Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 174))

Abstract

A number of studies have postulated cell surface gangliosides to be receptors for various bioactive factors such as glycoprotein hormones,1–3 interferon,4–6 and bacterial toxins,7–9 based on the interaction of gangliosides with these bioactive factors or ganglioside modification of the cellular effect of these factors. These observations, however, do not necessarily prove or support the idea that gangliosides function as receptors for these factors. In fact, in most of these cases, the receptor has been subsequently characterized as a protein, and the binding to gangliosides is generally of much lower affinity and specificity. With the exception of cholera toxin binding to the oligosaccharide moiety of GM1,10 few examples of ganglioside receptors have been demonstrated. Our recent studies on the effect of gangliosides on cell growth have suggested that gangliosides may alter the binding of polypeptide growth factors to their receptors in an indirect way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. R. Mullin, P. H. Fishman, G. Lee, Sm. M. Aloj, F. D. Ledley, R. J. Winand, L. D. Kohn, and R. O. Brady, Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc. Natl. Acad. Sci. USA 73:842 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. G. Lee, S. M. Aloj, R. O. Brady, and L. D. Kohn, The structure and function of glycoprotein hormone receptors: Ganglioside interactions with human chorionic gonadotropin, Biochem. Biophys. Res. Commun. 73:370 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. G. Lee. S. M. Aloj, and L. D. Kohn, The structure and function of glycoprotein hormone receptors: Ganglioside interactions with luteinizing hormone, Biochem. Biophys. Res. Commun. 77:434 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. F. Besancon, and H. Ankel, Binding of interferon to gangliosides, Nature (Lond.) 252:478 (1974).

    Article  CAS  Google Scholar 

  5. V. E. Vengris, R. H. Reynolds, M. D. Hollenberg, and P. M. Pitha, Interferon action: Role of membrane gangliosides, Virology 72:486 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. H. Ankel, C. Krishnamaurti, F. Besancon, S. Stefanos, and E. Falcoff, Mouse fibroblast (type I) and immune (type II) interferons: Pronounced differences in affinity for gangliosides and in antiviral and antigrowth effects on mouse leukemia L-1210R cells, Proc. Natl. Acad. Sci. USA 77:2528 (1974).

    Article  Google Scholar 

  7. A. M. Haywood, Characteristics of Sendai virus receptors in a model membrane, J. Mol. Biol. 83:427 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. J. Holmgren, L. Svennerholm, H. Elwing, P. Fredman, and O. Strannegard, Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed gangliosides, Proc. Natl. Acad. Sci. USA 77:1947 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. F. D. Ledley, G. Lee, L. D. Kohn, W. H. Habig, and M. C. Hardegree, Tetanus toxin interactions with thyroid plasma membranes, J. Biol. Chem. 252:4049 (1977).

    PubMed  CAS  Google Scholar 

  10. P. Cuatrecasas, Interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry 12:3547 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. S. Hakomori, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50:733 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. R. A. Laine, and S. Hakomori, Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior, Biochem. Biophys. Res. Commun. 54:1039 (1973).

    Article  PubMed  CAS  Google Scholar 

  13. I. Icarel-Liepkalns, V. A. Liepkalns, A. J. Yates, and R. E. Stephens, Cell cycle phases of a novel human neural cell line and the effect of exogenous gangliosides, Biochem. Biophys. Res. Commun. 105:225 (1982).

    Article  Google Scholar 

  14. T. W. Keenan, E. Scmid, W. W. Franke, and H. Wiegandt, Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3T3 cells, Exp. Cell Res. 92:259 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. D. Barnes, and G. Sato, Methods for growth of cultured cells in serum-free medium, Anal. Biochem. 102:255 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. T. Macaig, B. Kelley, J. Cerundolo, S. Ilsley, P. R. Kelley, J. Gaudreau, and R. Forand, Hormonal requirements of baby hamster kidney cells in culture, Cell Biol. Int. Reports 4:43 (1980).

    Article  Google Scholar 

  17. E. Raines, and R. Ross, Platelet-derived growth factor. I. High yield purification and evidence for multiple forms, J. Biol. Chem. 257:5154 (1982).

    PubMed  CAS  Google Scholar 

  18. D. F. Bowen-Pope, and R. Ross, Platelet-derived growth factor. II. Specific binding to cultured cells, J. Biol. Chem. 257:5161 (1982).

    PubMed  CAS  Google Scholar 

  19. G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51:660 (1949).

    Article  CAS  Google Scholar 

  20. E. G. Bremer, and S. Hakomori, GM3 ganglioside induces haster fibroblast growth inhibition in chemically-defined medium: Gangliosides may regulate growth factor receptor function, Biochem. Biophys. Res. Commun. 106:711 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. S. Batzri, and E. D. Korn, Single bilayer liposomes prepared without sonication, Biochim. Biophys. Acta 298:1015 (1973).

    Article  PubMed  CAS  Google Scholar 

  22. S. Kanda, K. Inone, S. Nojima, H. Utsumi, and H. Wiegandt, Incorporation of spin-labeled ganglioside analogues into cell and liposomal membranes, J. Biochem. 91:1707 (1982).

    PubMed  CAS  Google Scholar 

  23. P. H. Fishman, J. Moss, and M. Vaughan, Uptake and metabolism of gangliosides in transformed mouse fibroblasts: Relationship of ganglioside structure to choleragen response, J. Biol. Chem. 251:4490 (1976).

    PubMed  CAS  Google Scholar 

  24. D. M. Marcus, and L. Cass, Glycosphingolipids with Lewis blood group activity: Uptake by human erythrocytes, Science 164:553 (1969).

    Article  PubMed  CAS  Google Scholar 

  25. G. Schwarzmann, A simple and novel method for tritium labeling of gangliosides and other sphingolipids, Biochim. Biophys. Acta 529:106 (1978).

    PubMed  CAS  Google Scholar 

  26. D. Gospodorowicz, Purification of a fibroblast growth factor from bovine pituitary, J. Biol. Chem. 250:2515 (1975).

    Google Scholar 

  27. S. Cohn, G. Carpenter, and L. King, Jr., Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity, J. Biol. Chem. 255:4834 (1979).

    Google Scholar 

  28. K. Glenn, D. F. Bowen-Pope, and R. Ross, Platelet-derived growth factor. III. Identification of platelet-derived growth factor receptor by affinity labeling, J. Biol. Chem. 257:5172 (1982).

    PubMed  CAS  Google Scholar 

  29. F.J. Sharom, and C. W. M. Grant, A model for ganglioside behavior in cell membranes, Biochim. Biophys. Acta 507:280 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. C. A. Longwood, S. Hakomori, and T. H. Ji, A glycolipid and its associated proteins: Evidence by crosslinking of human erythrocyte surface components, FEBS Lett. 112:265 (1980).

    Article  Google Scholar 

  31. W. A. Valente, P. Vitti, Z. Yavin, E. Yavin, E. F. Grollman, R. S. Toccafondi, and L. D. Kohn, Monoclonal antibodies to the thyrotropin receptor: Stimulating and blocking antibodies derived from the lymphocytes of patients with Graves disease, Proc. Natl. Acad. Sci. USA 79:6680 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. L. S. Lee, and I. B. Weinstein, Tumor-promoting phorbol esters inhibit the binding of epidermal growth factor to cellular receptors, Science 202:313 (1978).

    Article  PubMed  CAS  Google Scholar 

  33. M. Shoyab, and G. T. Todaro, Perturbation of membrane phospholipids alters the interaction between epidermal growth factor and its membrane receptors, Arch. Biochem. Biophys. 296:222 (1981).

    Article  Google Scholar 

  34. J. B. Baker, G. S. Barsh, D. H. Carney, and D. D. Cunningham, Dexamethasone modulates binding and action of epidermal growth factor in serum-free cell culture, Proc. Natl. Acad. Sci. USA 75:1882 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. E. Rozengurt, K. D. Brown, and P. Petticum, Vasopressin inhibition of epidermal growth factor binding to cultured mouse cells, J. Biol. Chem. 256:716 (1981).

    PubMed  CAS  Google Scholar 

  36. C. Heldin, A. Wasteson, and B. Westemark, Interaction of platelet-derived growth factor with its fibroblast receptor: Demonstration of ligand degradation and receptor modulation, J. Biol. Chem. 257:4216 (1982).

    PubMed  CAS  Google Scholar 

  37. D. F. Bowen-Pope, P. E. DiCorleto, and R. Ross, Interactions between the receptors for platelet-derived growth factors and epidermal growth factor, J. Cell Biol. 96:679 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. J. Schlessinger, A. B. Schreiber, A. Levi, I. Lax, T. Libermann, and Y. Yarden, Regulation of cell proliferation by epidermal growth factor, Critical Reviews in Biochemistry 14:93 (1983).

    Article  PubMed  CAS  Google Scholar 

  39. J. Nishimura, J. S. Huang, and T. F. Duel, Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes, Proc. Natl. Acad. Sci. USA 79:4303 (1982).

    Article  PubMed  CAS  Google Scholar 

  40. J. Pouyssegur, J. C. Chambard, A. Franchi, S. Paris, and E. Van Obberghen-Schilling, Growth factor activation of an amiloride-sensitive Na+ /H+ exchange system in quiescent fibroblasts: Coupling to ribosomal protein S6 phosphorylation, Proc. Natl. Acad. Sci. USA 79:3935 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Bremer, E.G., Hakomori, Si. (1984). Gangliosides as Receptor Modulators. In: Ledeen, R.W., Yu, R.K., Rapport, M.M., Suzuki, K. (eds) Ganglioside Structure, Function, and Biomedical Potential. Advances in Experimental Medicine and Biology, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1200-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1200-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1202-4

  • Online ISBN: 978-1-4684-1200-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics