Skip to main content

Intracellular Regulation of GABAA-Receptor Function

  • Chapter
Ion Channels

Part of the book series: Ion Channels ((IC))

Abstract

γ-Aminobutyric acid (GABA) was reported to occur in brain tissue in 1950 in three studies (Awapara et al., 1950; Roberts and Frankel, 1950; Udenfriend, 1950). A long and often controversial discussion about the function of GABA (for review see Roberts, 1986) followed. Physiological effects of GABA were first studied at the crustacean neuromuscular junction (for review see Takeuchi, 1976 Kravitz et al., 1968). The role of GABA as inhibitory transmitter in the mammalian CNS was established in 1967 through electrophysiological studies comparing the properties of evoked inhibitory postsynaptic potentials with responses to iontophoretically applied GABA: GABA-induced hyperpolarization was accompanied by a large increase in membrane conductance (Krnjevic and Schwartz, 1967). It is now widely accepted that GABA is the main transmitter of synaptic inhibition in the mammalian CNS. The notion of a transmitter function of GABA has been corroborated by a variety of studies: the GABA-synthesizing enzyme glutamate decarboxylase (L-glutamate-1carboxylase, EC 4.1.1.15) is concentrated in nerve terminals of GABAergic neurons (Salganicoff and De Robertis, 1965; Fonnum, 1968; Fonnum and Walberg, 1973; Saito et al., 1974). GABA is released from brain tissue upon stimulation by a Ca2+-dependent mechanism (Srinivasan et al., 1969; Obata and Takeda, 1969; Iversen et al., 1971; Roberts, 1974) and is eliminated from extracellular spaces by a Na+-dependent uptake into nerve cells or glial cells (Iversen and Neal, 1968; Henn and Hamberger, 1971; Bloom and Iversen, 1971; Schrier and Thompson,1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akaike, N., Kaneda, M., Hori, N., and Krishtal, O. A., 1988, Blockade of N-methyl-n-aspartate response in enzyme-treated rat hippocampal neurons, Neurosci. Lett. 87:75–79.

    CAS  PubMed  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1982, Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro, J. Physiol. (London) 328:125–141.

    CAS  Google Scholar 

  • Allen, C. N., Brady, R., Swann, J., Hori, N., and Carpenter, D. 0., 1988, N-Methyl-n-aspartate (NMDA) receptors are inactivated by trypsin, Brain Res. 458:147–150.

    CAS  PubMed  Google Scholar 

  • Armstrong, D. L., 1989, Calcium channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain, Trends Neurosci. 12:117–122.

    CAS  PubMed  Google Scholar 

  • Armstrong, D. L., and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization, Proc. Natl. Acad. Sci. USA 84:2518–2522.

    CAS  PubMed  Google Scholar 

  • Ashby, C. D., and Walsh, D. A., 1973, Characterization of the interaction of a protein inhibitor with adenosine 3’,5’-monophosphate-dependent protein kinases. II. Mechanism of action with the holoenzyme, J. Biol. Chem. 248:1255–1261.

    CAS  PubMed  Google Scholar 

  • Awapara, J., Landua, A. J., Fuerst, R., and Seale, B., 1950, Free y-aminobutyric acid in brain, J. Biol. Chem. 187:35–39.

    CAS  PubMed  Google Scholar 

  • Baimbridge, K. G., Miller, J. J., and Parkes, C. O., 1982, Calcium-binding protein distribution in the rat brain, Brain Res. 239:519–525.

    CAS  PubMed  Google Scholar 

  • Baraban, J. M., Synder, S. H., and Alger, B. E., 1985, Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters, J. Neurosci. 8:4069–4078.

    Google Scholar 

  • Beavo, J. A., and Mumby, M. C., 1982, Cyclic AMP-dependent protein phosphorylation, Handb. Exp. Pharmacol. 58:363–392.

    CAS  Google Scholar 

  • Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1974, Activation of protein kinase by physiological concentrations of cyclic AMP, Proc. Natl. Acad. Sci. USA 71:3580–3583.

    CAS  PubMed  Google Scholar 

  • Bennett, M. K., Erondu, N. E., and Kennedy, M. B., 1983, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258:12735–12744.

    CAS  PubMed  Google Scholar 

  • Berridge, M. J., 1987, Inositol triphosphate as a second messenger in signal transduction, Ann. N.Y. Acad. Sci. 494:39–51.

    CAS  PubMed  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    CAS  PubMed  Google Scholar 

  • Berridge, M. J., and Taylor, C. W., 1988, Inositol triphosphate and calcium signalling, Cold Spring Harbor Symp., Quant. Biol. 53:927–933.

    CAS  Google Scholar 

  • Bezanilla, F., Caputo, C., DiPolo, R., and Rojas, H., 1986, Potassium conductance of the squid giant axon is modulated by ATP, Proc. Natl. Acad. Sci. USA 83:2743–2745.

    CAS  PubMed  Google Scholar 

  • Bloom, F. E., and Iversen, L. L., 1971, Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography, Nature 229:628–630.

    CAS  PubMed  Google Scholar 

  • Blumenthal, D. K., Takio, K., Hansen, R. S., and Krebs, E. G., 1986, Dephosphorylation of cAMP-dependent protein kinase regulatory subunit (type II) by calmodulin-dependent protein phosphatase, J. Biol. Chem. 261:8140–8145.

    CAS  PubMed  Google Scholar 

  • Bowery, N. G., 1982, Baclofen: 10 years on, Trends Pharmacol. Sci. 3:400–403.

    CAS  Google Scholar 

  • Bowery, N. G., 1989, GABAB receptors and their significance in mammalian pharmacology, Trends Pharmacol. Sci. 10:401–407.

    CAS  PubMed  Google Scholar 

  • Bowery, N. G., Price, G. W., Hudson, A. L., Hill, D. R., Wilkin, G. P., and Turnbull, M. J., 1984, GABA receptor multiplicity. Visualization of different receptor types in the mammalian CNS, Neuropharmacology 23:219–231.

    CAS  PubMed  Google Scholar 

  • Brandt, S. J., Nicdel, J. E., Bell, R. M., and Young, W. S., III, 1988, Distinct patterns of expression of different protein kinase C mRNAs in rat tissues, Cell 49:57–63.

    Google Scholar 

  • Brecha, N., Sternini, C., Anderson, K., Bhakta, K., Khrestchatisky, M., MacLennan, A. J., Chiang, M. Y., Olsen, R. W., and Tobin, A. J., 1989, Differential distribution of GABAA α1, β2 and γ4 receptor mRNAs in the rat nervous system, Soc. Neurosci. Abstr. 15:335–4.

    Google Scholar 

  • Browner, M., Ferkany, J. W., and Enna, S. J., 1981, Biochemical identification of pharmacologically and functionally distinct GABA receptors in rat brain, J. Neurosci. 1:514–518.

    CAS  PubMed  Google Scholar 

  • Browning, M. D., Bureau, M., Dudek, E. M., and Olsen, R. W., 1990, Protein kinase C and cAMP-dependent protein kinase phosphorylate the ß subunit of the purified gammaaminobutyric acid A receptor, Proc. Natl. Acad. Sci. USA 87:1315–1318.

    CAS  PubMed  Google Scholar 

  • Butcher, R. W., and Sutherland, E. W., 1962, Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine, J. Biot. Chem. 237:1244–1250.

    CAS  Google Scholar 

  • Byerly, L., and Hagiwara, S., 1988, Calcium channel diversity, in: Calcium and Ion Channel Molation (A. D. Grinnel, D. Armstrong, and M. B. Jackson, eds.), Plenum Press, New York, pp. 3–18.

    Google Scholar 

  • Byerly, L., and Moody, W. J., 1984, Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis, J. Physiol. (London) 352:637–652.

    CAS  Google Scholar 

  • Byerly, L., and Yazejian, 1986, Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis, J. Physiol. (London) 370:631–650.

    CAS  Google Scholar 

  • Cadd, G., and McKnight, G. S., 1989, Distinct patterns of cAMP-dependent protein kinase gene expression in mouse brain, Neuron 3:71–79.

    CAS  PubMed  Google Scholar 

  • Casnellie, J. E., Schichter, D. J., Walter, U., and Greengard, P., 1978, Photoaffinity labeling of a guanosine 3’,5’-monophosphate-dependent protein kinase from vascular smooth muscle, J. Biol. Chem. 253:4771–4776.

    CAS  PubMed  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.

    CAS  PubMed  Google Scholar 

  • Celio, M. R., and Heizman, C. W., 1981, Calcium-binding protein parvalbumin as a neuronal marker, Nature 293:300–302.

    CAS  PubMed  Google Scholar 

  • Chad, J. E., and Eckert, R., 1986, An enzymatic mechanism for calcium current inactivation in dialysed Helix neurons, J. Physiol. (London) 378:31–51.

    CAS  Google Scholar 

  • Chad, J., Kalman, D., and Armstrong, D., 1987, The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels, in: Cell Calcium and the Control of Membrane Transport (L. J. Mandel and D. C. Eaton, eds.), Rockefeller University Press, New York, pp. 167–186.

    Google Scholar 

  • Chen, Q. X., Stelzer, A., Kay, A. R., and Wong, R. K. S., 1990, GABAA-receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neuronsJ. Physiol. (London) 420:207–221.

    CAS  Google Scholar 

  • Cheung, W. Y., 1968, Activation of a partially inactive cyclic 3’,5’-nucleotide phosphodiesterase, Fed. Proc. 27:783.

    Google Scholar 

  • Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19–27.

    CAS  PubMed  Google Scholar 

  • Cheung, W. Y., 1984, Calmodulin: Its potential role in cell proliferation and heavy metal toxicity, Fed. Proc. 43:2995–2999.

    CAS  PubMed  Google Scholar 

  • Clegg, C. H., Cadd, G. G., and McKnight, G. S., 1988, Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 85:3703–3707.

    CAS  PubMed  Google Scholar 

  • Cohen, P., 1980,in: Molecular Aspects of Cellular Regulation (P. Cohen, ed.), Elsevier/NorthHolland, Amsterdam, Vol. 1, pp. 1–255.

    Google Scholar 

  • Cohen, P., 1989, The structure and regulation of protein phosphatases, Annu. Rev. Biochem. 58:453–508.

    CAS  PubMed  Google Scholar 

  • Cohen, P., and Klee, C. B. (eds.), 1988, Calmodulin, Elsevier, Amsterdam.

    Google Scholar 

  • Cohen, S., Ushiro, H., Stoscheck, C., and Chinkers, M., 1982, A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles, J. Biol. Chem. 257:1523–1531.

    CAS  PubMed  Google Scholar 

  • Connor, J. A., Wadman, W. J., Hockberger, P. E., and Wong, R. K. S., 1988, Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CAl hippocampal neurons,Science 240:649–653.

    CAS  PubMed  Google Scholar 

  • Cotton, P. C., and Brugge, J. S., 1983, Neural tissues express high levels of the cellular src gene product pp60C-SRC Mol. Cell. Biol. 3:1157–1162.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1970, Amino acid transmitters, in: Handbook of Neurochemistry (Lajtha et al., eds.), Plenum Press, New York, Vol. 3, pp. 115–134.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970, GABA, bicuculline and central inhibition, Nature 226:1222–1224.

    CAS  PubMed  Google Scholar 

  • Demaille, J. G., Peters, K. A., and Fisher, E. H., 1977, Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3’,5’-monophosphate dependent protein kinases, Biochem. 16:3080–3086.

    CAS  Google Scholar 

  • DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K., 1985, Enhancement of calcium current in Aplysia neurons by protein kinase C, Nature 313:313–315.

    Google Scholar 

  • De Robertis, E., De Lores Arnaiz, G. R., Alberici, M., Butcher, R. W., and Sutherland, E. W., 1967, Subcellular distribution of adenylate cyclase and cyclic phosphodiesterase in rat brain cortex, J. Biol. Chem. 242:3487–3493.

    Google Scholar 

  • Doerner, D., Pitler, T. A., and Alger, B. E., 1988, Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons, J. Neurosci. 8:4069–4078.

    CAS  PubMed  Google Scholar 

  • Dokas, L. A., Klis, M., Liauw, A., and Coy, D. H., 1985, Characteristics of [D-Trp8]somatostatinsensitive B50 phosphorylation, Peptides 6:1101–1107.

    CAS  PubMed  Google Scholar 

  • Doroshenko, P. A., Kostyuk, P. G., Martynyuk, A. E., Kursky, M. D., and Vorobetz, Z. D., 1984, Intracellular protein kinase and calcium inward currents in perfused neurons of the snail Helix pomatia, Neuroscience 7:263–267.

    Google Scholar 

  • Eckstein, F., 1985, Nucleoside phosphorothioates, Annu. Rev. Biochem. 54:367–402.

    CAS  PubMed  Google Scholar 

  • Edwards, F. A., Konnerth, A., Sakmann, E., and Takahashi, T., 1989, A thin slice preparation for patch-clamp recordings from neurons of the mammalian central nervous system, Eur. J. Physiol. 414:600–612.

    CAS  Google Scholar 

  • Endo, S., and Olsen, R. W., 1990, Subunit subtype-specific antibodies reveal brain regional heterogeneity of GABAA/benzodiazepine receptors, Soc. Neurosci. Abstr. 16:162–8.

    Google Scholar 

  • Enna, S. J., and Karbon, E. W., 1986, GABA receptors: An overview, in: Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties (R. W. Olsen and J. C. Venter, eds.), Liss, New York, pp. 41–56.

    Google Scholar 

  • Enna, S J, and Snyder, S. H., 1977, Influences of ions, enzymes and detergents on gamma-aminobutyric acid-receptor binding in synaptic membranes of rat brain, Mol. Pharmacol. 13:442–453.

    CAS  PubMed  Google Scholar 

  • Erlichman, J., Rosenfeld, R., and Rosen, R. M., 1974, Phosphorylation of a cyclic adenosine 3’,5’-monophosphate-dependent protein kinase from bovine cardiac muscle, J. Biol. Chem. 249:5000–5003.

    CAS  PubMed  Google Scholar 

  • Erondu, N. E., and Kennedy, M. B., 1985, Regional distribution of type II Ca2+/calmodulindependent protein kinase in rat brain, J. Neurosci. 5:3270–3277.

    CAS  PubMed  Google Scholar 

  • Exton, J. H., Lewis, S. B., Ho, R. J., Robison, G. A., and Park, C. A., 1971, The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism, Ann. N.Y. Acad. Sci. 185:85–100.

    CAS  PubMed  Google Scholar 

  • Farber, J. L., 1981, The role of calcium in cell death, Life Sci. 29:1289–1295.

    CAS  PubMed  Google Scholar 

  • Farber, L. H., Wilson, F. J., and Wolff, D. J., 1987, Calmodulin dependent phosphatases of PC12, GH3 and C6 cells: Physical, kinetic and immunochemical properties, J. Neurochem. 49:404–414.

    CAS  PubMed  Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E., 1982, A patch clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine, J. Physiol. (London) 331:577–597.

    CAS  Google Scholar 

  • Fonnum, F., 1968, The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain, Biochem. J. 106:401–412.

    CAS  PubMed  Google Scholar 

  • Fonnum, F., and Walberg, F., 1973, An estimation of the concentration of y-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat, Brain Res. 54:115–127.

    CAS  PubMed  Google Scholar 

  • Gallindo, A.. 1969, GABA picrotoxin interaction in the mammalian central nervous system, Brain Res. 14:76–767.

    Google Scholar 

  • Gerfen, C. R., Baimbridge, K. G., and Miller, J. J., 1985, The neostriatal mosaic: Compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey, Proc. Natl. Acad. Sci. USA 82:8780–8784.

    CAS  PubMed  Google Scholar 

  • Gill, G. N., and Garren, L. D., 1970, A cyclic-3’,5’-adenosine monophosphate dependent protein kinase from the adrenal cortex: Comparison with a cyclic AMP binding protein, Biochem. Biophys. Res. Commun. 39:335–343.

    CAS  PubMed  Google Scholar 

  • Goldenring, J. R., Gonzalez, B., McGuire, J. S., Jr., and DeLorenzo, R. J., 1983, Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem. 258:12632–12640.

    CAS  PubMed  Google Scholar 

  • Goto, S., Matsukado, Y., Mihara, Y., Inoue, N., and Miyamoto, E., 1986, The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay, Brain Res. 397:161–172.

    CAS  PubMed  Google Scholar 

  • Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H., 1987, The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature 328:215–220.

    CAS  PubMed  Google Scholar 

  • Guthrie, P. B., Segal, M. and Kater, S. B., 1991, Independent regulation of calcium revealed by imaging dendritic spines, Nature 354:76–79.

    CAS  PubMed  Google Scholar 

  • Gyenes, M., Farrant, M., and Farb, D. H., 1988, “Run-down” of GABAA-receptor function during whole-cell recording: A possible role for phosphorylation, Mol. Pharmacol. 34:719–723.

    CAS  PubMed  Google Scholar 

  • Halpain, S., and Greengard, P., 1990, Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2, Neuron 5:237–246.

    CAS  PubMed  Google Scholar 

  • Halpain, S., Girault, J. A., and Greengard, P., 1990, Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices, Nature 343:369–372.

    CAS  PubMed  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high resolution current recording from cell-free membrane patches, Pfluegers Arch. Gesamte Physiol. 391:85–100.

    CAS  Google Scholar 

  • Harootunian, A. T., Kao, J. P. Y., and Tsien, R. Y., 1988, Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photoreleased INS(1,4,5)P3, Ca2+ and Ca2+ buffer, Cold Spring Harbor Symp., Quant. Biol. 53:935–943.

    CAS  Google Scholar 

  • Harrison, N. L., and Lambert, N. A., 1989, Modification of GABAA receptor function by an analog of cyclic AMP, Neurosci. Lett. 105:137–142.

    CAS  PubMed  Google Scholar 

  • Hartl, F. T., and Roskoski, R., Jr., 1982, Adenosine 3’,5’-cyclic monophosphate protein kinase from bovine brain: Inactivation of the catalytic subunit and holoenzyme by 7-chloro-4nitro-2,1,3-benzoxidazole, Biochemist. 21:5176–5183.

    Google Scholar 

  • Heldin, C. H., Ek, B., and Roennstrand, L., 1983, Characterization of the receptor for platelet-derived growth factor on human fibroblasts. Demonstration of an intimate relationship with a 185,000-dalton substrate for the platelet-derived growth factor-stimulated kinase, J. Biol. Chem. 258:10054–10061.

    CAS  PubMed  Google Scholar 

  • Hemmings, H. C., Greengard, P., Lim Tung, H. Y., and Cohen, P., 1984, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1, Nature 310:503–505.

    CAS  PubMed  Google Scholar 

  • Henn, F. A., and Hamberger, A., 1971, Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. USA 68:2686–2690.

    CAS  PubMed  Google Scholar 

  • Hescheler, J., Kameyama, M., Trautwein, W., Mieskes, G., and Soling, H.-D., 1987, Regulation of the cardiac calcium channel by protein phosphatases, Eur. J. Biochem. 165:261–266.

    CAS  PubMed  Google Scholar 

  • Heuschneider, G., and Schwartz, R. D., 1989, cAMP and forskolin decrease gammaaminobutyric acid-gated chloride flux in rat brain synaptoneurosomes, Proc. Natl. Acad. Sci. USA 86:2938–2942.

    CAS  PubMed  Google Scholar 

  • Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y., 1984, Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, Biochemistry 87:5036–5041.

    CAS  PubMed  Google Scholar 

  • Hierowski, M. T., Liebow, C., Du Sapin, K., and Schally, A. V., 1985, Stimulation by somatostatin of dephosphorylation of membrane proteins in pancreatic cancer MIA PaCa-2 cell line, FEBS Lett., 179:252–256.

    CAS  PubMed  Google Scholar 

  • Hirano, A. A., Greengard, P., and Huganir, R. L., 1988, Protein tyrosine kinase activity and its endogenous substrates in rat brain: A subcellular and regional survey, J. Neurochem. 50:1147–1455.

    Google Scholar 

  • Hockberger, P., Toselli, M., Swandulla, D., and Lux, H. D., 1989, A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation, Nature 338:340–342.

    CAS  PubMed  Google Scholar 

  • Hofmann, F., Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1975, Comparison of adenosine 3’,5’-cyclic monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle, J. Biol. Chem. 250:7795–7801.

    CAS  PubMed  Google Scholar 

  • Hofmann, F., Bechtel, P. J., and Krebs, E. G., 1977, Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues, J. Biol. Chem. 252:1441–1447.

    CAS  PubMed  Google Scholar 

  • Hosey, M. M., Borsotto, M., and Lazdunski, M., 1986, Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca2+ channel in skeletal muscle membranes by cAMP- and Ca2+-dependent processes, Proc. Natl. Acad. Sci. USA 83:3733–3737.

    CAS  PubMed  Google Scholar 

  • Houamed, K. M., Bilbe, G., Smart, T. G., Constanti, A., Brown, D. A., Barnard, E. A., and Richards, B. M., 1984, Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature 310:318–321.

    CAS  PubMed  Google Scholar 

  • Houser, C. R., Olsen, R. W., Richards, J. G., and Moehler, H., 1988, Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation, J. Neurosci. 8:1370–1383.

    CAS  PubMed  Google Scholar 

  • Huang, K.-P., 1989, The mechanism of protein kinase C activation, Trends Neurosci. 12:425–432.

    CAS  PubMed  Google Scholar 

  • Huang, K.-P., Nakabayashi, H. and Huang, F. L., 1986, Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase, Proc. Natl. Acad. Sci. USA 83:8535–8539.

    CAS  PubMed  Google Scholar 

  • Huganir, R. L., and Greengard, P., 1987, Regulation of receptor function by protein phosphorylation, Trends Pharmacol. Sci. 8:472–477.

    CAS  Google Scholar 

  • Huganir, R. L., Miles, K., and Greengard, P., 1984, Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Proc. Natl. Acad. Sci. USA 81:6963–6972.

    Google Scholar 

  • Huguenard, J. R., and Alger, B. E., 1986, Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons, J. Neurophysiol. 56:1–18.

    CAS  PubMed  Google Scholar 

  • Hunter, T., and Cooper, J. A., 1985, Protein-tyrosine kinases, Annu. Rev. Biochem. 54:897–930.

    CAS  PubMed  Google Scholar 

  • Ingebritsen, T. S., and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. I. Classification and substrate specificities, Eur. J. Biochem. 132:255–261.

    CAS  PubMed  Google Scholar 

  • Inoue, M., Oomura, Y., Yakushiji, T., and Akaike, N., 1986, Intracellular calcium ions decrease the affinity of the GABA receptor, Nature 324:156–158.

    CAS  PubMed  Google Scholar 

  • Irvine, R., 1982, How is the level of the arachidonic acid controlled in mammalian cells? Biochem. j. 204:3–16.

    CAS  PubMed  Google Scholar 

  • Iversen, L. L., and Neal, M. J., 1968, The uptake of (3H)GABA by slices of rat cerebral cortex, J. Neurochem. 15:609–620.

    CAS  PubMed  Google Scholar 

  • Iversen, L. L., Mitchell, J. F., and Srinivasan, V., 1971, The release of gamma-aminobutyric acid during inhibition in the cat visual cortex, J. Physiol. (London) 212:519–534.

    CAS  Google Scholar 

  • Jahnsen, T., Hedin, L., Kidd, V. J., Beattie, W. G., Lohmann, S. M., Walter, U., Durica, J., Schulz, T. Z., Schiltz, E., Browner, M., Lawrence, C. B., Goldman, D., Ratoosh, S. L., and Richards, J. S., 1986, Molecular cloning, cDNA structure and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells, J. Biol. Chem. 261:12352–12361.

    CAS  PubMed  Google Scholar 

  • Jande, S. S., Maler, L., and Lawson, D. E. M., 1981, Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain, Nature 294:765–767.

    CAS  PubMed  Google Scholar 

  • Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y., and Nishizuka, Y., 1982, Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation, Cell Calcium 3:323–335.

    CAS  PubMed  Google Scholar 

  • Kakiuchi, S., and Yamazaki, R., 1970, Calcium-dependent phosphodiesterase activity and its activating factor (PAF) from brain: Studies on cyclic 3’,5’-nucleotide phosphodiesterase (III), Biochem. Biophys. Res. Commun. 41:1104–1110.

    CAS  PubMed  Google Scholar 

  • Kasuga, M., Karlsson, F. A., and Kahn, C. R., 1982, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215:185–198.

    CAS  PubMed  Google Scholar 

  • Kay, A. R., 1989, A procedure for isolating neurons from the mature mammalian brain, in: A Dissection and Tissue Culture Manual of the Nervous System (A. Shahar, A. de Vellis, A. Vernadakis, and B. Haber, eds.), Liss, New York.

    Google Scholar 

  • Kay, A. R., and Connor, J. A., 1990, Preservation of the NMDA response of neurons acutely dissociated from the mature mammalian brain, J. Neurosci. Methods.

    Google Scholar 

  • Kay, A. R., and Wong, R. K. S., 1986, Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems, J. Neurosci. Methods 16:227–238.

    CAS  PubMed  Google Scholar 

  • Kellerth, J.-O., and Szumski, A. J., 1966, Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal motoneurons, Acta Physiol. Scand. 66:146–156.

    CAS  PubMed  Google Scholar 

  • Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major postsynaptic density protein is a component of a Ca2+/CaM-dependent protein kinase, Proc. Natl. Acad. Sci. USA 81:945–949.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. B., 1989, Regulation of neuronal function by calcium, Trends Neurosci. 12:417–420.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. B., Bennett, M. K., and Erondu, N. E., 1983, Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of the a calmodulindependent protein kinase, Proc. Natl. Acad. Sci. USA 80:7357–7361.

    CAS  PubMed  Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phosholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257:1341–1348.

    Google Scholar 

  • Kirkness, E. F., Bovenkerk, C. F., Ueda, T., and Turner, A. J., 1989, Phosphorylation of gamma-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase, Biochem. J. 259:613–616.

    CAS  PubMed  Google Scholar 

  • Klee, C. B., and Cohen, P., 1988, The calmodulin-regulated protein phosphatase, in: Calmodulin (P. Cohen and C. B. Klee, eds), Elsevier, Amsterdam, pp. 225–263.

    Google Scholar 

  • Klee, C. B., and Vanaman, T. C., 1982, Calmodulin Adv. Protein Chem. 35:213–321.

    CAS  PubMed  Google Scholar 

  • Klee, C. B., Crouch, T. H., and Krinks, M. H., 1979, Calcineurin: A calcium and calmodulinbinding protein of the nervous system, Proc. Natl. Acad. Sci. USA 76:6720–6273.

    Google Scholar 

  • Klee, C. B., Draetta, G. F., and Hubbard, M. J., 1988, Calcineurin, Adv. Enzymol. 61:149–200.

    CAS  PubMed  Google Scholar 

  • Kravitz, E. A., Iversen, L. L., Otsuka, M., and Hall, Z. W., 1968, Gamma-aminobutyric acid in the lobster nervous system; release from inhibitory nerves and uptake into nerve–muscle preparations, in: Structure and Function of Inhibitory Neuronal Mechanisms (C. von Euler, S. Skoglund, and U. Söderberg, eds.), Pergamon Press, Elmsford, N.Y., pp. 371–376.

    Google Scholar 

  • Krebs, E. G., 1972, Curr. Top. Cell Regul. 5:99–133.

    CAS  PubMed  Google Scholar 

  • Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation—dephosphorylation of enzymes, Annu. Rev. Biochem. 48:923–959.

    CAS  PubMed  Google Scholar 

  • Krinks, M. H., Klee, C. B., Pant, H. C., and Gainer, H., 1988, Identification and quantification of calcium binding proteins in squid axoplasm, J. Neurosci. 8:2172–2182.

    CAS  PubMed  Google Scholar 

  • Krnjevic, K., and Schwartz, S., 1967, The action of y-aminobutyric acid on cortical neurons, Exp. Brain Res. 3:320–336.

    CAS  PubMed  Google Scholar 

  • Krnjevic, K., Morris, M. E., and Ropert, N., 1986, Changes in free calcium ion concentration recorded inside hippocampal pyramidal cells in situ, Brain Res. 374:1–11.

    CAS  PubMed  Google Scholar 

  • Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanake, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T., and Numa, S., 1985, Primary structure of delta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence, Eur. J. Biochem. 149:5–13.

    CAS  PubMed  Google Scholar 

  • Lacerda, A., Rampe, D., and Brown, A. M., 1988, Effects of protein kinase C activators on cardiac Ca2+ channels, Nature 335:249–251.

    CAS  PubMed  Google Scholar 

  • Lai, Y., Nairn, A. C., and Greengard, P., 1986, Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependent protein kinase II, Proc. Natl. Acad. Sci. USA 83:4253–4257.

    CAS  PubMed  Google Scholar 

  • Langan, T. A., 1968, Histone phosphorylation: Stimulation by adenosine 3’,5’monophosphate, Science 162:579–580.

    CAS  PubMed  Google Scholar 

  • Lapointe, J.-Y., and Szabo, G., 1987, A novel holder allowing internal perfusion of patch-clamp pipettes, Pfluegers Arch. 410:212–216.

    CAS  Google Scholar 

  • Leidenheimer, N. J., Hahner, L. D., Browning, M. D., and Harris, R. A., 1990, Direct effects of second messenger system modulators on the GABAA receptor complex, Soc. Neurosci. Abstr. 16:162–4.

    Google Scholar 

  • Leidenheimer, N. J., Browning, M. D. and Harris, R. A., 1991, GABAA receptor phosphorylation: multiple sites, actions and artifacts, Trends Pharmacol. Sci. 12:84–87.

    CAS  PubMed  Google Scholar 

  • Levitan, E., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Koehler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H., 1988, Structural and functional basis for GABAA receptor heterogeneity, Nature 335:76–79.

    CAS  PubMed  Google Scholar 

  • Lisman, J. E., 1985, A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase, Proc. Natl. Acad. Sci. USA 82:3055–3057.

    CAS  PubMed  Google Scholar 

  • Lou, L. L., Lloyd, S. J., and Schulman, H., 1986, Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by autophosphorylation. ATP modulates production of an autonomous kinase, Proc. Natl. Acad. Sci. USA 83:9497–9501.

    CAS  PubMed  Google Scholar 

  • Love, J. T., Padula, S. J., Lingenheld, E. H., Amin, J. K., Sgroi, D. C., Wong, R. L., Sha’afi, R. I., and Clark, R. B., 1989, Effects of H-7 are not exclusively mediated through protein kinase C or the cyclic nucleotide-dependent kinases, Biochem. Biophys. Res. Commun. 162:138–143.

    CAS  PubMed  Google Scholar 

  • McBurney, R. N., and Neering, I. R., 1987, Neuronal calcium homeostasis, Trends Neurosci. 10:164–169.

    CAS  Google Scholar 

  • McComb, R. B., Bowers, G. N., and Posen, S., 1979, in: Alkaline Phosphatase, Plenum Press, New York.

    Google Scholar 

  • McDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321:519–522.

    Google Scholar 

  • McDonald, J. F., Mody, I., and Salter, M. W., 1989, Regulation of N-methyl-n-aspartate receptors revealed by intracellular dialysis of murine neurones in cultureJ. Physiol. (London) 414:17–34.

    Google Scholar 

  • McGuinness, T. L., Lai, Y., and Greengard, P., 1985, Ca2+/calmodulin-dependent protein kinase iI, J. Biol. Chem. 260:1696–1704.

    CAS  PubMed  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234:1519–1526.

    CAS  PubMed  Google Scholar 

  • Majewska, M. D., and Chang, D. M., 1984, Modulation by calcium of gamma-aminobutyric acid (GABA) binding to GABAA and GABAB recognition sites in rat brainMol. Pharmacol. 25:352–359.

    CAS  PubMed  Google Scholar 

  • Maness, P. F., Aubry, M., Shores, C. G., Frame, L., and Pfenninger, K. H., 1988, c-scr gene product in developing rat brain is enriched in nerve growth cone membranes, Proc. Natl. Acad. Sci. USA 85:5001–5005.

    CAS  PubMed  Google Scholar 

  • Marchmont, R. J., and Houslay, M. D., 1980, Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase, Nature 286:904–906.

    CAS  PubMed  Google Scholar 

  • Marty, A., 1989, The physiological role of calcium-dependent channels, Trends Neurosci. 12:420–424.

    CAS  PubMed  Google Scholar 

  • Marty, A., and Neher, E., 1983, Tight-seal whole-cell recording, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 107–122.

    Google Scholar 

  • Mehta, A. K., and Ticku, M. K., 1990, Lack of involvement of protein kinases A and C in the GABAA receptor-gated Cl channel desensitization in mice spinal cord cultured neurons, Soc. Neurosci. Abstr. 16:162–1.

    Google Scholar 

  • Miledi, R., Parker, I., and Sumakawa, K., 1982, Synthesis of chick brain GABA receptors by frog oocytes, Proc. R. Soc. London Ser. B 266:509–515.

    Google Scholar 

  • Miles, R., and Wong, R. K. S., 1987, Inhibitory control of local excitatory circuits in the guinea-pig hippocampus, J. Physiol. (London) 388:611–629.

    CAS  Google Scholar 

  • Miller, S. G., and Kennedy, M. B., 1985, Distinct forebrain and cellular isozymes of type II Ca2+ /calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction, J. Biol. Chem. 260:9039–9046.

    CAS  PubMed  Google Scholar 

  • Mitchell, F. E., Marais, R. M., and Parker, P. J., 1989, The phosphorylation of protein kinase C as a potential measure of activation, Biochem. J. 261:131–136.

    CAS  PubMed  Google Scholar 

  • Mitchell, R., and Wilson, L., 1984, Investigation of the effects of muscimol on different components of [3Hlpropy] beta-carboline-3-carboxylate binding to rat hippocampal and cerebellar membranes, Neurochem. Int. 6:387–392.

    CAS  PubMed  Google Scholar 

  • Miyamoto, E., Kuu, J. F., and Greengard, P., 1969, Cyclic nucleotide-dependent protein kinases 3 Purification and properties of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine brain, J. Biol. Chem. 244:6395–6402.

    CAS  PubMed  Google Scholar 

  • Mochly-Rosen, D., and Koshland, D. E., 1987, Domain structure and phosphorylation of protein kinase C, J. Biol. Chem. 262:2291–2297.

    CAS  PubMed  Google Scholar 

  • Mody, I., Salter, M. W., and MacDonald, J. F., 1988, Requirement of NMDA receptor/channels for intracellular high-energy phosphates and the extent of intraneural calcium buffering in cultured mouse hippocampal neurons, Neurosci. Lett. 93:73–78.

    CAS  PubMed  Google Scholar 

  • Muller, W., and Connor, J. A., 1991, Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses, Nature 354:73–76.

    CAS  PubMed  Google Scholar 

  • Nairn, A. C., Hemmings, H. C., Jr., and Greengard, P., 1985, Protein kinases in the brain, Annu. Rev. Biochem. 54:931–976.

    CAS  PubMed  Google Scholar 

  • Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B., 1988, Arachidonic acid metabolism, Ann. Rev. Biochem. 55:69–102.

    Google Scholar 

  • Neher, E., 1986,In Calcium Electrogenesis and Neuronal Functioning: Supplement to Experimental Brain Research (U. Heinemann, M. Klee, E. Neher, W. Singer, eds.) Springer Verlag, New York.

    Google Scholar 

  • Nelson, S. R., and Foltz, F. M., 1983, Hypocalcemia and motor neuron degeneration in paraphysectomized frogs, Exp. Neurol. 79:763–772.

    CAS  PubMed  Google Scholar 

  • Nestler, E. J., and Greengard, P., 1984, Protein Phosphorylation in the Nervous System, Wiley—Interscience, New York.

    Google Scholar 

  • Newberry, N. R., and Nicoll, R. A., 1984, A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro, J. Physiol. (London) 348:239–254.

    CAS  Google Scholar 

  • Nielsen, M., and Braestrup, C., 1980, Ethyl beta-carboline-3-carboxylate shows differential benzodiazepine receptor interaction, Nature 286:606–607.

    CAS  PubMed  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233:305–312.

    CAS  PubMed  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334:661–665.

    CAS  PubMed  Google Scholar 

  • Numann, R. E., Wadman, W., and Wong, R. K. S., 1987, Outward currents of single hippocampal cells obtained from the adult guinea-pig, J. Physiol. (London) 393:331.

    CAS  Google Scholar 

  • Obata, K., and Takeda, K., 1969, Release of y-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum, J. Neurochem. 16:1043–1047.

    CAS  PubMed  Google Scholar 

  • Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of y-aminobutyric acid on Deiters’ neurones, Exp. Brain Res. 4:43–57.

    CAS  PubMed  Google Scholar 

  • Ogreid, D., Doskeland, S. O., and Miller, J. P., 1983, Evidence that cyclic nucleotides activating rabbit muscle protein kinase I interact with both types of cAMP binding sites associated with the enzyme, J. Biol. Chem. 258:1041–1049.

    CAS  PubMed  Google Scholar 

  • Olsen, R. W., and Tobin, A. J., 1990, Molecular biology of GABAA receptors, FASEB J. 4:1469–1480.

    CAS  PubMed  Google Scholar 

  • Olsen, R. W., and Venter, J. C. (eds.), 1986, Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Liss, New York.

    Google Scholar 

  • Olsen, R. W., Bergman, M. O., Van Ness, P. C., Lummis, S. C., Napias, C., Watkins, A. E., and Greenlee, D. V., 1981, Gamma-aminobutyric acid receptor binding in mammalian brain: Heterogeneity of binding sites, Mol. Pharmacol. 19:217–227.

    CAS  PubMed  Google Scholar 

  • Ouimet, C. C., McGuinness, T. L., and Greengard, P., 1984, Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain, Proc. Natl. Acad. Sci. USA 81:5604–5608.

    CAS  PubMed  Google Scholar 

  • Palacios, J. M., Young, W. S., III, and Kuhar, M. J., 1980, Autoradiographic localization of gamma-aminobutyric acid (GABA) receptors in the rat cerebellum, Proc. Natl. Acad. Sci. USA 77:670–674.

    CAS  PubMed  Google Scholar 

  • Pandiella, A., Beguinot, L., Vicentini, L. M., and Meldolesi, J., 1989, Transmembrane signalling at the epidermal growth factor receptor, Trends Pharmacol. Sci. Transmembrane signalling at the epidermal growth factor vesicles, Proc. Natl. Acad. Sci. USA 85:762–766.

    Google Scholar 

  • Parker, P. J., Goris, J., and Merlevede, W., 1986, Specificity of protein phosphatases in the dephosphorylation of protein kinase C, Biochem. J. 240:63–67.

    CAS  PubMed  Google Scholar 

  • Pitler, T. A. and Alger, B. E., 1990, Elevation of intracellular Cat+ inhibits GABAergic IPSPs in hippocampal neurons, Soc. Neurosci. Abstr. 16:202–4.

    Google Scholar 

  • Popot, J. L., and Changeux, J. P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64:1162–1239.

    CAS  PubMed  Google Scholar 

  • Porter, N. M., Twyman, R. E., Uhler, M. D., and Macdonald, R. L., 1990, Cyclic AMP-dependent protein kinase decreases GABAA-receptor current in mouse spinal neurons, Neuron 5, 789–796.

    CAS  PubMed  Google Scholar 

  • Porter, N. M., Angelotti, T. P., Twyman, R E, and Macdonald, R. L., 1990, Kinetic properties of cloned α11, GABAA receptor channels: Regulation by pentobarbital and picrotoxin, Soc. Neurosci. Abstr. 16:162–11.

    Google Scholar 

  • Pritchett, D. B., Sontheimer, H., Gorman, C. M., Kettenmann, H., Seeburg, P. H., and Schofield, P. R., 1988, Transient expression shows ligand-gating and allosteric potentiation of GABAA receptor subunits, Science 242:1306–1308.

    CAS  PubMed  Google Scholar 

  • Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H., 1989, Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology, Nature 338:582–585.

    CAS  PubMed  Google Scholar 

  • Qu, Z. C., Moritz, E., and Huganir, R. L., 1990, Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromoscular junction, Neuron 4:367–378.

    CAS  PubMed  Google Scholar 

  • Rane, S., and Dunlap, K., 1986, Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons, Proc. Natl. Acad. Sci., USA 83:184–188.

    CAS  PubMed  Google Scholar 

  • Rangel-Aldao, R., and Rosen, O. M., 1976, Dissociation and reassociation of the phosphorylated and non-phosphorylated form of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine cardiac muscle, J. Biol. Chem. 251:3375–3380.

    CAS  PubMed  Google Scholar 

  • Regehr, W. G., and Tank, D. W., 1990, Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites, Nature 345:807–810.

    CAS  PubMed  Google Scholar 

  • Regehr, W. G., Connor, J. A., and Tank, D. W., 1989, Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation, Nature 341:533–536.

    CAS  PubMed  Google Scholar 

  • Reimann, E. M., Walsh, D. A., and Krebs, E. G., 1971, Purification and properties of rabbit skeletal muscle adenosine 3’,5’-monophosphate-dependent protein kinases, J. Biol. Chem. 246:1986–1995.

    CAS  PubMed  Google Scholar 

  • Richards, J. G., Sequier, J. M., Malherbe, P., Giller, T., and Moehler, H., 1989, GABA receptor heterogeneity: New insights from receptor radioautography and in situ hybridization, Soc. Neurosci. Abstr. 15:2598.

    Google Scholar 

  • Roberts, E., 1986, GABA: The road to neurotransmitter status, in: Benzodiazepine/GABA Receptors and Chloride Channels (R. W. Olsen and J. C. Venter, eds.), Liss, New York, pp. 1–39.

    Google Scholar 

  • Roberts, E., and Frankel, S., 1950, y-Aminobutyric acid in brain: Formation from glutamic acid, J. Biol. Chem. 187:55–63.

    CAS  PubMed  Google Scholar 

  • Roberts, P. J., 1974, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res. 67:419–428.

    CAS  PubMed  Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP,Academic Press, New York.

    Google Scholar 

  • Robinson-Steiner, A. M., and Corbin, J. D., 1983, Probable involvement of both intrachain cAMP binding sites in activation by protein kinase, J. Biol. Chem. 258:1032–1040.

    CAS  PubMed  Google Scholar 

  • Robinson-Steiner, A. M., Beebe, S. J., Rannels, S. R., and Corbin, J. D., 1984, Microheterogeneity of type II cAMP-dependent protein kinase in various mammalian species and tissues, J. Biol. Chem. 259:10596–10605.

    CAS  PubMed  Google Scholar 

  • Roth, L. B., Mehegan, J. P., Jacobowitz, D. M., Robey, F., and Iadarola, M. J., 1989, Rat brain protein kinase C: Purification, antibody production, and quantification in discrete regions of hippocampus, J. Neurochem. 52:215–221.

    CAS  PubMed  Google Scholar 

  • Ryan-Jastrow, T., Angelotti, T. P., Twyman, R. E., and MacDonald, R. L., 1990, Single channel kinetic properties of cloned α1ß1Y2 and α3ß1Y2 GABAA receptor, Soc. Neurosci. Abstr. 16:162–12.

    Google Scholar 

  • Saito, K., Wu, J. Y., Matsuda, J.-Y., and Roberts, E., 1974, Immunochemical comparisons of vertebrate glutamic acid decarboxylase, Brain Res. 65:277–285.

    CAS  PubMed  Google Scholar 

  • Saitoh, T., and Schwartz, J. H., 1985, Phosphorylation-dependent subcellular translocation of a Ca2+ /calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons, J. Cell Biol. 100:835–842.

    CAS  PubMed  Google Scholar 

  • Salganicoff, L., and DeRobertis, E., 1965, Subcellular distribution of the enzymes of the glutamic acid, glutamine and y-aminobutyric acid cycle in rat brain, J. Neurochem. 12:287–309.

    CAS  PubMed  Google Scholar 

  • Santi, M. R., Cox, D., and Guidotti, A., 1988, Heterogeneity of gamma-aminobutyric acid/benzodiazepine/beta-carboline receptor complex in rat spinal cord, J. Neurochem. 50:1080–1086.

    CAS  PubMed  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature 328:221–227.

    CAS  PubMed  Google Scholar 

  • Schrier, B. K., and Thompson, E. J., 1974, On the role of glial cells in the mammalian nervous system. Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells, J. Biol. Chem. 249:1769–1780.

    CAS  PubMed  Google Scholar 

  • Schulman, H., 1984, Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase, J. Cell Biol. 99:11–19.

    CAS  PubMed  Google Scholar 

  • Schwartz, J. H., and Greenberg, S. M., 1987, Molecular mechanisms for memory: Second-messenger induced modifications of protein kinases in nerve cells, Annu. Rev. Neurosci. 10:459–476.

    CAS  PubMed  Google Scholar 

  • Schworer, C. M., Colbran, R. J., and Soderling, T. R., 1986, Reversible generation of a Ca2+-independent form of Ca2+ (calmodulin)-dependent protein kinase II by an autophosphorylation mechanism, J. Biol. Chem. 261:8581–8584.

    CAS  PubMed  Google Scholar 

  • Scott, J. D., Glaccum, M. B., Zoller, M. J., Uhler, M. D., Helfman, D. M., and Krebs, E. G., 1987, The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain, Proc. Natl. Acad. Sci. USA 84:5192–5196.

    CAS  PubMed  Google Scholar 

  • Sharma, R. K., Wang, T. H., Wirch, E., and Wang, J. H., 1980, Purification and properties of bovine brain calmodulin dependent cyclic nucleotide phosphodiesterase, J. Biol. Chem. 255:5916–5923.

    CAS  PubMed  Google Scholar 

  • Shields, S. M., Vernon, P. J., and Kelly, P. T., 1984, Autophosphorylation of calmodulin-kinase II in synaptic junctions modulates endogenous kinase activity, J. Neurochem. 43:1599–1609.

    CAS  PubMed  Google Scholar 

  • Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Koehler, M., Schofield, P. R., and Seeburg, P. H., 1989a, Two novel GABAA receptor subunits exist in distinct neuronal subpopulations, Neuron 3:327–337.

    CAS  Google Scholar 

  • Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Koehler, M., Schofield, P. R., and Seeburg, P. H., 1989b, Two novel GABAA receptor subunits exist in distinct neuronal subpopulations, Soc. Neurosci. Abstr. 15:387–6.

    Google Scholar 

  • Showers, M. O., and Maurer, R. A., 1986, A cloned bovine cDNA encodes an alternate form of the catalytic subunit of cAMP-dependent protein kinase, J. Biol. Chem. 261:16288–16291.

    CAS  PubMed  Google Scholar 

  • Sieghart, W., and Karobath, M., 1980, Molecular heterogeneity of benzodiazepine receptors, Nature 286:285–287.

    CAS  PubMed  Google Scholar 

  • Siman, R., and Noszek, J. C., 1988, Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo, Neuron 1:279–287.

    CAS  PubMed  Google Scholar 

  • Smith, G., and Olsen, R. W., 1990, [3H]Flunitrazepam photolabels the N-terminal 30 kilodaltons of the GABA-A receptor alpha subunit, Soc. Neurosci. Abstr. 16:162–7.

    Google Scholar 

  • Soldo, B. L., Browning, M. D., Proctor, W. R., and Dunwiddie, T. V., 1991, cAMP-dependent protein kinase reduces synaptically activated GABAA-receptor conductances in rat hippocampal CA1 pyramidal neurons in vitro, Soc. Neurosci. Abstr. 17:109–3.

    Google Scholar 

  • Squires, R. F., Benson, D. I., Braestrup, C., Coupet, J., Klepner, C. A., Myers, V., and Beer, B., 1979, Some properties of brain specific benzodiazepine receptors: New evidence for multiple receptors, Pharmacol. Biochem. Behay. 10:825–830.

    CAS  Google Scholar 

  • Srinivasan, V., Neal, M. J., and Mitchell, J. F., 1969, The effect of electrical stimulation and high potassium concentrations on the efflux of (3H) gamma-aminobutyric acid from brain slices, J. Neurochem. 16:1235–1244.

    CAS  PubMed  Google Scholar 

  • Stelzer, A., 1990, Regulation of GABAA currents by excitatory amino acids, in: Excitatory Amino Acids and Neuronal Plasticity (Y. Ben-Ari, ed.), Plenum Press, New York, pp. 255–263.

    Google Scholar 

  • Stelzer, A., 1992, GABAA receptors control the excitability of neuronal populations, Int. Rev. Ne urobi ol. 33:195–288.

    CAS  Google Scholar 

  • Stelzer, A., and Wong, R. K. S., 1987, GABAA receptors of isolated guinea-pig hippocampal neurons: Intra-and extracellular regulatory factors, J. Physiol. (London) 394:115–131.

    Google Scholar 

  • Stelzer, A., and Wong, R. K. S., 1988, Activation of protein kinase C reduces GABAA-mediated chloride conductance, Soc. Neurosci. Abstr. 14:369–2.

    Google Scholar 

  • Stelzer, A., and Wong, R. K. S., 1989a, Glutamate potentiates GABAA responses in hippocampal neurons, Nature 337:170–173.

    CAS  Google Scholar 

  • Stelzer, A., and Wong, R. K. S., 1989b, Glutamate blocks protein-kinase C mediated reduction of GABAA currents in hippocampal neurons, Soc. Neurosci. Abstr. 15:79–4.

    Google Scholar 

  • Stelzer, A., Slater, N. T., and ten Bruggencate, G., 1987, Activation of NMDA receptors blocks GABAergic inhibition in an in-vivo model of epilepsy, Nature 326:698–701.

    CAS  PubMed  Google Scholar 

  • Stelzer, A., Kay, A. R., and Wong, R. K. S., 1988, GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors, Science 241:339–341.

    CAS  PubMed  Google Scholar 

  • Stephenson, A., 1988, Understanding the GABAA receptor: A chemically gated ion channel, Biochem. J. 249:21–32.

    CAS  PubMed  Google Scholar 

  • Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. 1983, Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: Probable identity with calcineurin (CaM-BP80), FEBS Lett. 137:80–84.

    Google Scholar 

  • Sudol, M., and Hanafusa, H., 1986, Cellular proteins homologous to the viral yes gene product, Mol. Cell. Biol. 6:2839–2846.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Supavilai, P., Cortes, R., Palacios, J. M., and Karobath, M., 1986, in: Modulation of Central and Peripheral Transmitter Function (G. Biggio, P. F. Spano, G. Toffano, and G. L. Gessa, eds.), Liviana Press, Padova, pp. 453–457.

    Google Scholar 

  • Sutherland, E. W., Rall, T. W., and Menon, T., 1962, Adenyl cyclase I. Distribution, preparation and properties, J. Biol. Chem. 237:1220–1227.

    CAS  PubMed  Google Scholar 

  • Sweetnam, P. M., Lloyd, J., Gallombardo, P., Malison, R. T., Gallager, D. W., Tallman, J. F., and Nestler, E. J., 1988, Phosphorylation of the GABAA/benzodiazepine receptor alpha subunit by a receptor-associated protein kinase, J. Neurochem. 51:1274–1284.

    CAS  PubMed  Google Scholar 

  • Takeuchi, A., 1976, Studies of inhibitory effects of GABA in invertebrate nervous systems, in: GABA in Nervous System Function (E. Roberts, T. N. Chase, and D. B. Tower, eds), Raven Press, New York, pp. 255–267.

    Google Scholar 

  • Taleb, O., Trouslard, J., Demeneix, B. A., Feltz, P., Bossu, J.-L., Dupont, J.-L., and Feltz, A., 1987, Spontaneous and GABA-evoked chloride channels on pituitary intermediate lobe cells and their internal Ca requirements, Eur. J. Physiol. 409:620–631.

    CAS  Google Scholar 

  • Tallant, E. A., and Cheung, W. Y., 1986, in Calcium and Cell Function Vol. VI (W. Y. Cheung, ed.), Academic Press, New York, pp. 71–112.

    Google Scholar 

  • Tanaka, T., Ohmura, T., Yamakado, T., and Hidaka, H., 1982, Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists, Mol. Pharmacol. 22:408–412.

    CAS  PubMed  Google Scholar 

  • Tehrani, M. H. J., Hablitz, J. J., and Barnes, E. M., 1989, cAMP increases the rate of GABAA receptor desensitization in chick cortical neurons, Synapse 4:126–131.

    CAS  PubMed  Google Scholar 

  • Ticku, M. K., 1986, Convulsant binding sites on the benzodiazepine/GABA receptor, in: Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties (R. W. Olsen and J. C. Venter, eds.), Liss, New York, pp. 195–207.

    Google Scholar 

  • Traub, R. D., Miles, R., and Wong, R. K. S., 1989a, Origin of rhythmic population oscillations in the hippocampal slice, Science 243:1319–1325.

    CAS  Google Scholar 

  • Traub, R. D., Miles, R., and Wong, R. K. S., 1989b, Collective behaviors of the hippocampal CA3 region, Lectures on Mathematics in the Life Sciences Vol. 21, pp. 61–85, The American Mathematical Society, Providence, R.I.

    Google Scholar 

  • Tsien, R. Y., 1980, New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures, Biochemistry 19:2396.

    CAS  PubMed  Google Scholar 

  • Tsien, R. W., Giles, W., and Greengard, P., 1972, Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres, Nature New Biol. 241:181–183.

    Google Scholar 

  • Tsuyama, S., Bramblett, G. J., Huang, K. P., and Flavin, M., 1986, Calcium/phospholipiddependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases, J. Biol. Chem. 261:4110–4116.

    CAS  PubMed  Google Scholar 

  • Udenfriend, S., 1950, Identification of y-aminobutyric acid in brain by the isotope derivative method, J. BioL Chem. 187:65–69.

    CAS  PubMed  Google Scholar 

  • Uhlers, M. D., Chrivia, J. C., and McKnight, G. S., 1986, Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase, J. Biol. Chem. 261:15360–15363.

    Google Scholar 

  • Verdoorn, T. A., Kass, R. S., Seeburg, P. H., and Sakmann, B., 1990, Single channel properties of heterooligomeric rat GABAA receptors expressed using different alpha subunit variants, Soc. Neurosci. Abstr. 16:162–10.

    Google Scholar 

  • Vicini, S., Alho, H., Costa, E., Mienville, J. M., Santi, M. R., and Vacarino, F. M., 1986, Modulation of gamma-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures, Proc. Natl. Acad. Sci. USA 83:9269–9273.

    CAS  PubMed  Google Scholar 

  • Vincenzi, F. F., and Hinds, T. R., 1980,in: Calcium and Cell Function Vol. 1 (W. Y. Cheung, ed.), Academic Press, New York, pp. 128–165.

    Google Scholar 

  • Wagoner, P. K., and Palotta, B. S., 1988, Modulation of acetylcholine receptor desensitization by forskolin is independent of cAMP, Science 240:1655–1657.

    CAS  PubMed  Google Scholar 

  • Wallace, R. W., Tallant, E. A., and Cheung, W. Y., 1980, High levels of a heat-labile calmodulin-binding protein (CaM-BP8O) in bovine neostriatum, Biochemistry 19:1831–1837.

    CAS  PubMed  Google Scholar 

  • Walsh, D. A., and Ashby, C. D., 1973, Protein kinases: Aspects of their regulation and diversity, Rec. Prog. Horm. Res. 29:329–359.

    CAS  PubMed  Google Scholar 

  • Walsh, D. A., Ashby, C. D., Gonzalez, C., Calkins, D., Fischer, E. H., and Krebs, E. G., 1971, Purification and characterization of a protein kinase inhibitor of adenosine 3’,5’monophosphate-dependent protein kinases, J. Biol. Chem. 246:1977–1985.

    CAS  PubMed  Google Scholar 

  • Walter, U., Uno, I., Liu, A., and Greengard, P., 1977, Identification, characterization and quantitative measurement of cAMP-receptor proteins in cytosol of various tissues using a photoaffinity ligand, J. Biol. Chem. 252:6494–6500.

    CAS  PubMed  Google Scholar 

  • Weight, F. F., and White, G., 1990, Maintenance of GABAA receptor activated current may not require phosphorylation in adult primary sensory neurons, Soc. Neurosci. Abstr. 16, 162–2.

    Google Scholar 

  • Wise, B. C., Guidotti, A., and Costa, E., 1983, Phosphorylation induces a decrease in the biological activity of the protein inhibitor (GABA-modulin) of gamma-aminobutyric acid binding sites, Proc. Natl. Acad. Sci. USA 80:886–890.

    CAS  PubMed  Google Scholar 

  • Wolf, M., LeVine, H., III, May, W. S., Jr., Cuatrecasas, P., and Sahyoun, N., 1985, A model for intracellular translocation of protein kinase C involving synergism between Ca’ and phorbol esters, Nature 317:546–549.

    CAS  PubMed  Google Scholar 

  • Wood, J. G., Wallace, R. W., and Cheung, W. Y., 1980,in: Calcium and Cell Function Vol. 1 (W. Y. Cheung, ed.), Academic Press, New York, pp. 291–303.

    Google Scholar 

  • Woodgett, J. R., Hunter, T., and Gould, K. L., 1987,in: Cell Membranes: Methods and Reviews (E. L. Elson, W. A. Frazier, and L. Glaser, eds), Plenum Press, New York, Vol. 3, pp. 215–340.

    Google Scholar 

  • Worley, P. F., Baraban, J. M., and Snyder, S. H., 1986, Heterogeneous localization of protein kinase C in rat brain: Autoradiographic analysis of phorbol ester receptor binding, J. Neurosci. 6:199–207.

    CAS  PubMed  Google Scholar 

  • Yamauchi, T., and Fujisawa, H., 1983, Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II) which is involved in the activation of tryptophan 5-monooxygenase, Eur. J. Biochem. 123:15–21.

    Google Scholar 

  • Yang, S., Tallant, E. A., and Cheung, W. Y., 1982, Calcineurin is a calmodulin-dependent protein phosphatase, Biochem. Biophys. Res. Commun. 106:1419–1425.

    CAS  PubMed  Google Scholar 

  • Yarden, Y., and Ullrich, A., 1988, Growth factor receptor tyrosine kinases, Ann u. Rev. Biochem. 57:443–478.

    CAS  Google Scholar 

  • Ymer, S., Schofield, P. R., Draguhn, A., Werner, P., Koehler, M., and Seeburg, P. H., 1989, GABAA receptor l subunit heterogeneity: Functional expression of closed cDNAs, J. EMBO 8:1665–1670.

    CAS  Google Scholar 

  • Young, W. S., III, Niehoff, D. L., Kuhar, M. J., Beer, B., and Lippa, A. S., 1981, Multiple benzodiazepine receptor localization by light microscopic radiochemistry. J. Pharmacol. Exp. Ther. 216:425–430.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stelzer, A. (1992). Intracellular Regulation of GABAA-Receptor Function. In: Narahashi, T. (eds) Ion Channels. Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3328-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3328-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6466-5

  • Online ISBN: 978-1-4615-3328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics