Skip to main content

Insect Photoperiodism

  • Chapter
Biological Rhythms

Abstract

Insects, like several other major groups of organisms (flowering plants, birds, and mammals, for example), may use the number of hours of day or night to regulate seasonal cycles of activity, morphology, reproduction, or development. Such regulation is called photoperiodic induction. The use of day length (or photoperiod) to provide information on calendar time is advantageous to the organism because this geophysical variable is reliable, is relatively “noise-free,” and changes with a mathematical accuracy with both season and latitude. At least in natural diel cycles, photoperiodic induction involves a response to the number of hours of light (or dark) per day, which the organism apparently compares with an inbuilt standard, or critical day length (or night length). It differs, therefore, from a cir-cannual rhythm, which is known in at least one insect, the beetle Anthrenus verbasci (Blake, 1959), and which comprises an endogenous biological rhythm with a near annual periodicity entrained by the seasonal changes in day length (see Chapter 21).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adkisson, P. L. Action of the photoperiod in controlling insect diapause. American Naturalist, 1964, 98, 357–374.

    Article  Google Scholar 

  • Adkisson, P. L. Internal clocks and insect diapause. Science (Washington), 1966, 154, 234–241.

    Article  Google Scholar 

  • Atwal, A. S. Influence of temperature, photoperiod, and food on the speed of development, longevity, fecundity, and other qualities of the diamond-back moth Plutella maculipennis (Curtis) (Tineidae, Lepidoptera). Australian Journal of Zoology, 1955, 3, 185–221.

    Article  Google Scholar 

  • Baker, F. C. The effect of photoperiodism on resting, treehole, mosquito larvae. Canadian Entomologist, 1935, 67, 149–153.

    Article  Google Scholar 

  • Barry, B. D., and Adkisson, P. L. Certain aspects of the genetic factors involved in the control of larval diapause of the pink bollworm. Annals of the Entomological Society of America, 1966, 59, 122–125.

    Google Scholar 

  • Beach, R. F. The required day number and timely induction of diapause in geographic strains of the mosquito Aëdes atropalpus. Journal of Insect Physiology, 1978, 24, 449–455.

    Article  Google Scholar 

  • Beach, R. F., and Craig, G. B., Jr. Night length measurements by the circadian clock controlling diapause induction in the mosquito Aëdes atropalpus. Journal of Insect Physiology, 1977, 23, 865–870.

    Article  Google Scholar 

  • Beck, S. D. Photoperiodic induction of diapause in an insect. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1962a, 122, 1–12.

    Article  Google Scholar 

  • Beck, S. D. Temperature effects on insects: Relation to periodism. Proceedings of the North Central Branch, Entomological Society of America, 1962b, 17, 18–19.

    Google Scholar 

  • Beck, S. D. Insect Photoperiodism. New York: Academic Press, 1968.

    Google Scholar 

  • Beck, S. D. Photoperiodic determination of insect development and diapause. Journal of Comparative Physiology, 1974, 90, 275–295; 1974b, 90, 297–310;

    Article  Google Scholar 

  • Beck, S. D. Photoperiodic determination of insect development and diapause. Journal of Comparative Physiology, 1975, 103, 227–245.

    Article  Google Scholar 

  • Beck, S. D., and Hanec, W. Diapause in the European corn borer, Pyrausta nubilalis (Hubn). Journal of Insect Physiology, 1960, 4, 304–318.

    Article  Google Scholar 

  • Beck, S. D., Cloutier, E. J., and McLeod, D. G. R. Photoperiod and insect development. Proceedings of the 23rd Biological Colloquium, Oregon State University, 1962, pp. 43–64.

    Google Scholar 

  • Bell, R. A., and Adkisson, P. L. Photoperiodic reversal of diapause induction in an insect. Science (Washington), 1964, 144, 1149–1151.

    Article  Google Scholar 

  • Blake, G. Control of diapause by an “internal clock” in Anthrenus verbasci (L.) (Col., Dermestidae). Nature (London), 1959, 183, 126–127.

    Article  Google Scholar 

  • Bowen, M. F., and Skopik, S. D. Insect photoperiodism: The “T-experiment” as evidence for an hour-glass mechanism. Science (Washington), 1976, 192, 59–60.

    Article  Google Scholar 

  • Bradshaw, W. E. Major environmental factors inducing the termination of larval diapause in Chaoborus amer-icanus Johannsen (Diptera: Culicidae). Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1969, 136, 2–8.

    Article  Google Scholar 

  • Bradshaw, W. E. Geography of photoperiodic response in diapausing mosquito. Nature (London), 1976, 262, 384–386.

    Article  Google Scholar 

  • Bünning, E. Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Bericht der Deutschen botanischen Gesellschaft, 1936, 54, 590–607.

    Google Scholar 

  • Bünning, E. Common features of photoperiodism in plants and animals. Photochemistry and Photobiology, 1969, 9, 219–228.

    Article  Google Scholar 

  • Bünning, E., and Joerrens, G. Tagesperiodische antagonistische Schwankungen der Blau-Violett und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapause-Induktion bei Pieris brassicae. Zeitschrift für Naturforschung, 1960, 15, 205–213.

    Google Scholar 

  • Clay, M. E., and Venard, C. E. Larval diapause in the mosquito, Aëdes triseriatus: Effect of diet and temperature on photoperiodic induction. Journal of Insect Physiology, 1972, 18, 1441–1446.

    Article  Google Scholar 

  • Danilevskii, A. S. Photoperiodism and Seasonal Development of Insects (1st ed.). Edinburgh & London: Oliver and Boyd, 1965.

    Google Scholar 

  • Denlinger, D. L. Induction and termination of pupal diapause in Sarcophaga (Diptera; Sarcophagidae). Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1972, 142, 11–24.

    Article  Google Scholar 

  • Dickson, R. C. Factors governing the induction of diapause in the oriental fruit moth. Annals Entomological Society of America, 1949, 42, 511–537.

    Google Scholar 

  • Dingle, H. The experimental analysis of migration and life-history strategies in insects. In L. Barton Browne (Ed.), Experimental Analysis of Insect Behaviour. Berlin: Springer-Verlag, 1974, pp. 329–342.

    Chapter  Google Scholar 

  • Dumortier, B., and Brunnarius, J. L’information thermopcriodique et l’induction de la diapause chez Pieris brassicae L. Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences, Paris D., 1977, 284, 957–960.

    Google Scholar 

  • Fernandez, A. T., and Randolph, N. M. The susceptibility of houseflies reared under various photoperiods to insecticide residues. Journal of Economic Entomology, 1966, 59, 37–39.

    Google Scholar 

  • Fukuda, S. Déterminisme hormonale de la diapause chez le ver de soie. Bulletin de la Société Zoologique de France, 1963, 88, 151–179.

    Google Scholar 

  • Geispitz, K. F. The mechanisms of acceptance of light stimuli in the photoperiodic reaction of Lepidoptera larvae. Zoologicheskii Zhurnal SSSR, 1957, 36, 548–560.

    Google Scholar 

  • Geldioy, S. Control of adult reproductive diapause in Anacridium aegyptium L. by direct action of photoperiod on the cerebral neurosecretory cells. Proceedings of the XIII International Congress Entomology, Moscow, 1971, 1968, 379–380.

    Google Scholar 

  • Gibbs, D. Reversal of pupal diapause in Sarcophaga argyrostoma by temperature shifts after puparium formation. Journal of Insect Physiology, 1975, 21, 1179–1186.

    Article  Google Scholar 

  • Goryshin, N. I. The relation between light and temperature factors in the photoperiodic reaction in insects. Entomologicheskoe Obozrenie, 1955, 34, 9–14.

    Google Scholar 

  • Goryshin, N. I. The influence of diurnal light and temperature rhythms on diapause in Lepidoptera. Entomologicheskoe Obozrenie, 1964, 43, 43–46.

    Google Scholar 

  • Goryshin, N. I., and Kozlova, R. N. Thermoperiodism as a factor in the development of insects. Zhurnal Obshchei Biologii, 1967, 28, 278–288.

    Google Scholar 

  • Goryshin, N. I., and Tyshchenko, V. P. Thermostability of the process of perception of photoperiodic information in the moth Acronycta rumicis (Lepidoptera, Noctuidae). Doklady Akademii Nauk SSSR, 1970, 193, 458–461.

    Google Scholar 

  • Hamner, W. M. Hour-glass dusk and rhythmic dawn timers control diapause in the codling moth. Journal of Insect Physiology, 1969, 15, 1499–1504.

    Article  Google Scholar 

  • Hillman, W. S. Endogenous circadian rhythms and the response of Lemna purpusilla to skeleton photoperiods. American Naturalist, 1964, 98, 323–328.

    Article  Google Scholar 

  • Hillman, W. S. Non-circadian photoperiodic timing in the aphid Megoura. Nature (London), 1973, 242, 128–129.

    Article  Google Scholar 

  • Hoelscher, C. E., and Vinson, S. B. The sex ratio of a hymenopterous parasitoid, Campoletisperdistinctus, as affected by photoperiod, mating, and temperature. Annals of the Entomological Society of America, 1971, 64, 1373–1376.

    Google Scholar 

  • Kogure, M. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. Journal of the Department of Agriculture, Kyushu University, 1933, 4, 1–93.

    Google Scholar 

  • Lees, A. D. The significance of the light and dark phases in the photoperiodic control of diapause in Metate-tranychus ulmi Koch. Annals of Applied Biology, 1953, 40, 487–497.

    Article  Google Scholar 

  • Lees, A. D. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton. I. The influence of these factors on apterous virginoparae and their progeny. Journal of Insect Physiology, 1959, 3, 92–117.

    Article  Google Scholar 

  • Lees, A. D. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae. III. Further properties of the maternal switching mechanism in apterous aphids. Journal of Insect Physiology, 1963, 9, 153–164.

    Article  Google Scholar 

  • Lees, A. D. The location of the photoperiodic receptors in the aphid Megoura viciae. Journal of Experimental Biology, 1964, 41, 119–133.

    Google Scholar 

  • Lees, A. D. Is there a circadian component in the Megoura photoperiodic clock? In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland, 1965, pp. 351–356.

    Google Scholar 

  • Lees, A. D. Photoperiodic timing mechanisms in insects. Nature (London), 1966, 210, 986–989.

    Article  Google Scholar 

  • Lees, A. D. Photoperiodism in insects. In A. C. Giese (Ed.), Photophysiology. Vol. 4. New York: Academic Press, 1968, pp. 47–137.

    Google Scholar 

  • Lees, A. D. Insect clocks and timers. Inaugural lecture, Imperial College of Science and Technology, 1 December 1970.

    Google Scholar 

  • Lees, A. D. The relevance of action spectra in the study of insect photoperiodism. In M. Menaker (Ed.), Bio-chronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 372–380.

    Google Scholar 

  • Lees, A. D. Photoperiodic time measurement in the aphid Megoura viciae. Journal of Insect Physiology, 1973, 19, 2279–2316.

    Article  Google Scholar 

  • MacLeod, E. G. Experimental induction and elimination of adult diapause and autumnal coloration in Chry-sopa carnea (Neuroptera). Journal of Insect Physiology, 1967, 13, 1343–1349.

    Article  Google Scholar 

  • Marcovitch, S. Plant lice and light exposure. Science (Washington), 1923, 58, 537–538.

    Article  Google Scholar 

  • Masaki, S. The response of a “short-day” insect to certain external factors: The induction of diapause in Abraxas miranda Butl. Japanese Journal of Applied Entomology and Zoology, 1958, 2, 285–294.

    Article  Google Scholar 

  • Menaker, M., and Gross, G. Effects of fluctuating temperature on diapause induction in the pink bollworm. Journal of Insect Physiology, 1965, 11, 911–914.

    Article  Google Scholar 

  • Minis, D. H. Parallel peculiarities in the entrainment of a circadian rhythm and photoperiodic induction in the pink bollworm (Pectinophora gossypiella). In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland, 1965, pp. 333–343.

    Google Scholar 

  • Müller, H. J. Uber den Einfluss der Photoperiode auf Diapause und Körpergrösse der Delphacide Stenocranus minutus Fabr. Zoologischer Anzeiger, 1958, 160, 294–311.

    Google Scholar 

  • Müller, H. J. Formen der Dormanz bei Insekten. Nova Acta Leopold, 1970, 35, 7–27.

    Google Scholar 

  • Norris, K. H., Howell, F., Hayes, D. K., Adler, V. E., Sullivan, W. N., and Schechter, M. S. The action spectrum for breaking diapause in the codling moth, Laspeyresia pomonella (L.) and the oak silkworm, Antheraea pernyi Guer. Proceedings of the National Academy of Sciences, USA, 1969, 63, 1120–1127.

    Article  Google Scholar 

  • Norris, M. J. The influence of daylength on imaginai diapause in the red locust, Nomadacris septemfasciata. Entomologia experimentalis et applicata, 1959, 2, 154–168.

    Article  Google Scholar 

  • Novak, V. J. A. Insect Hormones (3rd ed.). London: Methuen, 1966.

    Google Scholar 

  • Paris, O. H., and Jenner, C. E. Photoperiodic control of diapause in the pitcher plant midge, Metriocnemus knabi. In R. B. Withrow (Ed.), Photoperiodism and Related Phenomena in Plants and Animals. Washington, D.C.: American Association for the Advancement of Science, 1959, pp. 601–624.

    Google Scholar 

  • Perez, Y., Verdier, M., and Pener, M. P. The effect of photoperiod on male sexual behaviour in a north adriatic strain of the migratory locust. Entomologia Experimentalis et Applicata, 1971, 14, 245–250.

    Article  Google Scholar 

  • Peterson, B. M., and Hamner, W. M. Photoperiodic control of diapause in the codling moth. Journal of Insect Physiology, 1968, 14, 519–528.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia Quantitative Biology, 1960, 25, 159–184.

    Article  Google Scholar 

  • Pittendrigh, C. S. On temporal organization in living systems. Harvey Lectures Series, 1961, 56, 93–125.

    Google Scholar 

  • Pittendrigh, C. S. The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Zeitschrift für Pflanzenphysiologie, 1966, 54, 275–307.

    Google Scholar 

  • Pittendrigh, C.S. Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proceedings of the National Academy of Sciences, U.S.A., 1972, 69, 2734–2737.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian oscillations in cells and the circadian organization of multicellular systems. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences Third Study Program. Cambridge, Mass.: MIT Press, 1974, pp. 437–458.

    Google Scholar 

  • Pittendrigh, C. S., and Minis, D. H. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. American Naturalist, 1964, 98, 261–294.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Minis, D. H. The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 212–250.

    Google Scholar 

  • Pittendrigh, C. S., and Minis, D. H. Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA, 1972, 69, 1537–1539.

    Article  Google Scholar 

  • Pittendrigh, C. S., Eichhorn, J. H., Minis, D. H., and Bruce, V. G. Circadian systems. VI. Photoperiodic time measurement in Pectinophora gossypiella. Proceedings of the National Academy of Sciences, USA, 1970, 66, 758–764.

    Article  Google Scholar 

  • Ring, R. A. Maternal induction of diapause in the larvae of Lucilia caesar L. (Diptera, Calliphoridae). Journal of Experimental Biology, 1967, 46, 123–136.

    Google Scholar 

  • Ryan, R. B. Maternal influence on diapause in a parasitic insect, Coeloides brunneri Vier. (Hymenoptera: Braconidae). Journal of Insect Physiology, 1965, 11, 1331–1336.

    Article  Google Scholar 

  • Saunders, D. S. Larval diapause induced by a maternally-operating photoperiod. Nature (London), 1965, 206, 739–740.

    Article  Google Scholar 

  • Saunders, D. S. Larval diapause of maternal origin. II. The effect of photoperiod and temperature on Nasonia vitripennis. Journal of Insect Physiology, 1966a, 12, 569–581.

    Article  Google Scholar 

  • Saunders, D. S. Larval diapause of maternal origin. III. The effect of host shortage on Nasonia vitripennis. Journal of Insect Physiology, 1966b, 12, 899–908.

    Article  Google Scholar 

  • Saunders, D. S. Time measurement in insect photoperiodism: Reversal of a photoperiodic effect by chilling. Science (Washington), 1967, 156, 1126–1127.

    Article  Google Scholar 

  • Saunders, D. S. Photoperiodism and time measurement in the parasitic wasp, Nasonia vitripennis. Journal of Insect Physiology, 1968, 14, 433–450.

    Article  Google Scholar 

  • Saunders, D. S. Circadian clock in insect photoperiodism. Science (Washington), 1970, 168, 601–603.

    Article  Google Scholar 

  • Saunders, D. S. The temperature-compensated photoperiodic clock “programming” development and pupal diapause in the flesh-fly, Sarcophaga argyrostoma. Journal of Insect Physiology, 1971, 17, 801–812.

    Article  Google Scholar 

  • Saunders, D. S. Circadian control of larval growth rate in Sarcophaga argyrostoma. Proceedings of the National Academy of Sciences, USA, 1972, 69, 2738–2740.

    Article  Google Scholar 

  • Saunders, D. S. The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma. Journal of Insect Physiology, 1973a, 19, 1941–1954.

    Article  Google Scholar 

  • Saunders, D. S. Thermoperiodic control of diapause in an insect: Theory of internal coincidence. Science (Washington), 1973b, 181, 358–360.

    Article  Google Scholar 

  • Saunders, D. S. Evidence for “dawn” and “dusk” oscillators in the Nasonia photoperiodic clock. Journal of Insect Physiology, 1974, 20, 77–88.

    Article  Google Scholar 

  • Saunders, D. S. Manipulation of the length of the sensitive period, and the induction of pupal diapause in the flesh-fly, Sarcophaga argyrostoma. Journal of Entomology, Series A, 1975a, 50, 107–118.

    Article  Google Scholar 

  • Saunders, D. S. “Skeleton” photoperiods and the control of diapause and development in the flesh-fly, Sarcophaga argyrostoma. Journal of Comparative Physiology, 1975b, 97, 97–112.

    Article  Google Scholar 

  • Saunders, D. S. Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature (London), 1975c, 253, 732–734.

    Article  Google Scholar 

  • Saunders, D. S. The circadian eclosion rhythm in Sarcophaga argyrostoma: Some comparisons with the photoperiodic “clock.” Journal of Comparative Physiology, 1976a, 110, 111–133.

    Google Scholar 

  • Saunders, D. S. Insect Clocks. New York: Pergamon Press, 1976b.

    Google Scholar 

  • Saunders, D. S. An experimental and theoretical analysis of photoperiodic induction in the flesh-fly, Sarcophaga argyrostoma. Journal of Comparative Physiology, 1978a, 124, 75–95.

    Article  Google Scholar 

  • Saunders, D. S. Internal and external coincidence and the apparent diversity of photoperiodic clocks in the insects. Journal of Comparative Physiology, 1978b, 127, 197–207.

    Article  Google Scholar 

  • Skopik, S. D., and Bowen, M. F. Insect photoperiodism: An hour-glass measures photoperiodic time in Ostrinia nubilalis. Journal of Comparative Physiology, 1976, 111, 249–259.

    Article  Google Scholar 

  • Steel, C. G. H., and Lees, A. D. The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. Journal of Experimental Biology, 1977, 67, 117–135.

    Google Scholar 

  • Tanaka, Y. Studies on hibernation with special reference to photoperiodicity and the breeding of the Chinese Tussar silkworm. V. Journal of Sericultural Science (Tokyo), 1951, 20, 132–138.

    Google Scholar 

  • Tauber, M. J., and Tauber, C. A. Quantitative response to daylength during diapause in insects. Nature (London), 1973, 224, 296–297.

    Article  Google Scholar 

  • Thiele, H. U. Measurement of day-length as a basis for photoperiodism and annual periodicity in the carabid beetle Pterostichus nigrita F. Oecologia (Berlin), 1977, 30, 331–348.

    Article  Google Scholar 

  • Truman, J. W. The role of the brain in the ecdysis rhythm of silkmoths: Comparison with the photoperiodic termination of diapause. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 483–504.

    Google Scholar 

  • Tyshchenko, V. P. Two-oscillatory model of the physiological mechanism of insect photoperiodic reaction. Zhurnal Obshchei Biologii, 1966, 27, 209–222.

    Google Scholar 

  • Tyshchenko, V. P., Goryshin, N. I., and Azaryan, A. G. The role of circadian processes in insect photoperiodism. Zhurnal Obshchei Biologii, 1972, 33, 21–31.

    Google Scholar 

  • Vinogradova, E. B., and Zinovjeva, K. B. Maternal induction of larval diapause in the blowfly, Calliphora vicina. Journal of Insect Physiology, 1972, 18, 2401–2409.

    Article  Google Scholar 

  • Way, M. J., and Hopkins, B. A. The influence of photoperiod and temperature on the induction of diapause in Diataraxia oleracea L. Journal of Experimental Biology, 1950, 27, 365–376.

    Google Scholar 

  • Went, F. W. The periodic aspect of photoperiodism and thermoperiodicity. In R. B. Withrow (Ed.), Photoperiodism and Related Phenomena in Plants and Animals. Washington, D.C.: American Association for the Advancement of Science, 1959, pp. 551–564.

    Google Scholar 

  • Wilde, J. de. Perception of the photoperiod by the Colorado potato beetle, (Leptinotarsa decemlineata Say.). Proceedings of the Xth International Congress of Entomology, Montreal, 1956, 1958, 2, 213–218.

    Google Scholar 

  • Wilde, J. de. Photoperiodism in insects and mites. Annual Reviews of Entomology, 1962, 7, 1–26.

    Article  Google Scholar 

  • Wilde, J. de, and Bonga, H. Observations on threshold intensity and sensitivity of different wavelengths of photoperiodic response in the Colorado beetle (Leptinotarsa decemlineata Say.). Entomologia Experimentalis et Applicata, 1958, 1, 301–307.

    Article  Google Scholar 

  • Wilde, J. de, Duintjer, C. S., and Mook, L. Physiology of diapause in the adult Colorado beetle (Leptinotarsa decemlineata): The photoperiod as a controlling factor. Journal of Insect Physiology, 1959, 3, 75–85.

    Article  Google Scholar 

  • Williams, C. M. Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1952, 103, 120–138.

    Article  Google Scholar 

  • Williams, C.M. Photoperiodism and the endocrine aspects of insect diapause. Symposia of the Society for Experimental Biology, Cambridge, 1969, 23, 285–300.

    Google Scholar 

  • Williams, C. M., and Adkisson, P. L. Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1964, 127, 511–525.

    Article  Google Scholar 

  • Williams, C.M., Adkisson, P. L., and Walcott, C Physiology of insect diapause. XV. The transmission of photoperiodic signals to the brain of the oak silkworm, Antheraea pernyi. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 1965, 128, 497–507.

    Article  Google Scholar 

  • Winfree, A. T. Integrated view of resetting a circadian clock. Journal of Theoretical Biology, 1970, 28, 327–374.

    Article  Google Scholar 

  • Winfree, A. T. Slow dark-adaptation in Drosophila’s circadian clock. Journal of Comparative Physiology, 1972, 77, 418–434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Saunders, D.S. (1981). Insect Photoperiodism. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics