Skip to main content

Channels, Coupling, and Synchronized Rhythmic Bursting Activity

  • Chapter
Analysis and Modeling of Neural Systems

Abstract

Of fundamental interest are the mechanisms by which neurons and other electrically excitable cells generate oscillatory activity and establish synchronized rhythms. Through quantitative modeling we seek to identify those biophysical factors (cell structure, ionic channels, biochemical pathways, and coupling functions) which play the most significant roles in determining cellular responses and collective behavior. From a generalist’s point of view we also seek qualitative understanding of the underlying mathematical structure of models in order to characterize the robustness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atwater, L, Carroll, P., and Li, M.-X. (1988). Electrophysiology of the pancreatic B-cell. In “Insulin Secretion” (ed B. Draznin, S. Melmed, and D. Leroith), pp. 49–58. Alan R. Liss, Inc., New York.

    Google Scholar 

  2. Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G. and Rojas E. (1980). The nature of the oscillatory behavior in electrical activity for pancreatic β-cell. J. of Horm. Metabol. Res. Suppl. 10, 100–107.

    Google Scholar 

  3. Atwater, I., Rosario, L. and Rojas E. (1983). Properties of calcium-activated potassium channels in the pancreatic β;-cell. Cell Calcium 4, 451–461.

    Article  Google Scholar 

  4. Chay, T. R. and Cook D. L. (1988). Endogenous bursting patterns in excitable cells. Math. Biosci. 90, 139–153.

    Article  MathSciNet  Google Scholar 

  5. Chay, T. R. and Kang, H. S. (1988). Role of single channel stochastic noise on bursting clusters of pancreatic β;-cells. Biophys. J. 54, 427–435.

    Article  Google Scholar 

  6. Chay, T. R. and Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190.

    Article  Google Scholar 

  7. Chay, T. R. and Lee, Y. S. (1990). Bursting-beating chaos by two functionally distinct inward current inactivations in excitable cells. In “Mathe matical Approaches to Cardiac Arrhythmias” (ed. J. Jalife). pp. 328–350. New York Academy of Sciences, New York.

    Google Scholar 

  8. Eddlestone, G. T., Gonçalves, A., Bangham, J. A., and Rojas, E. (1984) Electrical coupling between cells in islets of Langerhans in mouse J. Membrane Biol. 77, 1–14.

    Article  Google Scholar 

  9. FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.

    Article  Google Scholar 

  10. Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702.

    Article  Google Scholar 

  11. Henquin, J. C. and Meissner, H. P. (1984). Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40, 1043–1052.

    Article  Google Scholar 

  12. Keizer, J. and Magnus, G. (1989). ATP-sensitive potassium channel and bursting in the pancreatic β-cell. Biophys. J. 56, 229–242.

    Article  Google Scholar 

  13. Llinas, R. (1988). The intrinsic electrophysiological properties on mammalian neurons: insights into central nervous system function. Science 242, 1654–1664.

    Article  Google Scholar 

  14. Meda, P., Atwater, L, Gonçalves, A., Bangham, A., Orci, L. and Rojas E. (1984). The topography of electrical synchrony among β-cells in the mouse islet of Langerhans. Quart. J. Exp. Physiol. 69, 719–735.

    Google Scholar 

  15. Meda, P., Santos, R. M. and Atwater, I. (1986). Direct identification of electrophysiologically monitored cells within intact mouse islets of Langer-hans. Diabetes 35, 232–236.

    Article  Google Scholar 

  16. Michaels, R. L. and Sheridan, J. D. (1981). Islets of Langerhans: dye coupling among immunocytochemically distinct cell types. Science 214, 801–803.

    Article  Google Scholar 

  17. Nicholson, C. and Kraig, R. P. (1981). The behavior of extracellular ions during spreading depression. In “The Application of Ion-Selective Micro-electrodes”, (ed T. Zeuthen), pp. 217–238. Elsevier-North Holland, Amsterdam.

    Google Scholar 

  18. Perez-Armendariz, E. and Atwater, I. (1986). Glucose-evoked changes in K+ and Ca2+ in the intercellular spaces of the mouse islet of Langerhans. In “Biophysics of the Pancreatic β-Cell”, (ed I. Atwater, E. Rojas, and B. Soria), pp. 31–51. Plenum Press, New York.

    Google Scholar 

  19. Perez-Armendariz, M., D. C. Spray, and M. V. L. Bennett. (1990). Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys. J. in press.

    Google Scholar 

  20. Rall, W. (1977). Core conductor theory and cable properties of neurons. In “Handbook of Physiology-The Nervous System”, (ed. J. M. Brookhart and V. B. Mountcastle), Vol. 1, Pt. 1, Chap. 3, pp. 39–97. Am. Physiol. Soc, Bethesda, Maryland.

    Google Scholar 

  21. Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. In “Ordinary and Partial Differential Equatons”, (ed B. D. Sleeman and R. J. Jarvis), pp. 304–316. Springer-Verlag, New York.

    Chapter  Google Scholar 

  22. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In “Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences,” Lecture Notes in Biomathematics 71, (ed E. Teramoto and M. Yamaguti), pp. 267–281. Springer-Verlag, New York.

    Chapter  Google Scholar 

  23. Rinzel, J., Chay, T. R., Himmel, D., and Atwater, I. (1987). Prediction of the glucose-induced changes in membrane ionic permeability and cytosolic Ca2+ by mathematical modeling. In “Biophysics of the Pancreatic β-cell” (ed I. Atwater, E. Rojas, and E. Soria), pp. 247–263. Plenum Publishing Corporation, New York and London.

    Google Scholar 

  24. Rinzel, J. and Ermentrout, G. B. (1989). Analysis of neural excitability and oscillations. In “Methods in Neuronal Modeling”, (ed C. Koch and I. Segev), pp. 135–169. M. L T. Press, Cambridge, Mass.

    Google Scholar 

  25. Rinzel, J. and Lee, Y. S. (1987). Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25, 653–675.

    Article  MathSciNet  MATH  Google Scholar 

  26. Rorsman, P. and Trube, G. (1986). Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage clamp conditions. J. Physiol. 374, 531–550.

    Google Scholar 

  27. Scott, A., Atwater, I. and Rojas, E. (1981). A method for the simultaneous measurement of insulin release and B-cell membrane potential in single mouse islets of Langerhans. Diabetologia 21, 470–475.

    Article  Google Scholar 

  28. Sherman, A., Rinzel, J. and Keizer, J. (1988). Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425.

    Article  Google Scholar 

  29. Sherman, A., and Rinzel, J. (1991). A model for synchronization of pancreatic β-cells by gap junction coupling. Biophys. J. in press.

    Google Scholar 

  30. Stokes, C, and Rinzel, J. Diffusion of extracellular potassium ions can synchronize β-cellburst oscillations in a theoretical islet model. Manuscript in preparation.

    Google Scholar 

  31. Tuckwell, H. C. and Miura, R. M. (1978). A mathematical model for spreading cortical depression. Biophys. J. 23, 257–276.

    Article  Google Scholar 

  32. Yarom, Y. and Spira, M. E. (1982). Extracellular potassium ions mediate specific neuronal interaction. Science 216, 80–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rinzel, J., Sherman, A., Stokes, C.L. (1992). Channels, Coupling, and Synchronized Rhythmic Bursting Activity. In: Eeckman, F.H. (eds) Analysis and Modeling of Neural Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4010-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4010-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6793-2

  • Online ISBN: 978-1-4615-4010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics