Skip to main content

Chemical Hydrology

  • Chapter
Karst Hydrology

Abstract

Karst aquifers, more than all others, are dynamic systems. There is a continuous chemical interaction between the moving groundwater and the carbonate wall rock. As a result of this, the internal porosity distribution and flow regimes of carbonate aquifers are continuously changing on a time scale of tens of thousands to millions of years. This phenomenon can be contrasted with silicate rock aquifers where there is indeed an influence of the aquifer wall rock on the chemistry of the moving groundwater, but there is relatively little change or at best an extremely slow change in permeability of the aquifer itself. Carbonate aquifers compensate for this problem by the accessibility with which the various types of water in the flow system can be sampled. Rather than simply depending on a well bore penetrating what one hopes is a representative location in the flow field, the direct exploration of the cave systems permits the analysis of many different inputs. It is therefore possible to understand the chemical evolution of the groundwater in carbonate aquifers in considerable detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berner, R. A., and J. W. Morse, 1974, Dissolution kinetics of calcium carbonate in sea water, IV, Theory of calcite dissolution, Am. Jour. Sci. 274: 108–134.

    Article  Google Scholar 

  • Buhmann, D., and W. Dreybrodt, 1985a, The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas, 1: Open system, Chem. Geology 48: 189–211.

    Article  Google Scholar 

  • Buhmann, D., and W. Dreybrodt, 1985b, The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas, 2: Closed systems, Chem. Geology 53: 109–124.

    Article  Google Scholar 

  • Busenberg, E., and L. N. Plummer, 1982, The kinetics of dissolution of dolomite in CO2—H2O systems at 1.5 to 65° C and 0 to 1 atm PCpz, Am. Jour. Sci. 282: 45–78.

    Article  Google Scholar 

  • Clark, W. C., 1982, Carbon Dioxide Review: 1982, New York: Oxford University Press, 469 p.

    Google Scholar 

  • Drake, J. J., and R. S. Harmon, 1973, Hydrochemical environments of carbonate terrains, Water Resources Research 9: 949–957.

    Article  Google Scholar 

  • George, A. I., 1974, Preliminary index of gypsum spelothems in the caves of Kentucky, Indiana, and Tennessee, in Proceedings of the 4th Conference on Karst Geology and Hydrology, H. W. Rauch and E. Werner, eds., Morgantown, W. Va.: West Virginia Geological Survey, pp. 169–177.

    Google Scholar 

  • Harmon, R. S., J. W. Hess, R. W. Jacobson, E. T. Shuster, C. Haygood, and W. B. White, 1972, Chemistry of carbonate denudation in North America, Cave Research Group Great Britain Trans. 14 (2): 96–103.

    Google Scholar 

  • Herman, J. S., 1982, The dissolution kinetics of calcite, dolomite, and dolomitic rocks in the CO2-water system, The Pennsylvania State University, Ph.D. dissertation, 214 p.

    Google Scholar 

  • Herman, J. S., and W. B. White, 1985, Dissolution kinetics of dolomite: effects of lithology and fluid flow velocity, Geochim. et Cosmochim. Acta 49: 2017–2026.

    Article  Google Scholar 

  • Hess, J. W., Jr., 1974, Hydrochemical investigations of the central Kentucky karst aquifer system, The Pennsylvania State University, Ph.D. dissertation, 218 p.

    Google Scholar 

  • Hill, C. A., 1981, Speleogenesis of Carlsbad Caverns and other caves of the Guadalupe Mountains, Proc. 8th Internat. Congress Speleol. (Bowling Green, Ky.) 1: 143–144.

    Google Scholar 

  • Jacobson, R. L., and D. Langmuir, 1970, The chemical history of some spring waters in carbonate rocks, Ground Water 8 (3): 5–9.

    Article  Google Scholar 

  • Kern, D. M., 1960, The hydration of carbon dioxide, Jour. Chem. Ed. 37: 14–23.

    Article  Google Scholar 

  • Loewenthal, R. E., and G. v. R. Marais, 1976, Carbonate Chemistry of Aquatic Systems: Theory and Applications, Ann Arbor, Mich.: Ann Arbor Science Pub., 433 p.

    Google Scholar 

  • Miotke, F. -D., 1972, Die Messung des CO2-Gehaltes der Bodenluft mit dem Dräger-Gerät und die beschleunigte Kalklösung durch höhere Flieszgeschwindigkeiten, Zeitschr. Geomorphologie 16: 93–102.

    Google Scholar 

  • Miotke, F. -D., 1974, Carbon dioxide and the soil atmosphere, Karst u. Höhlenkunde, Abh. Ser. A, No. 9, pp. 1–49.

    Google Scholar 

  • Miotke, F. -D., 1975, Der Karst im zentralen Kentucky bei Mammoth Cave, Jahrbuch der Geographischen Gesellschaft zu Hannover für 1973, 360 p.

    Google Scholar 

  • Nordstrom, D. K., and J. L. Munoz, 1985, Geochemical Thermodynamics, Menlo Park, Calif.: Benjamin/Cummings, 477 p.

    Google Scholar 

  • Nordstrom, D. K., L. N. Plummer, T. M. L. Wigley, T. J. Wolery, J. W. Ball, E. A. Jenne, R. L. Bassett, D. A. Crerar, T. M. Florence, B. Fritz, M. Hoffman, G. R. Holdren, Jr., G. M. Lafon, S. V. Mattigod, R. E. McDuff, F. Morel, M. M. Reddy, G. Sposito, and J. Thrailkill, 1979, A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in Chemical Modeling in Aqueous Systems, E. A. Jenne, ed., Washington, D.C.: American Chemical Society Symposium Ser. 93, pp. 857–892.

    Chapter  Google Scholar 

  • Plummer, L. N., and E. Busenberg, 1982, The solubilities of calcite, aragonite, and vaterite in CO2–H2O solutions between 0 and 90° C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O, Geochim. et Cosmochim. Acta 46: 1011–1040.

    Article  Google Scholar 

  • Plummer, L. N., T. M. L. Wigley, and D. L. Parkhurst, 1978a, The kinetics of calcite dissolution in CO2-water systems at 5 to 60° C and 0.0 to 1.0 atm CO2, Am. Jour. Sci. 278: 179–216.

    Article  Google Scholar 

  • Plummer, L. N., B. F. Jones, and A. H. Truesdell, 1978b, WATEQF—A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters, U.S. Geol. Survey Water Resources Inv. 76–13, 63p.

    Google Scholar 

  • Pohl, E. R., and W. B. White, 1965, Sulfate minerals: their origin in the central Kentucky karst, Am. Mineralogist 50: 1461–1465.

    Google Scholar 

  • Quinlan, J. F., 1986, Recommended procedure for evaluating the effects of spills of hazardous materials on ground water quality in karst terranes, in Proceedings of the Environmental Problems in Karst Terranes and Their Solutions Conference, Dublin, Ohio: National Water Well Association, pp. 183–196.

    Google Scholar 

  • Quinlan, J. F., and D. R. Rowe, 1977, Hydrology and water quality in the central Kentucky karst: Phase I, Kentucky Univ. Water Resources Inst. Research Rept. No. 101, 93 p.

    Google Scholar 

  • Quinlan, J. F., and D. R. Rowe, 1978, Hydrology and water quality in the central Kentucky karst: Phase II, Part A: Preliminary summary of the hydrogeology of the Mill Hole sub-basin of the Turnhole Spring groundwater basin, Kentucky Univ. Water Resources Inst. Research Rept. No. 109, 42 p.

    Google Scholar 

  • Reddy, M. M., L. N. Plummer, and E. Busenberg, 1981, Crystal growth of calcite from calcium bicarbonate solutions at constant Pco, and 25° C: a test of a calcite dissolution model, Geochim. et Cosmochim. Acta 45: 1281–1289.

    Article  Google Scholar 

  • Stroud, F. B., J. Gilbert, G. W. Powell, N. C. Crawford, M. J. Rigatti, and P. C. Johnston, 1986, U.S. Environmental Protection Agency response to toxic fumes and contaminated ground water in karst topography: Bowling Green, Kentucky, in Proceedings of the Environmental Problems in Karst Terranes and Their Solutions Conference, Dublin, Ohio: National Water Well Association, pp. 197–226.

    Google Scholar 

  • Stumm, W., and J. J. Morgan, 1981, Aquatic Chemistry, 2nd edition, New York: John Wiley & Sons, 780 p.

    Google Scholar 

  • Thrailkill, J., 1968, Chemical and hydrologic factors in the excavation of limestone caves, Geol. Soc. America Bull. 79: 19–46.

    Article  Google Scholar 

  • Thrailkill, J., 1972, Carbonate chemistry of aquifer and stream water in Kentucky, Jour. Hydrology 16: 93–104.

    Article  Google Scholar 

  • Thrailkill, J., 1976, Carbonate equilibria in karst waters, in Karst Hydrology and Water Resources, V. Yevjevich, ed., Fort Collins, Colo.: Water Resources Pub., pp. 34–1–34–27.

    Google Scholar 

  • Thrailkill, J., and T. L. Robl, 1981, Carbonate geochemistry of vadose water recharging limestone aquifers, Jour. Hydrology 54: 195–208.

    Article  Google Scholar 

  • Wigley, T. M. L., 1977, WATSPEC: A computer program for determining the equilibrium speciation of aqueous solutions, British Geomorph. Research Group Tech. Bull 20, 48 p.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hess, J.W., White, W.B. (1989). Chemical Hydrology. In: White, W.B., White, E.L. (eds) Karst Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7317-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7317-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7319-7

  • Online ISBN: 978-1-4615-7317-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics