, and P. Kleiber, Verb. Internat. Verein. Limnol. 19:32 (1975).

    Google Scholar 

  85. L.A. Hobson, W.J. Morris, and K.T. Pirquet, J. Fish. Res. Board Can. 33:1715 (1976).

    Article  Google Scholar 

  86. J.S. Bunt, Antarctic Res. Ser. 11:1 (1968).

    Article  Google Scholar 

  87. T.J. Smayda, J. Phycol. 5:450 (1969).

    Article  Google Scholar 

  88. E.G. Durbin, J. Phycol. 10:220 (1974).

    Google Scholar 

  89. J. Myers, J. Gen. Physiol. 29:429 (1946).

    Article  Google Scholar 

  90. J. Myers and J.A. Johnston, Plant Physiol. 24:111 (1949).

    Article  Google Scholar 

  91. J. Myers, in: “Prediction and Measurement of Photosynthetic Productivity,” IBP/PP Technical Meeting, Wageningen (1970).

    Google Scholar 

  92. I. Morris and K. Farrel, Physiologia P1. 25:372 (1971).

    Article  Google Scholar 

  93. I. Morris, H.E. Glover, and C.S. Yentsch, Mar. Biol. 27:1 (1974).

    Article  Google Scholar 

  94. A.E. Smith and I. Morris, Science 207:197 (1980).

    Article  Google Scholar 

  95. H. Ng, J.L. Ingraham, and A.G. Marr, J. Bacteriol. 84:331 (1962).

    Google Scholar 

  96. M.G. Höfle, Microbial Ecol. 5:17 (1979).

    Article  Google Scholar 

  97. M.K. Shaw, J. Bacteriol. 93:1332 (1967).

    Google Scholar 

  98. C.P. Spencer, J. Mar. Biol. Assoc. U.K. 33:265 (1954).

    Article  Google Scholar 

  99. J.C. Meeks and R.W. Castenholz, Arch. Mikrobiol. 78:25 (1971).

    Article  Google Scholar 

  100. W. Admiraal and H. Peletier, Mar. Ecol. Prog. Ser. 2:35 (1980).

    Article  Google Scholar 

  101. W. Admiraal, Mar. Biol. 39:1 (1977).

    Article  Google Scholar 

  102. E. Steemann-Nielsen, V.K. Hansen, and E.G. Jφrgensen, Physiologia P1. 15:505 (1962).

    Article  Google Scholar 

  103. J. Beardall and I. Morris, Mar. Biol. 37:377 (1976).

    Article  Google Scholar 

  104. J. Marra, Mar. Biol. Letters 1:175 (1980).

    Google Scholar 

  105. T.R. Rice and R.L. Ferguson, in: “Physiological Ecology of Estuarine Organisms,” F.J. Vernberg, ed., University of South Carolina Press, Columbia (1975).

    Google Scholar 

  106. D. Kamykowski and S.-J. Zentara. Limnol. Oceanogr. 22:148 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Li, W.K.W. (1980). Temperature Adaptation in Phytoplankton: Cellular and Photosynthetic Characteristics. In: Falkowski, P.G. (eds) Primary Productivity in the Sea. Environmental Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3890-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3890-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3892-5

  • Online ISBN: 978-1-4684-3890-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics