Skip to main content

Morphine Accelerates the Progression of Sepsis in an Experimental Sepsis Model

  • Chapter
Drugs of Abuse, Immunomodulation, and Aids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 437))

Abstract

The idea that exogenous opiates can affect immune function is not entirely new. Historically as early as 1889 the effect of opium on leukocyte phagocytosis was described in a guinea pig model (1). More recently, evidence supporting the role of opiates in suppressing a variety of immunological end points in opiate addicts was reported by Louria et al. (2). The opioid induced modulation of immune function has been implicated in reduced host resistance against invading pathogens. Several key functions such as: lymphocyte prolifera- tive response to mitogens (3), T cell rosette formation (4) and the total number of circulating lymphocytes (5) have all been shown to be reduced in heroin addicts. In animal models morphine treatment has been found to increase mortality rates in experimentally infected mice (6, 7). Similarly, in animal models, lymphocyte proliferative responses (8), NK cell ytotoxicity activity (9, 10) antibody and serum hemolysin formation (11) and the phago- cytic and killing properties of peripheral blood mononuclear leukocytes (6) are all attenu- ated after in vivo chronic morphine exposure. While the mechanisms responsible for morphine induced changes in the immune system are not completely understood, they may be directly mediated through opiate receptors present on lymphocytes (12, 13), indirectly through opiate receptors present in the central nervous system, or by activating the hypotha- lamic—pituitary—adrenal axis (14) to release immunosuppressive glucocorticoids (15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantacuzene, J. (1898) Nouvelles recherches sur le monde de destruction des vibrions dans l’organisme. Ann. Inst. Pasteur 12: 273–300.

    Google Scholar 

  2. Louria, D.B., Hensle, T., and Rose, J. (1974) The major medical complications of heroin addiction. Ann. Int. Med. 67: 1–22.

    Google Scholar 

  3. Brown, S.M., Stimmel B., Taub, R. N., Kochwa, S., and Rosenfeld, R.E. (1974) Immunological Dysfunction in heroin addicts. Arch. Intern. Med. 134: 1001–1006.

    Article  PubMed  CAS  Google Scholar 

  4. Wybran, J., Appelboon, T., Famey, J. P. and Govaerts, A. (1979) Suggestive evidence for receptors for morphine and methionine enkephalin on normal human blood T-lymphocytes. J. Immunol. 123: 1068–1070.

    PubMed  CAS  Google Scholar 

  5. McDonough, R.J., Madden, J.J., Falek, A., Shafer, D.A., Pline, M., Gordon, D., Bokos, P., Kuehnle, J.C., and Mendelson, J. (1980) Alterations of T and Null lymphocyte frequencies in the peripheral blood of human opiate addicts. J. Immunol. 125: 2539.

    PubMed  CAS  Google Scholar 

  6. Tubaro, E., Avico, U., Santiangeli, C, Zuccaro, P., Cavallo, G., Pacifici, R., Croce, C. and Borelli, G. (1985) Morphine and methadone impact of human phagocytic physiology. Int. J. Immunopharmacol. 7: 865–874.

    Article  PubMed  CAS  Google Scholar 

  7. Chao, C.C., Sharp, B.M., Pomeroy, C., Filice, G.A., and Peterson, P.K. (1990) Lethality of morphine in mice infected with Toxoplasma gondii. J. Pharmacol. Exp. Ther 252: 605–609.

    PubMed  CAS  Google Scholar 

  8. Bryant, H.U., Yoburn, B.C., Intrissi, C.E., Bernton, E.W., Holaday, J.W. (1988) Immunosuppressive effects of chronic morphine treatment. Eur. J. Pharm. 149: 165–169.

    Article  CAS  Google Scholar 

  9. Lefkowit, S.S., and Chiang C.Y. (1975) Effects of certain abused drugs on hemolysin forming cells. Life Sci. 17: 1763–1768.

    Article  Google Scholar 

  10. Shavit, Y., Martin, F.C., Angarita, L.H., Gale, R.P. and Liebeskind, J.C. (1986) Morphine-induced suppression of natural killer cell activity is mediated by the adrenal gland. Soc. Neurosci. Abst. 12: 339.

    Google Scholar 

  11. Gungor, M., Gene, E., Sogduyu, H., Eroglu, L., and Koyuncuoglu, H. (1980) Effect of chronic administration of morphine on primary immune response in mice. Experientia (Basel) 36: 1309–1310.

    Article  CAS  Google Scholar 

  12. Sibinga, N.E.S., and Goldstein, A. (1988) Opioid peptides and opioid receptors in cells of the immune system. Ann. Rev. Immunol. 6: 219–249.

    Article  CAS  Google Scholar 

  13. Carr, D.J.J., Kim, C.-H., DeCosta, B.R., Jacobson, A.E., Rice, K.C., and Blalock, J.R. (1988) Evidence for a k-class opioid receptor on cells of the immune system. Cell. Immunol. 116: 44–51.

    Article  PubMed  CAS  Google Scholar 

  14. George, R., and Way, EL. (1955) Studies on the mechanism of pituitary-adrenal activation by morphine. Br. J. Pharm. 10: 260–264.

    CAS  Google Scholar 

  15. Bryant, H.U., Bernton, E.W., Kenner, J.R., and Holaday, J.W. (1991) Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinol. 128(6): 3253–3258.

    Article  CAS  Google Scholar 

  16. Abraham E., and Regan R.F. (1985) The effects of hemorrhage and trauma on 11-2 production. Arch.Surg. 120: 1341–1344.

    Google Scholar 

  17. Christou N.V., Meakins J.L., Gordon J., Yee J., Hassan Zahree M., Nohr C.W., Shizgal H.M., and Maclean D. (1995) The delayed hypersensitivity response and host resistance in surgical patients. Annals of Surgery. 222: 534–546.

    PubMed  CAS  Google Scholar 

  18. Lin R.Y., Astiz M.E., Saxon J.C., and Rackow E.C., (1993) Altered leukocytes immunophenotypes in septic shock. Chest. 104: 847–853.

    Article  PubMed  CAS  Google Scholar 

  19. Barke R.A., Roy S., Chapin R, and Charboneau R. (1994) The role of programmed cell death (apoptosis) in thymic involution following sepsis. Arch. Surgery 129: 1256–1262.

    Article  CAS  Google Scholar 

  20. Roy S, Chapin R, Cain K., Charboneau R., Ramakrishnan S., and Barke R.A (1997) Morphine inhibits transcriptional regulation of IL-2 synthesis in thymocytes. Cell. Immunol. 179: 1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Barke R.A., Roy S., Chapin R, and Charboneau R. (1994) Sepsis induced release of Interleukin-6 may activate the immediate early gene program through a hypothalamic-hypophyseal mechanism Surgery 116: 141–149.

    PubMed  CAS  Google Scholar 

  22. Roy S., Loh H.H., and Barke R.A (1995) Morphine Induced Supression of Thymocyte Proliferation is Mediated by Inhibition of IL-2 synthesis. Adv.Exp.Med.Biol. 373: 41–48.

    Article  PubMed  CAS  Google Scholar 

  23. Roy S., and Loh H.H. (1996) Effects of Opioids on the Immune System Neurochemical Research 21 (11): 1373–1384

    Google Scholar 

  24. Roy S., Ge B.L., Loh L.L., and Lee N.M. (1992) Characterization of 3H-Morphine binding to Interleukin-1 activated thymocytes. J. of Pharm. and Expt. Ther. 263 (2): 451–45

    CAS  Google Scholar 

  25. Wood J.J., Rodrick M.L., and O’Mahony J.B., Inadequate IL-2 production; A fundamental immunologic deficiency in patients with major burns. (1984) Ann. Surg. 200: 311–320.

    Article  PubMed  CAS  Google Scholar 

  26. Rodrick M.L., Wood, J.J., O’Mahony J.B. (1986). Mechanisms of immunosupression associated with severe nonthermal traumatic injuries in man. J.Clin.Invest. 6: 310

    CAS  Google Scholar 

  27. Woolf P.D. (1992) Hormonal Responses to Trauma. Crit. Care Med. 20: 216–226

    Article  PubMed  CAS  Google Scholar 

  28. Loyd D.A., Teich S., Rowe M.I. (1991) Serum endorphins levels in injured children. Surg. Gyn. Obstet. 172: 449–452.

    Google Scholar 

  29. Bayer, B.M., Daussin, S., Hernandez, M., Irvin, L. (1990) Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharm. 29: 369–374.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roy, S., Cain, K.J., Charboneau, R.G., Barke, R.A. (1998). Morphine Accelerates the Progression of Sepsis in an Experimental Sepsis Model. In: Friedman, H., Madden, J.J., Klein, T.W. (eds) Drugs of Abuse, Immunomodulation, and Aids. Advances in Experimental Medicine and Biology, vol 437. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5347-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5347-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7439-8

  • Online ISBN: 978-1-4615-5347-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics