Skip to main content

Oscillatory Behavior in Electrochemical Systems

  • Chapter
Modern Aspects of Electrochemistry

Abstract

A closed chemical system which is not in thermodynamic equilibrium will tend to relax asymptotically toward such a state as soon as the existing constraints are removed (e.g., when contact between the components is established, or, in an electrochemical system, when a galvanic cell circuit is closed). The resulting transient can be either purely monotonie, which is the most common behavior, or the system in its relaxation to equilibrium can pass through an infinite or a finite number of maxima and minima. However, in the latter case, the amplitude diminishes steadily with time, and it has been proved by the methods of irreversible thermodynamics that, in a closed system, sustained oscillations can occur neither around the equilibrium,1 nor for appreciable displacements from it, i.e. β€œin the large.”2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Prigogine, Thermodynamics of Irreversible Processes, Wiley, New York, 1955.

    Google ScholarΒ 

  2. D. Shear, J. Theoret. Biol. 16 (1967) 212.

    CASΒ  Google ScholarΒ 

  3. V. Volterra, Theorie mathΓ©matique de la lutte pour la vie, Gautiers-Villars, Paris, 1931.

    Google ScholarΒ 

  4. Kolebatelnye processy v biologiceskich i chimiceskich sistemach (Oscillating Processes in Biological and Chemical Systems), Izd. Nauka, Moscow, 1967.

    Google ScholarΒ 

  5. J. M. Douglas and N. Y. Gaitonde, Ind. Eng. Chem. Fundamentals 6 (1967) 265.

    CASΒ  Google ScholarΒ 

  6. J. M. Douglas and D. W. T. Rippin, Chem. Eng. Sci. 21 (1966) 305.

    CASΒ  Google ScholarΒ 

  7. Fechner, Schweigg. J. 53 (1828) 141.

    Google ScholarΒ 

  8. E. S. Hedges and J. E. Meyers, The Problem of Physicochemical Periodicity, Arnold, London, 1926.

    Google ScholarΒ 

  9. F. Flade, Z. phys. Chem. 76 (1911) 513.

    CASΒ  Google ScholarΒ 

  10. U. F. Franck, Z. Elektrochem. 54 (1950) 540.

    Google ScholarΒ 

  11. W. Fraenkel and H. Heinz, Z. anorg. Chem. 133 (1924) 167.

    Google ScholarΒ 

  12. K. F. Bonhoeffer and U. F. Franck, Z. Elektrochem. 55 (1951) 180.

    CASΒ  Google ScholarΒ 

  13. J. H. Bartlett and J. Stephenson, J. Electrochem. Soc. 99 (1952) 504.

    CASΒ  Google ScholarΒ 

  14. U. F. Franck, Z. phys. Chem. N.F. 3 (1954) 183.

    Google ScholarΒ 

  15. U. F. Franck, Z. Elektrochem. 62 (1958) 649.

    CASΒ  Google ScholarΒ 

  16. U. F. Franck and R. FitzHugh, Z. Elektrochem. 65 (1961) 156.

    CASΒ  Google ScholarΒ 

  17. K. F. Bonhoeffer and G. Langhammer, Z. Elektrochem. 51 (1948) 29.

    Google ScholarΒ 

  18. K. F. Bonhoeffer, E. Brauer, and G. Langhammer, Z. Elektrochem. 51 (1948) 60.

    Google ScholarΒ 

  19. K. F. Bonhoeffer and G. Langhammer, Z. Elektrochem. 51 (1948) 67.

    Google ScholarΒ 

  20. K. F. Bonhoeffer and H. Genscher, Z. Elektrochem. 52 (1948) 149.

    CASΒ  Google ScholarΒ 

  21. R. S. Cooper and J. M. Bartlett, J. Electrochem. Soc. 105 (1958) 109.

    CASΒ  Google ScholarΒ 

  22. L. Meunier, C. R. III RΓ©union du CITCE 1952, 247.

    Google ScholarΒ 

  23. L. Meunier, C. R. II RΓ©union du CITCE 1951, 242.

    Google ScholarΒ 

  24. L. Meunier and G. Germain, C. R. III RΓ©union du CITCE 1952, 263.

    Google ScholarΒ 

  25. F. FΓΆrster and F. KrΓΌger, Z. Elektrochem. 33 (1927) 406.

    Google ScholarΒ 

  26. H. Lal, H. R. Thirsk, and W. F. K. Wynne-Jones, Trans. Faraday Soc. 47 (1951) 999.

    CASΒ  Google ScholarΒ 

  27. T. P. Hoar and J. A. S. Mowat, Nature 165 (1950) 64.

    CASΒ  Google ScholarΒ 

  28. A. Dmitriev and E. V. Rzhevskaya, Zh. Fiz. Chim. 35 (1961) 871.

    CASΒ  Google ScholarΒ 

  29. B. Pointu, Electrochim. Acta 14 (1969) 1207, 1213.

    CASΒ  Google ScholarΒ 

  30. M. T. Francis and W. H. Colmer, J. Electrochem. Soc. 97 (1950) 237.

    CASΒ  Google ScholarΒ 

  31. A. M. Shams El Din and F. M. Abd El Wahab, Electrochim. Acta 9 (1964) 883.

    CASΒ  Google ScholarΒ 

  32. D. Gilroy and B. E. Conway, J. Phys. Chem. 69 (1965) 1259.

    CASΒ  Google ScholarΒ 

  33. H. Wroblowa, V. Brusic, and J. O’M. Bockris, J. Phys. Chem. 75 (1971) 2823.

    Google ScholarΒ 

  34. N. Hackerman, Z. Elektrochem. 62 (1950) 632.

    Google ScholarΒ 

  35. A. R. Piggott, H. Leckie, and L. L. Shreir, Corrosion Sci. 5 (1965) 165.

    CASΒ  Google ScholarΒ 

  36. J. L. Rosenfeld and I. P. Danilov, Corrosion Sci. 7 (1967) 129.

    Google ScholarΒ 

  37. J. L. Rosenfeld and V. P. Maksimtchuk, Z. phys. Chem. 215 (1960) 25.

    Google ScholarΒ 

  38. Z. Szklarska-Smialowska and M. Janik-Czachor, Br. Corros. J. 4 (1969) 138.

    CASΒ  Google ScholarΒ 

  39. U. F. Franck and L. Meunier, Z. Naturforsch. 8b (1953) 396.

    CASΒ  Google ScholarΒ 

  40. R. S. Indira, S. K. Rangarajan, and K. S. G. Doss, J. Electroanal. Chem. 21 (1969) 57.

    CASΒ  Google ScholarΒ 

  41. M. Thalinger and M. Volmer, Z. phys. Chem. 150 (1930) 401.

    CASΒ  Google ScholarΒ 

  42. G. Armstrong and J. A. V. Butler, Disc. Faraday Soc. 1 (1947) 122.

    Google ScholarΒ 

  43. D. T. Sawyer and E. T. Seo, J. Electroanal, Chem. 5 (1963) 23.

    CASΒ  Google ScholarΒ 

  44. E. MΓΌller, Z. Elektrochem. 29 (1923) 264.

    Google ScholarΒ 

  45. E. MΓΌller and G. Hindemith, Z. Elektrochem. 33 (1927) 561.

    Google ScholarΒ 

  46. E. MΓΌller and S. Tanaka, Z. Elektrochem. 34 (1928) 256.

    Google ScholarΒ 

  47. J. Wojtowicz, N. Marincic, and B. E. Conway, J. Chem. Phys. 48 (1968) 4333.

    CASΒ  Google ScholarΒ 

  48. T. O. Pavela, Suomen Kemistilehti 30 (1957) 138.

    Google ScholarΒ 

  49. R. P. Buck and L. R. Griffith, J. Electrochem. Soc. 109 (1962) 1005.

    CASΒ  Google ScholarΒ 

  50. J. A. Shropshire, Electrochim. Acta 12 (1967) 253.

    CASΒ  Google ScholarΒ 

  51. S. Gilman, J. Phys. Chem. 67 (1963) 1898.

    CASΒ  Google ScholarΒ 

  52. H. F. Hunger, J. Electrochem. Soc. 115 (1968) 492.

    CASΒ  Google ScholarΒ 

  53. B. E. Conway and M. Dzieciuch, Nature 189 (1961) 914.

    CASΒ  Google ScholarΒ 

  54. F. Haber, Z. Elektrochem. 7 (1901) 634.

    Google ScholarΒ 

  55. A. Ya. Gochstien and A. N. Frumkin, Doklady Akad. Nauk SSSR 132 (1960) 388.

    Google ScholarΒ 

  56. A. N. Frumkin, O. A. Petrii, and N. W. Nikolaeva-Fedorovich, Doklady Akad. Nauk SSSR 133 (1961) 1158.

    Google ScholarΒ 

  57. R. De Levie, J. Electroanal. Chem. 25 (1970) 257.

    Google ScholarΒ 

  58. M. Clarke and J. A. Bernie, Electrochim. Acta 12 (1967) 205.

    CASΒ  Google ScholarΒ 

  59. M. N. Hull and F. A. Lewis, Trans. Faraday Soc. 64 (1968) 2472.

    CASΒ  Google ScholarΒ 

  60. L. Gougerot and R. Alfieri, J. chim. phys. 61 (1964) 843.

    CASΒ  Google ScholarΒ 

  61. L. Gougerot and R. Alfieri, J. chim. phys. 54 (1957) 514.

    CASΒ  Google ScholarΒ 

  62. S. Szpak, Electrochim. Acta 13 (1968) 483.

    CASΒ  Google ScholarΒ 

  63. M. L. Bhaskara Rao, J. Electrochem. Soc. 114 (1967) 665.

    Google ScholarΒ 

  64. L. Meunier, C. R. III RΓ©union du CITCE 1952, 3.

    Google ScholarΒ 

  65. H. Degn, Trans. Faraday Soc. 64 (1968) 1348.

    CASΒ  Google ScholarΒ 

  66. D. Posadas, A. J. Arvia, and J. J. Podesta, Electrochim. Acta 16 (1971) 1041.

    CASΒ  Google ScholarΒ 

  67. T. Teorell, Acta Soc. Med. Upsaliensis 62 (1957) 60.

    CASΒ  Google ScholarΒ 

  68. V. E. Shashua, Nature 215 (1967) 846.

    Google ScholarΒ 

  69. A. Katchalsky and R. Spangler, Quart. Rev. Biophys. 1 (1968) 127.

    CASΒ  Google ScholarΒ 

  70. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators, Pergamon, London, 1966.

    Google ScholarΒ 

  71. N. Minorsky, Nonlinear Oscillations, Van Nostrand, Princeton, N.J., 1962.

    Google ScholarΒ 

  72. N. Minorsky, Introduction to Nonlinear Mechanics, Edwards, Ann Arbor, Mich., 1947.

    Google ScholarΒ 

  73. N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear Mechanics (free transl. by S. Lefschetz), Princeton Univ. Press, Princeton, N.J., 1947.

    Google ScholarΒ 

  74. R. A. Struble, Nonlinear Differential Equations, McGraw-Hill, New York, 1962.

    Google ScholarΒ 

  75. S. Ziemba, Vibration Analysis, Part III. Nonlinear Vibrations, PWN, Warsaw, 1970.

    Google ScholarΒ 

  76. W. Hurewicz, Lectures on Ordinary Differential Equations, Wiley, New York, 1958.

    Google ScholarΒ 

  77. J. Higgins, Ind. Eng. Chem. 59 (1967) 18.

    CASΒ  Google ScholarΒ 

  78. D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics, Plenum Press, New York, 1969.

    Google ScholarΒ 

  79. K. J. Vetter, Electrochemical Kinetics, Academic, New York, 1967.

    Google ScholarΒ 

  80. M. N. Hull and F. A. Lewis, Trans. Faraday Soc. 64 (1968) 2472.

    CASΒ  Google ScholarΒ 

  81. K. F. Bonhoeffer, Z. Elektrochem. 52 (1948) 24.

    CASΒ  Google ScholarΒ 

  82. J. Lotka, J. Am. Chem. Soc. 42 (1920) 1595.

    CASΒ  Google ScholarΒ 

  83. D. A. Frank-Kamenetskii and J. E. Salnikov, Zh. Fiz. Khim. 17 (1943) 79.

    CASΒ  Google ScholarΒ 

  84. G. Nicolis, Stability and dissipative structures in open systems, in Advances in Chemical Physics, Vol. 19, Wiley-Interscience, New York, 1971.

    Google ScholarΒ 

  85. S. Szpak and E. R. Rice, J. Chem. Phys. 52 (1970) 6336.

    CASΒ  Google ScholarΒ 

  86. R. Rosebrugh and W. Lash-Miller, J. Phys. Chem. 14 (1910) 816.

    Google ScholarΒ 

  87. J. Wojtowicz, Prace Naukowe Politechniki Warszawskiej, Chemia No. 4 (1969) (Warsaw Technical University Publications, Warsaw).

    Google ScholarΒ 

  88. J. Wojtowicz and B. E. Conway, J. Chem. Phys. 52 (1970) 1407.

    CASΒ  Google ScholarΒ 

  89. H. Wroblowa, J. O’M. Bockris, and B. Piersma, J. Electroanal. Chem. 6 (1963) 401.

    CASΒ  Google ScholarΒ 

  90. J. Wojtowicz, D. Gilroy, and B. E. Conway, Electrochim. Acta 14 (1969) 1119.

    CASΒ  Google ScholarΒ 

  91. O. Kadern and A. Katchalsky, Trans. Faraday Soc. 59 (1963) 1918.

    Google ScholarΒ 

  92. Yu. A. Cizmadzev, Boklady Akad. Nauk SSSR 133 (1960) 1136.

    Google ScholarΒ 

  93. J. Osterwald and H. G. Feller, J. Electrochem. Soc. 107 (1960) 473.

    CASΒ  Google ScholarΒ 

  94. J. Osterwald, Electrochim. Acta 7 (1962) 523.

    CASΒ  Google ScholarΒ 

  95. R. De Levie and A. A. Husovsky, J. Electroanal. Chem. 22 (1969) 29.

    Google ScholarΒ 

  96. R. De Levie and L. Pospisil, J. Electroanal. Chem. 22 (1969) 277.

    Google ScholarΒ 

  97. H. Moreira and R. De Levie, J. Electroanal. Chem. 29 (1971) 353.

    CASΒ  Google ScholarΒ 

  98. H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, Princeton, N.J., 1959, p. 187.

    Google ScholarΒ 

  99. W. H. Middendorf, Analysis of Electric Circuits, Wiley, New York, 1956, p. 212.

    Google ScholarΒ 

  100. W. Schwenk, Electrochim. Acta 5 (1961) 301.

    CASΒ  Google ScholarΒ 

  101. R. B. Llewellyn, Proc. IRE 21 (1933) 1532.

    Google ScholarΒ 

  102. R. A. Spangler and F. M. Snell, J. Theoret. Biol 16 (1967) 366.

    CASΒ  Google ScholarΒ 

  103. F. Gutmann, J. Electrochem. Soc. 112 (1965) 94.

    CASΒ  Google ScholarΒ 

  104. I. Epelboin, Compt. Rend. 234 (1952) 950.

    CASΒ  Google ScholarΒ 

  105. H. Genscher and W. Mehl, Z. Elektrochem. 59 (1955) 1049.

    Google ScholarΒ 

  106. D. Schuhmann, J. chim. phys. 60 (1963) 359.

    CASΒ  Google ScholarΒ 

  107. D. Schuhmann, J. Electroanal. Chem. 17 (1968) 45.

    CASΒ  Google ScholarΒ 

  108. R. Tamamushi, J. Electroanal. Chem. 11 (1966) 65.

    CASΒ  Google ScholarΒ 

  109. R. Tamamushi and K. Matsuda, J. Electroanal. Chem. 12 (1966) 436.

    CASΒ  Google ScholarΒ 

  110. B. Jakuszewski and M. Turowska, Rocz. Chemii 43 (1969) 2003.

    CASΒ  Google ScholarΒ 

  111. N. Tanaka and R. Tamamushi, in Proc. 1st Australian Conf. on Electrochemistry, Pergamon, Oxford, 1964, p. 248.

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Wojtowicz, J. (1972). Oscillatory Behavior in Electrochemical Systems. In: Bockris, J.O., Conway, B.E. (eds) Modern Aspects of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7440-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7440-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7442-2

  • Online ISBN: 978-1-4615-7440-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics