Skip to main content

Role of Microorganisms in the Atmospheric Sulfur Cycle

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 2))

Abstract

Microorganisms play key roles in the oxidation-reduction and assimilation-dissimilation steps of the sulfur cycle in nature. A substantial amount of information is available concerning the forms of sulfur in natural systems (ZoBell, 1963; Freney, 1967; Richmond, 1973; Williams, 1975) and the microbially mediated transformations of sulfur within the pedosphere and hydrosphere, the two major natural sites of microbial activity (Starkey, 1956; ZoBell, 1958, 1963, 1973; Postgate, 1959; Wood, 1965; Kelley, 1968; Roy and Trudinger, 1970; Rheinheimer, 1972, 1974; Freney and Swaby, 1975; Siegel, 1975; Trudinger, 1975; Weir, 1975). Very little is known, however, about the forms and amounts of volatile sulfur released to the atmosphere through microbial activity in the pedosphere or hydrosphere. The purpose of this chapter is to review current information relating to production of volatile sulfur compounds by terrestrial and aquatic microorganisms and the role of these microorganisms in the atmospheric sulfur cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abed, M. A. H. F., 1976, Sulfate reduction in poorly-drained soils as influenced by organic matter and soil texture, Beitr. Trop. Subtrop. Landwirtsch. Veterinarmed. 14:89.

    CAS  Google Scholar 

  • Abeles, F. B., Craker, L. E., Forrence, L. E., and Leather, G. R., 1971, Fate of air pollutants: removal of ethylene, sulfur dioxide, and nitrogen dioxide by soil, Science 173:914.

    CAS  PubMed  Google Scholar 

  • Ackman, R. G., Tocher, C. S., and McLachlan, J., 1966, Occurrence of dimethyl-β-propiothetin in marine phytoplankton, J. Fish. Res. Board Can. 23:357.

    CAS  Google Scholar 

  • Adams, D. F., 1976, Sulfur compounds, in: Air Pollution, vol. III, 3rd ed. (A. C. Stern, ed.), pp. 213–257, Academic Press, New York.

    Google Scholar 

  • Alexander, M., 1974, Microbial formation of environmental pollutants, Adv. Appl. Microbiol. 18:1.

    CAS  PubMed  Google Scholar 

  • Altshuller, A. P., 1958, Natural sources of gaseous pollutants in the atmosphere, Tellus 10:479.

    CAS  Google Scholar 

  • Altshuller, A. P., 1973, Atmospheric sulfur dioxide and sulfate: distribution of concentration at urban and nonurban sites in the United States, Environ. Sci. Technol. 7:709.

    CAS  PubMed  Google Scholar 

  • Alway, F. J., Marsh, A. W., and Methley, W. J., 1937, Sufficiency of atmospheric sulfur for maximum crop yields, Soil Sci. Soc. Am. Proc. 2:229.

    CAS  Google Scholar 

  • Asami, T., and Takai, Y., 1963, Formation of methyl mercaptan in paddy soils II., Soil Sci. Plant Nutr. (Tokyo) 9:23.

    CAS  Google Scholar 

  • Asher, C. J., and Grundon, N. J., 1970, Volatile losses of mineral constituents from forage plants, in: Proceedings of the XI International Grassland Congress, pp. 329–332, University of Queensland Press, Brisbane, Australia.

    Google Scholar 

  • Ashworth, J., Briggs, G. G., and Evans, A. A., 1975, Field injection of carbon disulphide to inhibit nitrification of ammonia fertiliser, Chem. Ind. 1975:749.

    Google Scholar 

  • Ayotade, K. A., 1977, Kinetics and reactions of hydrogen sulfide in solution of flooded rice sous, Plant Soil 46:381.

    CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1972, Ecologie ramifications of air pollution, Soc. Automot. Eng. Trans. 81:1955.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1974, Air pollution and microbial ecology, CRC Crit. Rev. Environ. Control 4:353.

    Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1974, Gas chromatographic identification of sulfur gases in soil atmospheres, Soil Biol. Biochem. 6:113.

    CAS  Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1975a, Identification of sulfur gases evolved from animal manures, J. Environ. Qual. 4:363.

    CAS  Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1975b, Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils, Soil Biol. Biochem. 7:359.

    CAS  Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1976a, Volatilization of sulfur from unamended and sulfate-treated soils, Soil Biol. Biochem. 8:19.

    CAS  Google Scholar 

  • Banwart, W. L., and Bremner, J. M., 1976b, Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials, Soil Biol. Biochem. 8:439.

    CAS  Google Scholar 

  • Barjac, H. de., 1952, Contribution a l’étude du métabolisme des acides aminés soufrés, et spécialement de la methionine dans le sol, Ann. Inst. Pasteur 82:623.

    Google Scholar 

  • Bechard, M. J., 1974, Emission of volatile organic sulfides by freshwater algae, M.S. Thesis, Washington State University, Pullman.

    Google Scholar 

  • Bechard, M. J., and Rayburn, W. R., 1974, Emission of volatile sulfur compounds from freshwater algae, J. Phycol. (Suppl.) 10:10.

    Google Scholar 

  • Bethea, R. M., and Narayan, R. S., 1972, Identification of beef cattle feedlot odors, Trans. A.S.A.E. 15:1135.

    Google Scholar 

  • Beilke, S., and Lamb, D., 1974, On the absorption of SO2 in ocean water, Tellus 26:268.

    CAS  Google Scholar 

  • Birkinshaw, J. H., Findlay, W. P. K., and Webb, R. A., 1942, Biochemistry of the wood-rotting fungi. 3. The production of methyl mercaptan by Schizophyllum commune Fr., Biochem. J. 36:526.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloomfield, C., 1969, Sulphate reduction in waterlogged soils, J. Soil Sci. 20:207.

    CAS  Google Scholar 

  • Bohn, H. L., 1972, Soil absorption of air pollutants, J. Environ. Qual. 1:372.

    CAS  Google Scholar 

  • Bohn, H. L., and Miyamoto, S., 1974, Sou as a sorbent and filter of waste gases, in: Proceedings of the International Conference on Land for Waste Management (B. P. Warkentin, chairperson), pp. 104–114, Department of the Environment, National Research Council of Canada, Ottawa.

    Google Scholar 

  • Bremner, J. M., 1977, Role of organic matter in volatilization of sulfur and nitrogen from soils, in: Proceedings of Symposium on Soil Organic Matter Studies, vol. II, Braunschweig, Federal Republic of Germany, Sept. 6–10, 1976, pp. 229–240, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Bremner, J. M., and Banwart, W. L., 1974, Identifying volatile S compounds by gas chromatography, Sulphur Inst. J. 10:6.

    Google Scholar 

  • Bremner, J. M., and Banwart, W. L., 1976, Sorption of sulfur gases by soils, Soil Biol. Biochem. 8:79.

    CAS  Google Scholar 

  • Bremner, J. M., and Bundy, L. G., 1974, Inhibition of nitrification in soils by volatile sulfur compounds, Soil Biol. Biochem. 6:161.

    Google Scholar 

  • Brinkmann, W. L. F., and Santos, U. D. M., 1974, The emission of biogenic hydrogen sulfide from Amazonian floodplain lakes, Tellus 26:261.

    CAS  Google Scholar 

  • Brody, S. S., and Chaney, J. E., 1966, The application of a specific detector for phosphorus and for sulfur compounds—sensitive to subnanogram quantities, J. Gas Chromatogr. 4:42.

    CAS  Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1974, Gas exchange rates between air and sea, Tellus 26:21.

    CAS  Google Scholar 

  • Burnett, W. E., 1969, Air pollution from animal wastes, Environ. Sci. Technol. 3:744.

    CAS  Google Scholar 

  • Cadle, R. D., 1976, The photo-oxidation of hydrogen sulphide and dimethyl sulphide in air, Atmos. Environ. 10:417.

    Google Scholar 

  • Cadle, R. D., and Ledford, M., 1966, Reaction of ozone with hydrogen sulfide, Air Water Pollut. 10:25.

    CAS  PubMed  Google Scholar 

  • Campbell, L. L., and Postgate, J. R., 1965, Classification of the sporeforming sulphate-reducing bacteria, Bacteriol. Rev. 29:359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson, D. A., and Gumerman, R. C., 1966, Hydrogen sulfide and methyl mercaptan removal with soil columns, in: Proceedings of the 21st Industrial Waste Conference, pp. 177–191, Purdue University, Lafayette, Ind.

    Google Scholar 

  • Carlson, D. A., and Leiser, C. P., 1966, Soil beds for the control of sewage odors, J. Water Pollut. Control Fed. 38:829.

    CAS  PubMed  Google Scholar 

  • Carlson, D. A., Leiser, C. P., and Gumerman, R., 1970, The Soil Filter: A Treatment Process for Removal of Odorous Gases, University of Washington Final Report to Federal Water Pollution Control Administration WP 00883–03 (February 1970).

    Google Scholar 

  • Challenger, F., 1951, Biological methylation, Adv. Enzymol. 12:429.

    CAS  Google Scholar 

  • Challenger, F., and Charlton, P. T., 1947, Studies on biological methylation. Part X. The fission of the mono- and di-sulphide links by moulds, J. Chem. Soc. 1947:424.

    Google Scholar 

  • Challenger, F., and Greenwood, D., 1949, Sulphur compounds of the genus Allium: detection of n-propylthiol in the onion. The fission and methylation of diallyl disulphide in cultures of Scopulariopsis brevicaulis, Biochem. J. 44:87.

    CAS  PubMed Central  Google Scholar 

  • Challenger, F., and North, H. E., 1934, The production of organo-metalloidal compounds by microorganisms. Part II. Dimethyl selenide, J. Chem. Soc. 1934:68.

    Google Scholar 

  • Challenger, F., Bywood, R., Thomas, P., and Hayward, B. J., 1957, Studies on biological methylation. XVII. The natural occurrence and chemical reactions of some thetins, Arch. Biochem. Biophys. 69:514.

    CAS  PubMed  Google Scholar 

  • Chaudhry, I. A., and Cornfield, A. H., 1967a, Effect of moisture content during incubation of soil treated with organic materials on changes in sulphate and sulphide levels, J. Sci. Food Agric. 18:38.

    CAS  Google Scholar 

  • Chaudhry, I. A., and Cornfield, A. H., 1967b, Effect of temperature of incubation on sulphate levels in aerobic sous and sulphide levels in anaerobic soils, J. Sci. Food Agric. 18:82.

    CAS  Google Scholar 

  • Chen, J. Y., and Morris, J. C., 1972, Kinetics of oxidation of aqueous sulfide by O2, Environ. Sci. Technol. 6:529.

    CAS  Google Scholar 

  • Clarke, P. H., 1953, Hydrogen sulphide production by bacteria, J. Gen. Microbiol. 8:397.

    CAS  PubMed  Google Scholar 

  • Coley-Smith, J. R., and King, J. E., 1969, The production by species of Allium of alkyl sulfides and their effect on germination of sclerotia of Sclerotium cepivorum Berk., Ann. Appl. Biol. 64:289.

    CAS  Google Scholar 

  • Conway, E. J., 1943, Mean geochemical data in relation to oceanic evolution, Proc. R. Ir. Acad. Sect. A 48:119.

    Google Scholar 

  • Cox, R. A., and Sandalls, F. J., 1974, The photo-oxidation of hydrogen sulphide and dimethyl sulphide in air, Atmos. Environ. 8:1269.

    CAS  PubMed  Google Scholar 

  • Craker, L. E., and Manning, W. J., 1974, SO2 uptake by soil fungi, Environ. Pollut. 6:309.

    CAS  Google Scholar 

  • Crutzen, P. J., 1976, The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett. 3:73.

    CAS  Google Scholar 

  • Deevey, E. S., Jr., 1973, Sulfur, nitrogen, and carbon in the biosphere, in: Carbon and the Biosphere (G. M. Woodwell and E. V. Pecan, eds.), pp. 182–190, U.S. Atomic Energy Commission, Washington, D.C.

    Google Scholar 

  • Deuser, W. G., 1970, Carbon-13 in Black Sea waters and implications for the origin of hydrogen sulfide, Science 168:1575.

    CAS  PubMed  Google Scholar 

  • Dittrich, H. H., and Staudenmayer, T., 1970. Über die Zusammenhänge zwischen der Sulfit-Bildung und der Schwefelwasserstoff-Bildung bei Saccharomyces cerevisiae, Zentralbl. Bakteriol. Parasitent Abt. 2 124:113.

    CAS  Google Scholar 

  • Dott, W., and Trüper, H. G., 1976, Sulfite formation by wine yeasts III. Properties of sulfite reductase, Arch. Microbiol. 108:99.

    CAS  Google Scholar 

  • Drews, B., Baerwald, G., and Niefind, H. J., 1970, Determination of some volatile sulfur compounds of primary and secondary fermentation by gas chromatography, Eur. Brew. Conv., Proc. Congr. 1969 12:419.

    Google Scholar 

  • Elliott, L. F., and Travis, T. A., 1973, Detection of carbonyl sulfide and other gases emanating from beef cattle manure, Soil Sci. Soc. Am. Proc. 37:700.

    CAS  Google Scholar 

  • Eriksson, E., 1963, The yearly circulation of sulfur in nature, J. Geophys. Res. 68:4001.

    Google Scholar 

  • Eriksson, E., and Rosswall, T., 1976, Man and biogeochemical cycles: impacts, problems and research needs, in: Nitrogen, Phosphorus, and SulphurGlobal Cycles (B. H. Svensson and R. Söderlund, eds.), SCOPE Report 7, Ecological Bulletins 22:11.

    Google Scholar 

  • Faller, N., 1971, Effects of atmospheric S02 on plants, Sulphur Inst. J. 7:5.

    CAS  Google Scholar 

  • Faller, N., and Herwig, K., 1969/1970, Untersuchungen über die SO2–Oxydation in verschiedenen Böden, Geoderma 3:45.

    CAS  Google Scholar 

  • Faller, N., Herwig, K., and Kühn, H., 1970, Die Aufnahme von Scheweldioxid (35SO2) aus der Luft. I. Einfluss auf den pflanzlichen Ertrag, Plant Soil 33:177.

    Google Scholar 

  • Ford, H. W., 1973, Levels of hydrogen sulfide toxic to citrus roots, J. Am. Soc. Hort. Sci. 98:66.

    CAS  Google Scholar 

  • Francis, A. J., Adamson, J., Duxbury, J. M., and Alexander, M., 1973, Life detection by gas chromatography-mass spectrometry of microbial metabolites, Bull. Ecol. Res. Commun. 17:485.

    CAS  Google Scholar 

  • Francis, A. J., Duxbury, J. M., and Alexander, M., 1975, Formation of volatile organic products in soils under anaerobiosis—II. Metabolism of amino acids, Soil Biol. Biochem. 7:51.

    CAS  Google Scholar 

  • Frederick, L. R., Starkey, R. L., and Segal, W., 1957, Decomposability of some organic sulfur compounds in soil, Soil Sci. Soc. Am. Proc. 21:287.

    CAS  Google Scholar 

  • Freney, J. R., 1960, The oxidation of cysteine to sulphate in soil, Aust. J. Biol. Sci. 13:387.

    Google Scholar 

  • Freney, J. R., 1967, Sulfur-containing organics, in: Soil Biochemistry, vol. 1 (A. D. McLaren and G. H. Peterson, eds.), pp. 229–259, Marcel Dekker, New York.

    Google Scholar 

  • sFreney, J. R., and Swaby, R. J., 1975, Sulphur transformations in soils, in: Sulphur in Australasian Agriculture (K. D. McLachlan, ed.), pp. 31–39, Sydney University Press, Sydney.

    Google Scholar 

  • Fried, M., 1948, The absorption of sulfur dioxide by plants as shown by the use of radioactive sulfur, Soil Sci. Soc. Am. Proc. 13:135.

    Google Scholar 

  • Friend, J. P., 1973, The global sulfur cycle, in: Chemistry of the Lower Atmosphere (S. I. Rasool, ed.), pp. 177–201, Plenum Press, New York.

    Google Scholar 

  • Fuhr, I., Bransford, A. V., and Suver, S. D., 1948, Sorption of fumigant vapors by soil, Science 107:274.

    CAS  PubMed  Google Scholar 

  • Ghiorse, W. C., and Alexander, M., 1976, Effect of microorganisms on the sorption and fate of sulfur dioxide and nitrogen dioxide in soil, J. Environ. Qual. 5:227.

    CAS  Google Scholar 

  • Gibson, C. R., Hammons, G. A., and Cameron, D. S., 1974, Environmental aspects of El Paso’s Burnham I coal gasification complex, in: Proceedings of Symposium on Environmental Aspects of Fuel Conversion Technology, pp. 91–100, EPA-65/2–74–118, U.S. Environmental Protection Agency.

    Google Scholar 

  • Gobert, N., Chaigneau, M., and Savel, J., 1971, Etude des gaz libérés au cours de la coulture en anaérobiose de Trichomonas vaginalis, C. R. Soc. Biol. 165:276.

    CAS  Google Scholar 

  • Gourmelon, C., Boulègue, J., and Michard, G., 1977, Oxydation partielle de l’hydrogène sulfuré en phase aqueuse, C. R. Acad. Sci., Paris, Ser. C 284:269.

    CAS  Google Scholar 

  • Granat, L., Rodhe, H., and Hallberg, R. O., 1976, The global sulphur cycle, in: Nitrogen, Phosphorus, and Sulphur—Global Cycles (B. H. Svensson and R. Sóderlund, eds.), SCOPE Report 7, Ecological Bulletins 22:89.

    Google Scholar 

  • Greenwood, D. J., and Lees, H., 1956, Studies on the decomposition of amino acids in soils. I. A preliminary survey of techniques, Plant Soil 7:253.

    CAS  Google Scholar 

  • Grey, D. C., and Jensen, M. L., 1972, Bacteriogenic sulfur in air pollution, Science 177:1099.

    CAS  PubMed  Google Scholar 

  • Grice, H. W., Yates, M. L., and David, D. J., 1970, Response characteristics of the Melpar flame photometric detector, J. Chromatogr. Sci. 8:90.

    CAS  Google Scholar 

  • Grundon, N. J., 1975, Release of volatile sulphur compounds by plants: development of techniques for studying release by intact plants and oven-drying plant material, Ph.D. Thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Gumerman, R. C., 1968, Chemical aspects of H2S removal in soil, Ph.D. Thesis, University of Washington, Seattle.

    Google Scholar 

  • Gunkel, W., and Oppenheimer, C. H., 1963, Experiments regarding the sulfide formation in sediments of the Texas Gulf Coast, in: Symposium on Marine Microbiology (C. H. Oppenheimer, ed.), pp. 674–684. Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Hales, J. M., Wilkes, J. O., and York, J. L., 1974, Some recent measurements of H2S oxidation rates and their implications to atmospheric chemistry, Tellus 26:277.

    CAS  Google Scholar 

  • Hanst, P. L., Spüler, L. L., Watts, D. M., Spence, J. W., and Miller, M. F., 1975, Infrared measurement of fluorocarbons, carbon tetrachloride, carbonyl sulfide, and other atmospheric trace gases, J. Air Pollut. Control Assoc. 25:1220.

    CAS  Google Scholar 

  • Harter, R. D., and McLean, E. O., 1965, The effect of moisture level and incubation time on the chemical equilibria of a Toledo clay loam soil, Agron. J. 57:583.

    CAS  Google Scholar 

  • Herbert, R. A., and Shewan, J. M., 1976, Roles played by bacterial and autolytic enzymes in the production of volatile sulphides in spoiling North Sea cod (Gadus morhua), J. Sci. Food Agric. 27:89.

    CAS  Google Scholar 

  • Herbert, R. A., Henrie, M.S., Gibson, D.M., and Shewan, J. M., 1971, Bacteria active in the spoilage of certain sea foods, J. Appl. Bacteriol. 34:41.

    CAS  PubMed  Google Scholar 

  • Hicks, B. B., 1976, Transfer of SO2 and other reactive gases across the air-sea interface, Tellus 28:348.

    CAS  Google Scholar 

  • Hidy, G. M., 1973, Removal processes of gaseous and particulate pollutants, in: Chemistry of the Lower Atmosphere (S. I. Rasool, ed.), pp. 121–176, Plenum Press, New York.

    Google Scholar 

  • Hidy, G. M., and Brock, J. R., 1971, An assessment of the global sources of tropospheric aerosols, in: Proceedings of the Second International Clean Air Congress (H. M. Englund and W. T. Berry, eds), pp. 1088–1097, Academic Press, New York.

    Google Scholar 

  • Hill, A. C., 1971, Vegetation: a sink for atmospheric pollutants, J. Air Pollut. Control Assoc. 21:341.

    CAS  PubMed  Google Scholar 

  • Hill, F. B., 1973, Atmospheric sulfur and its links to the biota, in: Carbon and the Biosphere (G. M. Woodwell and E. V. Pecan, eds.), pp. 159–181, U.S. Atomic Energy Commission, Washington, D.C.

    Google Scholar 

  • Hitchcock, D. R., 1975, Dimethyl sulfide emissions to the global atmosphere, Chemosphere 3:137.

    Google Scholar 

  • Hitchcock, D. R., 1976a, Atmospheric sulfates from biological sources, J. Air Pollut. Control Assoc. 26:210.

    CAS  PubMed  Google Scholar 

  • Hitchcock, D. R., 1976b, Microbiological contributions to the atmospheric load of particulate sulfate, in: Environmental Biogeochemistry (J. O. Nriagu, ed.), pp. 351–367, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Hitchcock, D. R., 1977a, Biogenic contributions to atmospheric sulfate levels, in: Proceedings of the Second National Conference on Complete WateReuse: Water’s Interface with Energy, Air and Solids (L. K. Cecil, ed.), pp. 291–310, American Institute of Chemical Engineers, New York.

    Google Scholar 

  • Hitchcock, D. R., 1977b, Atmospheric sulfate in Monroe County, New York: apparent biogenic contributions, Paper presented at the Third International Symposium on Environmental Biogeochemistry, Wolfenbüttel, F.R.G., March 27-April 3, 1977.

    Google Scholar 

  • Hitchcock, D. R., Spiller, L. L., and Wilson, W. E., 1977, Biogenic sulfides in the atmosphere in a North Carolina tidal marsh, Paper presented before the Division of Environmental Chemistry, American Chemical Society, New Orleans, Louisiana, March 20–25, 1977.

    Google Scholar 

  • Hudson, H. J., 1971, The development of the saprophytic fungal flora as leaves senesce and fall, in: Ecology of Leaf Surface Micro-organisms (T. F. Preece and C. H. Dickinson, eds.), pp. 447–455, Academic Press, London.

    Google Scholar 

  • Inoue, H., Iwamoto, R., Fujii, H., and Imai, T., 1955, Abstr. Annu. Meet. Soc. Sci. Soil Manure, p. 9 (cited by Takai and Asami, 1962).

    Google Scholar 

  • Ishida, Y., 1968, Physiological studies on evolution of dimethyl sulfide from unicellular marine algae, Memoirs of the College of Agriculture; Kyoto University 94:47.

    Google Scholar 

  • Iverson, W. P., 1966, Growth of Desulfovibrio on the surface of agar media, Appl. Microbiol. 14:529.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iverson, W. P., 1967, Disulfur monoxide: production by Desulfovibrio, Science 156:1112.

    CAS  PubMed  Google Scholar 

  • Jacq, V., and Dommergues, Y., 1970, Influence of light intensity and age of the plant on sulfate reduction in the rhizosphere of maize, Zentralbl. Bakteriol. Parasitenk., Abt. 2 125:661.

    CAS  Google Scholar 

  • Jenkins, D., Medsker, L. L., and Thomas, J. F., 1967, Odorous compounds in natural waters. Some sulfur compounds associated with blue-green algae, Environ. Sci. Technol. 9:731.

    Google Scholar 

  • Jensen, V., 1971, The bacterial flora of beech leaves, in: Ecology of Leaf Surface Micro-organisms (T. F. Preece and C. H. Dickinson, eds.), pp. 463–469, Academic Press, London.

    Google Scholar 

  • Jørgensen, B. B., 1977, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments, Mar. Biol. 41:7.

    Google Scholar 

  • Joshi, M. M., and Hollis, J. P., 1977, Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere, Science 195:179.

    CAS  PubMed  Google Scholar 

  • Junge, C. E., 1960, Sulfur in the atmosphere, J. Geophys. Res. 65:227.

    CAS  Google Scholar 

  • Junge, C. E., 1963a, Sulfur in the atmosphere, J. Geophys. Res. 68:3975.

    Google Scholar 

  • Junge, C. E., 1963b, Air Chemistry and Radioactivity, Academic Press, New York.

    Google Scholar 

  • Junge, C.E., 1972, The cycle of atmospheric gases—natural and man made, Quart. J. R. Meteorol. Soc. 98:711.

    CAS  Google Scholar 

  • Kadota, H., and Ishida, Y., 1968, Effect of salts on enzymatical production of dimethyl sulfide from Gyrodinium cohnii, Bull. Jap. Soc. Sci. Fish. 34:512.

    CAS  Google Scholar 

  • Kadota, H., and Ishida, Y., 1972, Production of volatile sulfur compounds by microorganisms, Annu. Rev. Microbiol. 26:127.

    CAS  PubMed  Google Scholar 

  • Kallio, R. E., and Larson, A. D., 1955, Methionine degradation by a species of Pseudomonas, in: Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 616–631, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Kanivets, V. I., 1970, Reaction of hydrogen, methane, and hydrogen sulfide with the mineral part of the soil, Sov. Soil Sci. 2:294.

    Google Scholar 

  • Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175:587.

    CAS  PubMed  Google Scholar 

  • Kelly, D. P., 1968, Biochemistry of oxidation of inorganic sulphur compounds by microorganisms, Aust. J. Sci. 31:165.

    CAS  Google Scholar 

  • Kendler, J., and Donagi, A., 1970, Diffusion of odors from stabilization ponds in arid zones, in: Developments in Water Quality Research (H. I. Shuval, ed.), pp. 241–249, Ann Arbor-Humphrey Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • King, J. E., and Coley-Smith, J. R., 1969, Production of volatile alkyl sulphides by microbial degradation of synthetic alliin and alliin-like compounds, in relation to germination of sclerotia of Sclerotium cepivorum Berk., Ann. Appl. Biol. 64:303.

    CAS  Google Scholar 

  • Kittrick, J. A., 1976, Control of Zn2+ in the soil solution by sphalerite, Soil Sci. Soc. Am. J. 40:314.

    CAS  Google Scholar 

  • Kondo, M., 1923, Über die Bildung des Mercaptans aus 1–Cystin durch Bakterien, Blochem. Z. 136:198.

    CAS  Google Scholar 

  • Kunert, J., 1973, Keratin decomposition by dermatophytes. I. Sulfite production as a possible way of substrate denaturation, Z. Allg. Mikrobiol. 13:489.

    CAS  PubMed  Google Scholar 

  • Kuznetsov, S. I., 1975, The Microflora of Lakes and its Geochemical Activity, University of Texas Press, Austin.

    Google Scholar 

  • Kuznetsov, S. I., Ivanov, M. V., and Lyalikova, N. N., 1963, Introduction to Geological Microbiology, McGraw-Hill, New York.

    Google Scholar 

  • Laakso, S., Söderling, E., and Nurmikko, V., 1976, Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant, J. Gen. Microbiol. 94:305.

    CAS  PubMed  Google Scholar 

  • Labarre, C., Chaigneau, M., Bory, J., and Le Moan, G., 1966, Composition des gaz dégagés par Clostridium sporogenes et par Clostridium septicum cultivés en milieu au thioglycolate, C. R. Acad. Sci., Paris, Ser. D 262:2550.

    CAS  Google Scholar 

  • Labarre, C., Chaigneau, M., and Bory, J., 1972, Composition des gaz dégagés par Plectridium tetani cultivé en milieu au thioglycolate, C. R. Acad. Sci., Paris, Ser. D 274:2545.

    CAS  Google Scholar 

  • Last, F. T., and Deighton, F. C., 1965, The non-parasitic microflora on the surfaces of livingleaves, Trans. Br. My col. Soc. 48:83.

    Google Scholar 

  • Last, F. T., and Warren, R. C., 1972, Non-parasitic microbes colonizing green leaves: their form and functions, Endeavour 31:143.

    Google Scholar 

  • LeGall, J., 1974, The sulfur cycle, in: The Aquatic Environment: Microbial Transformations and Water Management Implications (L. J. Guarraia and R. K. Ballentine, eds.), pp. 75–85, U.S. Environmental Protection Agency, Washington, EPA 430/G-73–008.

    Google Scholar 

  • Leinweber, F.-J., and Monty, K. J., 1961, The mode of utilization of cysteine sulfinic acid by bacteria, Biochem. Biophys. Res. Commun. 6:355.

    CAS  PubMed  Google Scholar 

  • Leinweber, F.-J., and Monty, K. J., 1965, Cysteine biosynthesis in Neurospora crassa. I. The metabolism of sulfite, sulfide, and cysteinesulfinic acid, J. Biol. Chem. 240:782.

    CAS  PubMed  Google Scholar 

  • Levy, H., 1974, Photochemistry of the troposphere, in: Advances in Photochemistry, vol. 9 (J. Pitts, Jr., G. Hammond, and K. Gollnick, eds.), pp. 372–524, Wiley, New York.

    Google Scholar 

  • Lewis, J. A., and Papavizas, G. C., 1970, Evolution of volatile sulfur-containing compounds from decomposition of crucifers in soils, Soil Biol. Biochem. 2:239.

    CAS  Google Scholar 

  • Lewis, J. A., and Papavizas, G. C., 1971, Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches, Phytopathology 61:208.

    CAS  Google Scholar 

  • Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface, Nature (London) 247:181.

    CAS  Google Scholar 

  • Litchfield, CD., 1973, Interactions of amino acids and marine bacteria, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 145–166, University of South Carolina Press, Columbia.

    Google Scholar 

  • Lovelock, J. E., 1974, CS2 and the natural sulphur cycle, Nature (London) 248:625.

    CAS  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature (London) 237:452.

    CAS  Google Scholar 

  • Maloney, T. E., 1963, Research on algal odor, J. Am. Water Works Assoc. 55:481.

    Google Scholar 

  • Manning, D. J., Chapman, H. R., and Hosking, Z. D., 1976, The production of sulphur compounds in cheddar cheese and their significance in flavour development,J. Dairy Res. 43:313.

    CAS  Google Scholar 

  • Maroulis, P. J., and Bandy, A. R., 1977, Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle, Science 196:647.

    CAS  PubMed  Google Scholar 

  • Matheron, R., and Baulaigue, R., 1976, Bactéries fermentatives, sulfato-réductrices et phototrophes sulfureuses en cultures mixtes, Arch. Microbiol. 109:319.

    CAS  PubMed  Google Scholar 

  • McCready, R. G. L., Laishley, E. J., and Krouse, H. R., 1976, The use of stable sulfur isotope labelling to elucidate sulfur metabolism by Clostridium pasteurianum, Arch. Microbiol 109:315.

    CAS  PubMed  Google Scholar 

  • Merkel, J. A., Hazen, T. E., and Miner, J. R., 1969, Identification of gases in a confinement swine building atmosphere, Trans. A.S.A.E. 12:310.

    CAS  Google Scholar 

  • Miller, A., Scanlan, R. A., Lee, J. S., and Libbey, L. M., 1973, Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens, and an Achromobacter species, Appl. Microbiol. 26:18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minárik, E., 1972, SO2–Bildung durch Sulfatreduktion bei verschiedenen Hefearten der Gattung Saccharomyces, Mitt. Rebe Wein, Obstbau Früchteverwert. (Klosterneuberg) 22:245.

    Google Scholar 

  • Miner, J. R., 1973, Odors from Livestock Production, Oregon State University Press, Corvallis.

    Google Scholar 

  • Miner, J. R., and Hazen, T. E., 1969, Ammonia and amines: components of swine-building odor, Trans. A.S.A.E. 12:772.

    CAS  Google Scholar 

  • Miyamoto, S., Bohn, H. L., Ryan, J., and Yee, M. S., 1974, Effect of sulfuric acid and sulfur dioxide on the aggregate stability of calcareous soils, Soil Sci. 118:299.

    CAS  Google Scholar 

  • Moje, W., Munnecke, D. E., and Richardson, L. T., 1964, Carbonyl sulphide, a volatile fungitoxicant from nabam in soil, Nature (London) 202:831.

    CAS  Google Scholar 

  • Morita, R. Y., 1974, Temperature effects on marine microorganisms, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 75–79, University Park Press, Baltimore.

    Google Scholar 

  • Moss, M. R., 1976, Biogeochemical cycles as integrative and spatial models for the study of environmental pollution (the example of the sulphur cycle), Int. J. Environ. Stud. 9:209.

    CAS  Google Scholar 

  • Munnecke, D. E., Domsch, K. H., and Eckert, J. W., 1962, Fungicidal activity of air passed through columns of sou treated with fungicides, Phytopathology 52:1298.

    CAS  Google Scholar 

  • Murakami, F., 1960, The nutritional value of Allium plants XXXVI. Decomposition of alliin homologs by microorganism and formation of substance with thiamide-masking activity, Bitamin (Kyoto) 20:126.

    CAS  Google Scholar 

  • Natusch, D. F. S., Klonis, H. B., Axelrod, H. D., Teck, R. J., and Lodge, J. P., Jr., 1972, Sensitive method for measurement of atmospheric hydrogen sulfide, Anal. Chem. 44:2067.

    CAS  PubMed  Google Scholar 

  • Nicolson, A. J., 1970, Soil sulfur balance studies in the presence and absence of growing plants, Soil Sci. 109:345.

    CAS  Google Scholar 

  • Oaks, D. M., Hartmann, H., and Dimick, K. P., 1964, Analysis of S compounds with electron capture/H flame dual channel gas chromatography, Anal. Chem. 36:1560.

    CAS  Google Scholar 

  • Ochynski, F. W., and Postgate, J. R., 1963, Some biochemical differences between fresh water and salt water strains of sulphate-reducing bacteria, in: Symposium on Marine Microbiology (C. H. Oppenheimer, ed.), pp. 426–441, Charles C. Thomas, Springfield.

    Google Scholar 

  • Ogata, G., and Bower, C. A., 1965, Significance of biological sulfate reduction to soil salinity, Soil Sci. Soc. Am. Proc. 29:23.

    CAS  Google Scholar 

  • Orr, W. L., and Gaines, A. G., 1974, Observations on rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuarine basin: the upper basin of the Pettaquamscutt River (Rhode Island), in: Advances in Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds), pp. 791–812, Editions Technip, Paris.

    Google Scholar 

  • Östlund, H. G., and Alexander, J., 1963, Oxidation rate of sulfide in sea water, a preliminary study, J. Geophys. Res. 68:3995.

    Google Scholar 

  • Parker, B. C., 1970, Life in the sky, Nat. Hist. 79(8):54.

    Google Scholar 

  • Payrissat, M., and Beilke, S., 1975, Laboratory measurements of the uptake of sulphur dioxide by different European soils, Atmos. Environ. 9:211.

    CAS  PubMed  Google Scholar 

  • Peck, H. D., Jr., 1962, Comparative metabolism of inorganic sulfur compounds in microorganisms, Bacteriol. Rev. 26:67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penkett, S. A., 1972, Oxidation of SO2 and other atmospheric gases by ozone in aqueous solution, Nature Phys. Sci. 240:105.

    CAS  Google Scholar 

  • Peterson, W. H., 1914, Forms of sulfur in plant materials and their variation with the soil supply, J. Am. Chem. Soc. 36:1290.

    CAS  Google Scholar 

  • Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21:285.

    CAS  PubMed  Google Scholar 

  • Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Agron. 24:29.

    CAS  Google Scholar 

  • Postgate, J. R., 1959, Sulphate reduction by bacteria, Annu. Rev. Microbiol. 13:505.

    Google Scholar 

  • Powlson, D. S., and Jenkinson, D. S., 1971, Inhibition of nitrification in soil by carbon disulfide from rubber bungs, Soil Biol. Biochem. 3:267.

    CAS  Google Scholar 

  • Pugh, G. J. F., and Buckley, N. G., 1971, The leaf surface as a substrate for colonization by fungi, in: Ecology of Leaf Surface Micro-organisms (T. F. Preece and C. H. Dickinson, eds.), pp. 431–445, Academic Press, London.

    Google Scholar 

  • Quammen, M. L., LaRock, P. A., and Calder, J. A., 1973, Environmental effects of pulp mill wastes, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 329–344, University of South Carolina Press, Columbia.

    Google Scholar 

  • Rankine, B. C., and Pocock, K. F., 1969, Influence of yeast strain on binding of sulfur dioxide in wines, and on its formation during fermentation, J. Sci. Food Agric. 20:104.

    CAS  PubMed  Google Scholar 

  • Rasmussen, K. H., Taheri, M., and Kabel, R. L., 1975, Global emissions and natural processes for removal of gaseous pollutants, Water Air Soil Pollut. 4:33.

    CAS  Google Scholar 

  • Rasmussen, R. A., 1974, Emission of biogenic hydrogen sulfide, Tellus 26:254.

    CAS  Google Scholar 

  • Rasmussen, R. A., and Hutton, R. S., 1972, Utilization of atmospheric organic volatiles as an energy source by microorganisms in the tropics, Chemosphere 1:47.

    CAS  Google Scholar 

  • Rheinheimer, G., 1972, Dissolved gases. Bacteria, fungi and blue-green algae, in: Marine Ecology, vol. I, part 3 (O. Kinne, ed.), pp. 1459–1469, Wiley-Interscience, London.

    Google Scholar 

  • Rheinheimer, G., 1974, Aquatic Microbiology, Wiley, London.

    Google Scholar 

  • Richmond, D. V., 1973, Sulfur compounds, in: Phytochemistry, vol. III (L. P. Miller, ed.), pp. 41–73, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Robbins, R. C., and Kastelic, J., 1961, Fate of tetramethylthiuram disulfide in the digestive tract of the ruminant animal, J. Agric. Food Chem. 9:256.

    Google Scholar 

  • Roberts, S., and Koehler, F. E., 1965, Sulfur dioxide as a source of sulfur for wheat, Soil Sci. Soc. Am. Proc. 29:696.

    CAS  Google Scholar 

  • Robinson, E., and Robbins, R. C., 1968, Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants, Stanford Research Institute Final Report Project PR-6755 (February 1968), pp. 11–48.

    Google Scholar 

  • Robinson, E., and Robbins, R. C., 1970a, Gaseous atmospheric pollutants from urban and natural sources, in: Global Effects of Environmental Pollution (S. F. Singer, ed.), pp. 50–65, Springer-Verlag, New York.

    Google Scholar 

  • Robinson, E., and Robbins, R. C., 1970b, Gaseous sulfur pollutants from urban and natural sources, J. Air Pollut. Control Assoc. 20:233.

    CAS  Google Scholar 

  • Rodhe, H., 1972, A study of the sulfur budget for the atmosphere over northern Europe, Tellus 24:128.

    CAS  Google Scholar 

  • Ronkainen, P., Denslow, J., and Leppänen, O., 1973, The gas chromatographic analysis of some volatile sulfur compounds, J. Chromatogr. Sci. 11:384.

    CAS  Google Scholar 

  • Roy, A. B., and Trudinger, P. A., 1970, The Biochemistry of Inorganic Compounds of Sulfur, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ruiz-Herrera, J., and Starkey, R. L., 1969, Dissimilation of methionine by fungi, J. Bacteriol. 99:544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Herrera, J., and Starkey, R. L., 1970, Dissimilation of methionine by Achromobacter starkeyi, J. Bacteriol. 104:1286.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sachdev, M. S., and Chhabra, P., 1974, Transformation of S35-labelled sulphate in aerobic and flooded soil conditions, Plant Soil 41:335.

    CAS  Google Scholar 

  • Sandalls, F. J., and Penkett, S. A., 1977, Measurements of carbonyl sulphide and carbon disulphide in the atmosphere, Atmos. Environ. 11:197.

    CAS  Google Scholar 

  • Schlegel, H. G., 1974, Production, modification, and consumption of atmospheric trace gases by microorganisms, Tellus 26:11.

    CAS  Google Scholar 

  • Segal, W., and Starkey, R. L., 1969, Microbial decomposition of methionine and identity of the resulting sulfur products, J. Bacteriol. 98:908.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seim, E. C., 1970, Sulfur dioxide absorption by soil, Ph.D. Thesis, University of Minnesota, St. Paul.

    Google Scholar 

  • Sharpe, M. E., Law, B. A., and Phillips, B. A., 1976, Coryneform bacteria producing methane thiol. J. Gen. Microbiol. 94:430.

    CAS  Google Scholar 

  • Siegel, L. M., 1975, Biochemistry of the sulfur cycle, in: Metabolism of Sulfur Compounds, vol. VII, 3rd ed. (D. Greenberg, ed.), pp. 217–286, Academic Press, New York.

    Google Scholar 

  • Simán, G., and Jansson, S. L., 1976a, Sulphur exchange between soil and atmosphere, with special attention to sulphur release directly to the atmosphere. 1. Formation of gaseous sulphur compounds in soil, Swed. J. Agric. Res. 6:37.

    Google Scholar 

  • Simán, G., and Jansson, S. L., 1976b, Sulphur exchange between soil and atmosphere, with special attention to sulphur release directly to the atmosphere. 2. The role of vegetation in sulphur exchange between soil and atmosphere, Swed. J. Agric. Res. 6:135.

    Google Scholar 

  • Singh, H. B., 1977, Atmospheric halocarbons: evidence in favor of reduced average hydroxyl radical concentration in the troposphere, Geophys. Res. Lett. 4:101.

    CAS  Google Scholar 

  • Smith, K. A., Bremner, J. M., and Tabatabai, M. A., 1973, Sorption of gaseous atmospheric pollutants by soils, Soil Sci. 116:313.

    CAS  Google Scholar 

  • Smith M.S., 1976, Evolution of volatile organic compounds from soils and manure, M.S. Thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  • Smith M. S., Francis, A. J., and Duxbury, J. M., 1977, Collection and analysis of organic gases from natural ecosystems: application to poultry manure, Environ. Sci. Technol. 11:51.

    CAS  Google Scholar 

  • Soda, K., Novogrodsky, A., and Meister, A., 1964, Enzymatic desulfination of cysteine sulfinic acid, Biochemistry 3:1450.

    CAS  PubMed  Google Scholar 

  • Somers, E., Richmond, D. V., and Pickard, J. A., 1967, Carbonyl sulphide from the decomposition of captan, Nature (London) 215:214.

    CAS  Google Scholar 

  • Starkey, R. L., 1956, Transformations of sulfur by microorganisms, Ind. Eng. Chem. 48:1429.

    CAS  Google Scholar 

  • Stephens, E. R., 1971, Identification of odors from cattle feedlots, Calif. Agric. 25:10.

    CAS  Google Scholar 

  • Stevens, R. K., Mulik, J. D., O’Keefe, A. E., and Krost, K. J., 1971, Gas chromatography of reactive sulfur gases in air at the parts-per-billion level, Anal. Chem. 43:827.

    CAS  PubMed  Google Scholar 

  • Stevens, R. K., Baumgardner, R., Paur, R., and McClenny, W. A., 1977, Rural and urban measurements of sulfur dioxide, hydrogen sulfide, oxides of nitrogen, and ammonia, Abstr. Pap. Am. Chem. Soc. 173:58.

    Google Scholar 

  • Stevenson, L. H., Millwood, C. E., and Hebeler, B. H., 1974, Aerobic heterotrophic bacterial populations in estuarine water and sediments, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 268–285, University Park Press, Baltimore.

    Google Scholar 

  • Stoiber, R. E., Leggett, D. C., Kenkins, T. F., Murrmann, R. P., and Rose, W. I., Jr., 1971, Organic compounds in volcanic gas from Santiaguito Volcano, Guatemala, Bull. Geol. Soc. Am. 82:2299.

    CAS  Google Scholar 

  • Stotzky, G., and Schenck, S., 1976, Volatile organic compounds and microorganisms, CRC Crit. Rev. Microbiol. 4:333.

    CAS  PubMed  Google Scholar 

  • Swaby, R. J., and Fedel, R., 1973, Microbial production of sulphate and sulphide in some Australian soils, Soil Biol. Biochem. 5:773.

    CAS  Google Scholar 

  • Takai, Y., and Asami, T., 1962, Formation of methyl mercaptan in paddy soils I, Soil Sci. Plant Nutr. (Tokyo) 8:40.

    Google Scholar 

  • Tanner, R. L., and Newman, L., 1976, The analysis of airborne sulfate: a critical review, J. Air Pollut. Control Assoc. 26:737.

    CAS  PubMed  Google Scholar 

  • Terraglio, F. P., and Manganelli, R. M., 1966, The influence of moisture on the adsorption of atmospheric sulfur dioxide by soil, Air Water Pollut. 10:783.

    CAS  Google Scholar 

  • Toan, T. T., Bassette, R., and Claydon, T. J., 1965, Methyl sulfide production by Aerobacter aerogenes in milk, J. Dairy Sci. 48:1174.

    CAS  PubMed  Google Scholar 

  • Tocher, C. S., Ackman, R. G., and McLachlan, J., 1966, The identification of dimethyl-β-propiothetin in the algae Syracosphaera carterae and Ulva lactuca, Can. J. Biochem. 44:519.

    CAS  PubMed  Google Scholar 

  • Trudinger, P. A., 1975, The biogeochemistry of sulphur, in: Sulphur in Australasian Agriculture (K. D. McLachlan, ed.), pp. 11–19, Sydney University Press, Sydney.

    Google Scholar 

  • Tukey, H. B., Jr., 1971, Leaching of substances from plants, in: Ecology of Leaf Surface Micro-organisms (T. F. Preece and C. H. Dickinson, eds.), pp. 67–80, Academic Press, London.

    Google Scholar 

  • Urone, P., 1976, The primary air pollutants—gaseous. Their occurrence, sources and effects, in: Air Pollution, vol. I, 3rd ed. (A. C. Stern, ed.), pp. 23–75, Academic Press, New York.

    Google Scholar 

  • Vámos, R., 1959, “Brusone” disease of rice in Hungary, Plant Soil 11:65.

    Google Scholar 

  • Wagner, C., and Stadtman, E. R., 1962, Bacterial fermentation of dimethyl-β-propiothetin, Arch. Biochem. Biophys. 98:331.

    CAS  PubMed  Google Scholar 

  • Weir, R. G., 1975, The oxidation of elemental sulphur and sulphides in soil, in: Sulphur in Australasian Agriculture (K. D. McLachlan, ed.), pp. 40–49, Sydney University Press, Sydney.

    Google Scholar 

  • White, R. K., 1969, Gas chromatographic analysis of odors from dairy wastes, Ph.D. Thesis, Ohio State University, Columbus.

    Google Scholar 

  • White, R. K., Taiganides, E. P., and Cole, G. D., 1971, Chromatographic identification of malodors from dairy animal waste, in: Livestock Waste Management and Pollution Abatement, pp. 110–113, American Society of Agricultural Engineers, St. Joseph, Mo.

    Google Scholar 

  • Williams, C. H., 1975, The chemical nature of sulphur compounds in soils, in: Sulphur in Australasian Agriculture (K. D. McLachlan, ed.), pp. 21–30, Sydney University Press, Sydney.

    Google Scholar 

  • Wood, E. J. F., 1965, Marine Microbial Ecology, Chapman and Hall, London.

    Google Scholar 

  • Yee, M.S., Bohn, H. L., and Miyamoto, S., 1975, Sorption of sulfur dioxide by calcareous soils, Soil Sci. Soc. Am. Proc. 39:268.

    CAS  Google Scholar 

  • Young, R. J., Dondero, N. C., Ludington, D. C., and Loehr, R. C., 1971, Poultry waste management and the control of associated odors, in: Identification and Measurements of Environmental Pollutants (B. Westley, ed.), pp. 98–104, National Research Council of Canada, Ottawa.

    Google Scholar 

  • ZoBell, C. E., 1958, Ecology of sulphate-reducing bacteria, Prod. Mon. 22:12.

    Google Scholar 

  • ZoBell, C. E., 1963, Organic geochemistry of sulfur, in: Organic Geochemistry (I. A. Breger, ed.), pp. 543–578, Macmillan, New York.

    Google Scholar 

  • ZoBell, C. E., 1973, Microbial and environmental transitions in estuaries, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 9–31, University of South Carolina Press, Columbia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Bremner, J.M., Steele, C.G. (1978). Role of Microorganisms in the Atmospheric Sulfur Cycle. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8222-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8222-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8224-3

  • Online ISBN: 978-1-4615-8222-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics