Skip to main content

Folding, Assembly, and Posttranslational Modification of Proteins within the Lumen of the Endoplasmic Reticulum

  • Chapter
Endoplasmic Reticulum

Part of the book series: Subcellular Biochemistry ((SCBI,volume 21))

Abstract

The lumen of the endoplasmic reticulum (ER) is a protein-folding compartment. Of course, protein folding occurs in other subcellular compartments but this is incidental to their other major functions. In the case of the lumen of the ER, protein folding comes close to being its raison d’être. Proteins entering this compartment do so cotranslationally (see Klappa et al. and Simon and Blobel, this volume) and in a physical state that is certainly not folded. Most models show them as extended Polypeptide chains but there is little real evidence to describe their physical properties at the point of translocation; it has been suggested (Bychkova et al., 1988) that the “translocation-competent” state is close to the “molten globule” or “collapsed intermediate” state described by students of protein refolding in vitro. On the other hand, proteins leaving the ER lumen, and proceeding to subsequent compartments of the secretory pathway, are usually fully folded, as judged by their biological activity and recognition by conformation-specific antibodies. Indeed, correct folding and assembly is the major criterion used by the “quality control” system that selectively permits exit of secretory and cell-surface proteins from the ER lumen (Hurtley and Helenius, 1989). Thus, proteins destined for secretion enter the lumen unfolded and leave folded and active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abeijon, C., and Hirschberg, C. B., 1992, Topography of glycosylation reactions in the endoplasmic reticulum, Trends Biochem. Sci. 17:32–36.

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen, C. B., 1973, Principles that govern the folding of protein chains, Science 181:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Anson, M. L., 1945, Protein denaturation and the properties of protein groups, Adv. Protein Chem. 2:361–386.

    Article  CAS  Google Scholar 

  • Arber, S., Krause, K.-H., and Caroni, P., 1992, S-Cyclophilin is retained intracellularly via a unique COOH-terminal sequence and co-localises with the calcium storage protein calreticulum, J. Cell Biol. 116:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Baksh, S., and Michalak, M., 1991, Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains, J. Biol. Chem. 266:21458–21465.

    PubMed  CAS  Google Scholar 

  • Bassuk, J. A., Kao, W. W.-Y., Herzer, P., Kedersha, N. L., Seyer, J., DeMartino, J. A., Daugherty, B. L., Mark, G. E., III, and Berg, R. A., 1989, Prolyl-4-hydroxylase: Molecular cloning and the primary structure of the α-subunit from chick embryo, Proc. Natl. Acad. Sci. USA 86:7382–7386.

    Article  PubMed  CAS  Google Scholar 

  • Beckers, C. J. M., and Balch, W. E., 1990, Calcium and GTP: Essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus, J. Cell Biol. 108:1245–1249.

    Article  Google Scholar 

  • Beckers, C. J. M., Keller, D. S., and Balch, W. E., 1986, Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex, Cell 50:523–534.

    Article  Google Scholar 

  • Bergman, L. W., and Kuehl, W. M., 1979a, Formation of intermolecular disulphide bonds on nascent immunoglobulin Polypeptides, J. Biol. Chem. 254:5690–5694.

    PubMed  CAS  Google Scholar 

  • Bergman, L. W., and Kuehl, W. M., 1979b, Formation of an interchain disulfide bond on nascent immunoglobulin light chains, J. Biol. Chem. 254:8869–8876.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1987, Inositol triphosphate and diacylglycerol—Two interacting secondary messengers, Annu. Rev. Biochem. 56:159–193.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P., and Merlie, J. P., 1990, Mutational analysis of mouse muscle nicotinic acetylcholine receptor subunit assembly, J. Cell Biol. 111:2613–2622.

    Article  PubMed  CAS  Google Scholar 

  • Bole, D. G., Hendershot, L. M., and Kearney, J. F., 1986, Post-translational association of immunoglobulin heavy-chain binding protein with nascent heavy chain in non-secreting and secreting hybridomas, J. Cell Biol. 102:1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Bose, S., Freedman, R. B., 1992, Characterization of peptidyl-prolyl cis-trans isomerase (PPI) activity associated with the endoplasmic reticulum, Biochem. Soc. Trans. 20:256S.

    PubMed  CAS  Google Scholar 

  • Braakman, I., Helenius, J., and Helenius, A., 1992a, Manipulating disulphide bond formation and protein folding in the endoplasmic reticulum, EMBO J. 11:1717–1722.

    PubMed  CAS  Google Scholar 

  • Braakman, I., Helenius, J., and Helenius, A., 1992b, Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum, Nature 356:260–262.

    Article  PubMed  CAS  Google Scholar 

  • Brands, R., and Feltkamp, C. A., 1988, Wet-cleaving of cells: A method to introduce macromolecules into the cytoplasm, Exp. Cell Res. 176:309–318.

    Article  PubMed  CAS  Google Scholar 

  • Brandts, J. F., Halvorsen, H. R., and Brennan, M., 1975, Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerization of proline residues, Biochemistry 14:4953–4963.

    Article  PubMed  CAS  Google Scholar 

  • Bulleid, N. J., and Freedman, R. B., 1988, Defective co-translational formation of disulphide bonds in protein disulphide isomerase-deficient microsomes, Nature 335:649–651.

    Article  PubMed  CAS  Google Scholar 

  • Bulleid, N. J., and Freedman, R. B., 1990, Co-translational glycosylation of proteins in systems depleted of protein disulphide isomerase, EMBO J. 9:3527–3532.

    PubMed  CAS  Google Scholar 

  • Bulleid, N. J., Bassel-Duby, R. S., Freedman, R. B., Sambrook, J. F., and Gething, M.-J. H., 1992, Cell-free synthesis of enzymically active tissue-type Plasminogen activator, Biochem. J. 286:275–280.

    PubMed  CAS  Google Scholar 

  • Bychkova, V. E., Pain, R. H., and Pittsyn, O., 1988, The molten globule state is involved in the translocation of proteins across membranes, FEBS Lett. 238:231–234.

    Article  PubMed  CAS  Google Scholar 

  • Carlino, A., Toledo, H., Skaleris, D., DeLisio, R., Weissbach, H., and Brot, N., 1992, Interactions of liver GRP-78 and Escherichia coli recombinant GRP-78 with ATP: Multiple species and disaggregation, Proc. Natl. Acad. Sci. USA 89:2081–2085.

    Article  PubMed  CAS  Google Scholar 

  • Caroni, P., Rothenfluh, A., McGlynn, E., and Schneider, C., 1991, S-Cyclophilin: A new member of the cyclophilin family associated with the secretory pathway, J. Biol. Chem. 266:10739–10742.

    PubMed  CAS  Google Scholar 

  • Chappell, T. G., Konforti, B. B., Schmid, S. L., and Rothman, J. E., 1987, The ATP-ase core of a clathrin uncoating protein, J. Biol. Chem. 262:746–751.

    PubMed  CAS  Google Scholar 

  • Colley, N. J., Baker, N. J., Stamnes, M. A., and Zuker, C. A., 1991, The cyclophilin homolog NinaA is required in the secretory pathway, Cell 67:255–263.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, C. S., Doms, R. W., Bolzau, E. M., Webster, R. G., and Helenius, A., 1986, Assembly of influenza hemagglutinin trimers and its role in intracellular transport, J. Cell Biol. 103:1179–1191.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, C. S., Zimmer, K.-P., Wagner, K. R., Healey, G. A., Mellman, I., and Helenius, A., 1988, Folding and trimerisation and transport are sequential events in the biogenesis of influenza hemagglutinin, Cell 53:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. E., 1978, Experimental studies of protein folding and unfolding, Prog. Biophys. Mol. Biol. 33:231–297.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. E., 1992, Protein Folding, Freeman, New York.

    Google Scholar 

  • Creighton, T. E., Hillson, D. E., and Freedman, R. B., 1980, Catalysis by protein disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds, J. Mol. Biol. 142: 43–62.

    Article  PubMed  CAS  Google Scholar 

  • Das, R. C., and Heath, E. C., 1980, Dolichyldiphosphoryl oligosaccharide-protein oligosaccharyltransferase: Solubilisation, purification and properties, Proc. Natl. Acad. Sci. USA 77:3811–3815.

    Article  PubMed  CAS  Google Scholar 

  • Dean, N., and Pelham, H. R. B., 1990, Recycling of proteins from the Golgi compartment to the endoplasmic reticulum in yeast, J. Cell Biol. 111:369–377.

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo, F., Goldberger, R. F., Steers, E., Jr., Givol, D., and Anfinsen, C. B., 1966, Purification and properties of an enzyme from beef liver which catalyses sulfhydryl-disulfide interchange in proteins, J. Biol. Chem. 241:1562–1567.

    PubMed  Google Scholar 

  • Deshaies, R. J., Kepes, F., and Bohni, P. C, 1989, Genetic dissection of the early stages of protein secretion in yeast, Trends Genet. 5:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A., and Rutter, W. J., 1985, Sequence of protein disulphide isomerase and implications of its relation to thioredoxin, Nature 317:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J., Goldberger, R. F., and Anfinsen, C. B., 1963, The genetic control of tertiary protein structure: Studies with model systems, Cold Spring Harbor Symp. Quant. Biol. 28:439–449.

    Article  CAS  Google Scholar 

  • Esmon, C. T., Sadowski, J. A., and Suttie, J. W., 1975, A new carboxylation reaction: The vitamin K-dependent incorporation of H14CO3 into Prothrombin, J. Biol. Chem. 250:4744–4748.

    PubMed  CAS  Google Scholar 

  • Evans, E. A., Gilmore, R., and Blobel, G., 1986, Purification of microsomal signal peptidase as a complex, Proc. Natl. Acad. Sci. USA 83:581–585.

    Article  PubMed  CAS  Google Scholar 

  • Eyre, D., 1987, Collagen cross-linking amino acids, Methods Enzymol. 144:115–139.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, R., Honey, N., Murant, S. J., Bossier, P., Schultz, L., Montgomery, D., Ellis, R. W., Freedman, R. B., and Tuite, M. F., 1991, Protein disulphide isomerase is essential for viability in Saccharomyces cerevisiae, Gene 108:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Fessier, L. I., and Fessier, J. H., 1974, Protein assembly of procollagen and the effects of hydroxylation, J. Biol. Chem. 249:7637–7646.

    Google Scholar 

  • Fischer, G., and Bang, H., 1983, The refolding of urea denatured ribonuclease-A is catalysed by peptidyl-prolyl isomerase, Biochim. Biophys. Acta 828:39–42.

    Article  Google Scholar 

  • Fischer, G., Bang, H., Berger, E., and Schellenberger, A., 1985, Conformational specificity of chymotrypsin toward proline-containing substrates, Biochim. Biophys. Acta 791:87–97.

    Article  Google Scholar 

  • Flaherty, K. M., DeLuca-Flaherty, C., and McKay, D. B., 1990, Three dimensional structure of the ATPase fragment of a 70 OOODa heat shock protein, Nature 346:623–628.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, K. M., McKay, D. B., Kabsch, W., and Holmes, K. C., 1991, Similarity of the three dimensional structures of actin and the ATPase fragment of the 70kDa heat shock protein, Proc. Natl. Acad. Sci. USA 88:5041–5045.

    Article  PubMed  CAS  Google Scholar 

  • Flajnik, M. F., Canel, C., Kramer, J., and Kasabara, M., 1991, Evolution of the major histocompatibility complex—molecular cloning of the major histocompatibility complex class I from the amphibian Xenopus, Proc. Natl. Acad. Sci. USA 88:537–541.

    Article  PubMed  CAS  Google Scholar 

  • Fliegel, L., Burns, K., MacLennan, D. H., Rathmeier, R. A. F., and Michalak, M., 1989a, Molecular cloning of the high affinity calcium binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulin, J. Biol. Chem. 264:21522–21528.

    PubMed  CAS  Google Scholar 

  • Fliegel, L., Burns, K., Wlasichuk, K., and Michalak, M., 1989b, Peripheral membrane proteins of the sarcoplasmic and endoplasmic reticulum—Comparison of the carboxy-terminal amino acid sequences, Biochem. Cell Biol. 67:696–702.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G. C., Chapell, T. G., and Rothman, J. E., 1989, Peptide binding and release by proteins implicated as catalysts of protein assembly, Science 245:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E., 1991, Peptide binding specificity of the molecular chaperone BiP, Nature 353:726–730.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R. B., 1984, Native disulphide bond formation in protein synthesis: Evidence for the role of protein disulphide isomerase, Trends Biochem. Sci. 9:438–441.

    Article  CAS  Google Scholar 

  • Freedman, R. B., 1992, Protein folding in the cell, in Protein Folding (T. E. Creighton, ed.), pp. 455–539, Freeman, New York.

    Google Scholar 

  • Freedman, R. B., Hawkins, H. C., Murant, S. J., and Reid, L., 1988, Protein disulphide isomerase: A homologue of thioredoxin implicated in the biosynthesis of secretory proteins, Biochem. Soc. Trans. 16:96–99.

    PubMed  CAS  Google Scholar 

  • Freedman, R. B., Bulleid, N. J., Hawkins, H. C., and Paver, J. L., 1989, Role of protein disulphide isomerase in the expression of native proteins, Biochem. Soc. Symp. 55:167–192.

    PubMed  CAS  Google Scholar 

  • Geetha-Habib, M., Noiva, R., Kaplan, H. A., and Lennarz, W. J., 1988, Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57kD luminal proteins of the endoplasmic reticulum, Cell 54:1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J. H., and Sambrook, J., 1992, Protein folding in the cell, Nature 355:33–45.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J. H., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of the influenza hemagglutinin: The role of intracellular folding, Cell 46:939–950.

    Article  PubMed  CAS  Google Scholar 

  • Gierasch, L. M., 1989, Signal sequences, Biochemistry 28:924–930.

    Google Scholar 

  • Goldberger, R. F., Epstein, C. J., and Anfinsen, C. B., 1963, Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver, J. Biol. Chem. 238:628–635.

    PubMed  CAS  Google Scholar 

  • Goldenberg, D. P., 1992, Native and non-native intermediates in the BPTI folding pathway, Trends Biochem. Sci. 17:257–261.

    Article  PubMed  CAS  Google Scholar 

  • Haas, I., and Wabl, M., 1983, Immunoglobulin heavy chain binding protein, Nature 306:387–389.

    Article  PubMed  CAS  Google Scholar 

  • Haendler, B., Kelder, R., Hiestand, P. C., Kocher, H. P., Wegmann, G., and Moiva, N. R., 1989, Yeast cyclophilin: Isolation and characterisation of the protein, cDNA and gene, Gene 83:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Hanks, S. K., Quinn, A. M., and Hunter, T., 1988, The protein kinase family—Conserved features and deduced phylogeny of the catalytic domains, Science 241:42–52.

    Article  PubMed  CAS  Google Scholar 

  • Hanover, J. A., and Lennarz, W. J., 1981, Transmembrane assembly of membrane and secretory glycoproteins, Arch. Biochem. Biophys. 211:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Hantgan, R. R., Hammes, G. G., and Scheraga, H. A., 1974, Pathways of folding of reduced pancreatic ribonuclease, Biochemistry 13:3421–3431.

    Article  PubMed  CAS  Google Scholar 

  • Hasel, K. W., Glass, J. R., Godbout, M., and Sutcliffe, J. G., 1991, An endoplasmic reticulum specific cyclophilin, Mol. Cell Biol. 11:3484–3491.

    PubMed  CAS  Google Scholar 

  • Hawkins, H. C., and Freedman, R. B., 1991, The reactivities and ionisation properties of the active site dithiol groups of mammalian protein disulphide isomerase, Biochem. J. 275:335–339.

    PubMed  CAS  Google Scholar 

  • Hawkins, H. C., de Nardi, M. and Freedman, R. B. 1991, Redon properties and cross-linking of the dithid/disulphide active sites of mammalian protein disulphide-isomerase, Biochem, J. 275:341–348.

    CAS  Google Scholar 

  • Hayano, T., Takahashi, N., Kato, S., Maki, N., and Suzuki, M., 1991, Two distinct forms of peptidyl-prolyl cis-trans isomerase are expressed separately in the periplasmic and cytoplasmic compartments in E. coli cells, Biochemistry 30:3041–3048.

    Article  PubMed  CAS  Google Scholar 

  • Helaakoski, T., Vuori, K., Myllyla, R., Kivirikko, K. I., and Pihlajaniemi, T., 1989, Molecular cloning of the α-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of transcripts, Proc. Natl. Acad. Sci. USA 86:4392–4396.

    Article  PubMed  CAS  Google Scholar 

  • Hendershot, L. M., 1990, Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition, J. Cell Biol. 111:829–837.

    Article  PubMed  CAS  Google Scholar 

  • Hendershot, L. M., Bole, D. G., Köhler, G., and Kearney, J. F., 1987, Assembly and secretion of heavy chains that do not associate with immunoglobulin heavy-chain binding protein, J. Cell Biol. 104:761–767.

    Article  PubMed  CAS  Google Scholar 

  • Hendershot, L. M., Ting, J., and Lee, A. S., 1988, Identity of immunoglobulin heavy chain binding protein with the 78 000 dalton glucose-regulated protein and the role of post-translational modifications in its binding function, Mol. Cell Biol. 8:4250–4256.

    PubMed  CAS  Google Scholar 

  • Hirschberg, C. B., and Snider, M. D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu. Rev. Biochem. 56:63–88.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, B. R., Ulrich, M. W. M., Jacobs, M., Vermeer, C., Walsh, C., Furie, B., and Furie, B. C., 1989, Vitamin K-dependent carboxylase: Affinity purification from bovine liver using a synthetic propeptide containing the 7-carboxylation recognition site, Proc. Natl. Acad. Sci. USA 86:6893–6897.

    Article  PubMed  CAS  Google Scholar 

  • Hurtley, S. M., and Helenius, A., 1989, Protein oligomerisation in the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:277–307.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek-Kelly, S., and Herscovics, A., 1988, Glycoprotein biosynthesis in Saccharomyces cerevisiae; purification of the α-mannosidase which removes one specific mannose residue from Man9-Man8, J. Biol. Chem. 263:14757–14763.

    PubMed  CAS  Google Scholar 

  • Jorgensen, M. J., Cantor, A. B., Furie, B. C., Brown, C. L., Shoemaker, C. B., and Furie, B., 1987a, Recognition site directing vitamin-K dependent 7-carboxylation residues on the propeptide of factor IX, Cell 48:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, M. J., Cantor, A. B., Furie, B. C., and Furie, B., 1987b, Expression of completely 7-carboxylated recombinant human Prothrombin, J. Biol. Chem. 262:6729–6734.

    PubMed  CAS  Google Scholar 

  • Kaderbhai, M. A., and Austen, B. M., 1984, Dog pancreatic microsomal-membrane Polypeptides analysed by two-dimensional electrophoresis, Biochem. J. 217:145–157.

    PubMed  CAS  Google Scholar 

  • Kaderbhai, M. A., and Austen, B. M., 1985, Studies on the formation of intrachain disulphide bonds in newly synthesised bovine prolactin—role of protein disulphide isomerase, Eur. J. Biochem. 153:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Kassenbrock, C. K., and Kelly, R. B., 1989, Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides, EMBO J. 8:1461–1467.

    PubMed  CAS  Google Scholar 

  • Kassenbrock, C. K., Garcia, P. D., Walter, P., and Kelly, R. B., 1988, Heavy-chain binding protein recognises aberrant Polypeptides translocated in vitro, Nature 333:90–93.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, D. J., Kreibich, G., and Gilmore, R., 1992, Oligosaccharyltransferase activity is associated with a complex composed of ribophorins I and II and a 48kD protein, Cell 69:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Kilker, R. D., Saunier, B., Tkacz, J. S., and Herscovics, A., 1980, Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal galactose from the Oligosaccharide Glc3Man9GlcNac2, J. Biol. Chem. 256:5299–5303.

    Google Scholar 

  • Kivirikko, K. I., and Myllyla, R., 1979, Collagen glycosyltransferases, Int. Rev. Connect. Tissue Res. 8:23–37.

    PubMed  CAS  Google Scholar 

  • Kivirikko, K. I., and Myllyla, R., 1980, Hydroxylation of prolyl and lysyl residues, in: The Enzymology of Post-Translational Modifications of Proteins (R. B. Freedman and H. C. Hawkins, eds.), pp. 53–104, Academic Press, New York.

    Google Scholar 

  • Kivirikko, K. I., and Myllyla, R., 1987, Recent developments in post-translational modification of collagen: Intracellular processing, Methods Enzymol. 144:96–114.

    Article  PubMed  CAS  Google Scholar 

  • Kivirikko, K. I., Myllyla, R., and Pihlajaniemi, T., 1991, Hydroxylation of proline and lysine residues in collagens and other plant and animal proteins, in Post-Translational Modifications of Proteins (J. J. Harding and M. J. C. Crabbe, eds.), pp. 1–51, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Koch, G. L. E., 1987, Reticuloplasmins: A novel group of proteins in the endoplasmic reticulum, J. Cell Sci. 87:491–492.

    PubMed  CAS  Google Scholar 

  • Koch, G. L. E., Smith, M., Macer, D., Webster, P., and Mortara, R., 1986, Endoplasmic reticulum contains a common abundant calcium-binding glycoprotein, endoplasmin, J. Cell Sci. 86:217–232.

    PubMed  CAS  Google Scholar 

  • Koivu, J., Myllyla, R., Helakoski, T., Pihlajaniemi, T., Tasanen, K., and Kivirikko, K. I., 1987, A single Polypeptide acts as both the β-subunit of prolyl-4-hydroxylase and as protein disulphide isomerase, J. Biol. Chem. 262:6447–6449.

    PubMed  CAS  Google Scholar 

  • Koletsky, A. J., Harding, M. W., and Handschumaker, R. E., 1986, Cyclophilin: distribution and variant properties in normal and neoplastic tissues, J. Immunol. 137:1054–1059.

    PubMed  CAS  Google Scholar 

  • Kornfeld, S., 1982, Oligosaccharide processing during glycoprotein biosynthesis, in: The Glycoconjugates, Vol. III (M. Horowitz, ed.), pp. 3–23, Academic Press, New York.

    Google Scholar 

  • Kornfeld, S., and Kornfeld, R., 1985, Assembly of asparagine linked Oligosaccharides, Annu. Rev. Biochem. 54:631–664.

    Article  PubMed  CAS  Google Scholar 

  • Koser, P. L., Livi, G. P., Levy, M. A., Rosenberg, M., and Bergsma, D. J., 1990, A Candida albicans homolog of a human cyclophilin gene encodes peptidyl-prolyl cis-trans isomerase, Gene 96:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi, Y, Normington, K., Press, E., Slaughter, C., Sambrook, J., and Gething, M.-J., 1989, Identification of immunoglobulin heavy chain binding protein as glucose regulated protein-78 on the basis of amino acid sequence, immunological cross-reactivity and functional activity, J. Cell Sci. Suppl. 11:115–137.

    PubMed  CAS  Google Scholar 

  • Krause, G., Lundstrom, J., Barea, J. L., De la Cuesta, C. P., and Holmgren, A., 1991, Mimicking the active site of protein disulphide isomerase by substitution of proline-34 in Escherichia coli thioredoxin, J. Biol. Chem. 266:9494–9500.

    PubMed  CAS  Google Scholar 

  • LaMantia, M. L., Miura, T., Tagikawa, H., Kaplan, H. A., Lennarz, W. J., and Mizunaga, T., 1991, Glycosylation site binding protein and protein disulphide isomerase are identical and essential for cell viability in yeast, Proc. Natl. Acad. Sci. USA 88:4453–4457.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, N., and Freedman, R. B., 1983a, Structural properties of homogeneous protein disulphide isomerase from bovine liver purified by a rapid high yielding procedure, Biochem. J. 213:225–234.

    PubMed  CAS  Google Scholar 

  • Lambert, N., and Freedman, R. B., 1983b, Kinetics and specificity of homogeneous protein disulphide isomerase in protein disulphide isomerization and in thiol-protein-disulphide oxidoreduction, Biochem. J. 213:235–243.

    PubMed  CAS  Google Scholar 

  • Lang, K., Schmid, F. X., and Fischer, G., 1987, Catalysis of protein folding by prolyl isomerase, Nature 329:268–270.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S., 1987, Co-ordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells, Trends Biochem. Sci. 12:20–23.

    Article  CAS  Google Scholar 

  • Lewis, M. J., and Pelham, H. R. B., 1992, Ligand induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum, Cell 68:353–364.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S., and Craig, E. A., 1988, The heat shock proteins, Annu. Rev. Genet. 22:631–677.

    Article  PubMed  CAS  Google Scholar 

  • Macer, D. R. J., and Koch, G. L. E., 1988, Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum, J. Cell Sci. 91:61–70.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., and Rose, J. K., 1988a, Influence of new glycosylation sites on expression of the vesicular stomatitus-virus G-protein at the plasma membrane, J. Biol. Chem. 263:5948–5954.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., and Rose, J. K., 1988b, Vesicular stomatitus-virus G-protein with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulphide bonding, J. Biol. Chem. 263:5955–5960.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., Florkiewicz, R. Z., and Rose, J. K., 1985, A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitus virus-G protein to the cell surface, Mol. Cell Biol. 5:3074–3083.

    PubMed  CAS  Google Scholar 

  • McLaughlin, M. M., Bosard, M. J., Koser, P. L., Cafferkey, R., Morris, R. A., Miles, L. N., Strickler, J., Bergsma, D. J., Levy, M. A., and Livi, G. P., 1992, The yeast cyclophilin multigene family: Purification, cloning and characterisation of a new isoform, Gene 111:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Maki, R. G., Old, L. J., and Srivastava, P. K., 1990, Human homolog of murine tumour rejection protein, GP96:5’, regulatory and coding regions and relationship to stress induced proteins, Proc. Natl. Acad. Sci. USA 87:5658–5662.

    Article  PubMed  CAS  Google Scholar 

  • Michalak, M., Milner, R. E., Burns, K., and Opas, M., 1992, Calreticulin, Biochem. J. 285:681–692.

    PubMed  CAS  Google Scholar 

  • Miller, S. G., and Moore, H.-P. H., 1991, Reconstitution of constitutive secretion using semi-intact cells: Regulation by GTP but not calcium, J. Cell Biol. 112:39–54.

    Article  PubMed  CAS  Google Scholar 

  • Mitraki, A., and King, J., 1989, Protein folding intermediates and inclusion body formation, Biotechnology 7:690–697.

    Article  CAS  Google Scholar 

  • Morjana, N., and Gilbert, H. F., 1991, Effect of protein and peptide inhibitors on the activity of protein disulphide isomerase, Biochemistry 30:4985–4990.

    Article  PubMed  CAS  Google Scholar 

  • Myllyla, R., Pihlajaniemi, T., Pajunen, L., Turpeeniemi-Hujanen, T., and Kivirikko, K. I., 1991, Molecular-cloning of chick lysyl hydroxylase: Little homology in primary structure to the two types of subunit of prolyl-4-hydroxylase, J. Biol. Chem. 266:2805–2810.

    PubMed  CAS  Google Scholar 

  • Nguyen, T. H., Law, D. T S., and Williams, D. B., 1991, Binding protein BiP is required for translocation of secretory proteins into the endoplasmic reticulum in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 88:1565–1569.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C.V., and Blobel, G., 1989, Nascent secretory chain binding and translocation are distinct processes: Differentiation by chemical alkylation, J. Cell Biol. 108:789–795.

    Article  PubMed  CAS  Google Scholar 

  • Noiva, R., Kaplan, H. A., and Lennarz, W. J., 1991, Glycosylation site-binding protein is not required for N-linked glycoprotein synthesis, Proc. Natl. Acad. Sci. USA 88:1986–1990.

    Article  PubMed  CAS  Google Scholar 

  • Normington, K., Kohno, K., Kozutsumi, Y., Gething, M.-J., and Sambrook, J., 1989, S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP, Cell 57:1223–1236.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, B. R., Berg, R. A., Kivirikko, K. I., and Prokop, D. J., 1973, Structure of protocollagen proline hydroxylase from chick embryos, Eur. J. Biochem. 35:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Paver, J. L., Hawkins, H. C., and Freedman, R. B., 1989, Preparation and characterization of dog pancreas microsomal membranes specifically depleted of protein-disulphide isomerase, Biochem. J. 257:657–663.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose regulated proteins, Cell 46:959–961.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1988, Evidence that lumenal ER proteins are sorted from secreted proteins in a post-ER compartment, EMBO J. 7:913–918.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1990, The retention signal for soluble proteins of the endoplasmic reticulum, Trends Biochem. Sci. 15:483–486.

    Article  PubMed  Google Scholar 

  • Pihlajaniemi, T., Helakoski, T., Tasanen, K., Myllyla, R., Huhtala, M.-L., Koivu, J., and Kivirikko, K. I., 1987, Molecular cloning of the β-subunit of human prolyl-4-hydroxylase. This product and protein disulphide isomerase are products of the same gene, EMBO J. 6:643–649.

    PubMed  CAS  Google Scholar 

  • Pittsyn, O., 1992, The molten globule state, in: Protein Folding (T. E. Creighton, ed.), pp. 243–300, Freeman, New York.

    Google Scholar 

  • Pollack, L., and Atkinson, P. H., 1983, Correlation of glycosylation forms with position in amino acid sequence, J. Cell Biol. 97:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Price, E. R., Zydowsky, L. D., Jin, M., Baker, C. H., McKeon, F. D., and Walsh, C. T., 1991, Human cyclophilin B: A second gene encodes a peptidyl-prolyl isomerase with a signal sequence, Proc. Natl. Acad. Sci. USA 88:1903–1907.

    Article  PubMed  CAS  Google Scholar 

  • Rippmann, F., Taylor, W. R., Rothbard, J. B., and Green, N. M., 1991, A hypothetical model for the peptide-binding domain of HSP-70 based on the peptide binding domain of HLA, EMBO J. 10:1053–1059.

    PubMed  CAS  Google Scholar 

  • Rose, J. K., and Doms, R. W., 1988, Regulation of protein export from the endoplasmic reticulum, Annu. Rev. Cell Biol. 4:257–288.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M. D., Misra, L. M., and Vogel, J. P., 1989, KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene, Cell 57:1211–1221.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, J. E., 1987, Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack, Cell 50:521–522.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D., and Schekman, R. W., 1992, Sec61p and BiP directly facilitate Polypeptide translocation into the endoplasmic reticulum, Cell 69:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Scheele, G., and Jacoby, R., 1982, Conformational changes associated with proteolytic processing of pre-secretory proteins allows glutathione catalysed formation of disulfide bonds, J. Biol. Chem. 257:12277–12282.

    PubMed  CAS  Google Scholar 

  • Schmid, F. X., 1992, Kinetics of unfolding and refolding of single-domain proteins, in: Protein Folding (T. E. Creighton, ed.), pp. 97–242, Freeman, New York.

    Google Scholar 

  • Schreiber, S. L., 1991, Chemistry and biology of the immunosuppressants and their immunosuppressive ligands, Science 251:283–287.

    Article  PubMed  CAS  Google Scholar 

  • Schulke, N., and Schmid, F. X., 1988, Effect of glycosylation on the mechanism of renaturation of invertase from yeast, J. Biol. Chem. 263:8832–8837.

    PubMed  CAS  Google Scholar 

  • Semenza, J. C., Hardwick, K. G., Dean, N., and Pelham, H. R. B., 1990, ERD2, a yeast gene required for the receptor-mediated retrieval of luminal endoplasmic reticulum proteins from the secretory pathway, Cell 61:1349–1357.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein, S. Kelleher, D. J., and Silmore, R., 1992, The 48-kDa subunit of the mammalian oligosaccharyl transferase complex is homologous to the essential yeast protein WBP1. J. Biol. Chem. 267:23658–23663.

    PubMed  CAS  Google Scholar 

  • Skowyra, D., Georgopoulos, C., and Zyclicz, M., 1990, The E. coli dnaK gene product, the HSP-70 homolog can reactivate heat denatured RNA Polymerase in an ATP hydrolysis dependent manner, Cell 62:939–944.

    Article  PubMed  CAS  Google Scholar 

  • Sonderfeld-Fresko, S., and Proia, R. L., 1988, Synthesis of a catalytically active lysosomal-enzyme beta-hexosaminidase-B, in a cell-free system, J. Biol. Chem. 263:13463–13469.

    PubMed  CAS  Google Scholar 

  • Soute, B. A. M., Groenen-van-Dooren, M. M. C. L., Holmgren, A., Lundstrom, J., and Vermeer, C., 1992, Stimulation of dithiol-dependent reductases in the vitamin-K cycle by the thioredoxin system, Biochem. J. 281:255–259.

    PubMed  CAS  Google Scholar 

  • Steinmann, B., Bruckner, P., and Superti-Furga, A., 1990, Cyclosporin-A slows collagen triple helix formation in vivo: Indirect evidence for a physiological role of peptidyl-prolyl cis-trans isomerase, J. Biol. Chem. 265:1299–1303.

    Google Scholar 

  • Stewart, D. E., Sarkar, A., and Wampler, J. E., 1990, Occurrence and role of cis peptide bonds in protein structures, J. Mol. Biol. 214:253–260.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, H. F., Berridge, M. J., and Schulz, I., 1983, Release of calcium from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate, Nature 306:67–68.

    Article  PubMed  CAS  Google Scholar 

  • Suttie, J. W., 1980, Carboxylation of glutamyl residues, in: The Enzymology of Post-Translational Modifications of Proteins (R. B. Freedman and H. C. Hawkins, eds.), pp. 213–258, Academic Press, New York.

    Google Scholar 

  • Tai, M. M., Furie, B.C., and Furie, B., 1980, Conformation-specific antibodies directed against the bovine Prothrombin complex, J. Biol. Chem. 255:2790–2795.

    PubMed  CAS  Google Scholar 

  • Tanner, W., and Lehle, L., 1987, Protein glycosylation in yeast, Biochim. Biophys. Acta 906:81–99.

    Article  PubMed  CAS  Google Scholar 

  • Turpeeniemi-Hansen, T. M., Puistola, U., and Kivirikko, K., 1980, Isolation of lysyl hydroxylase, an enzyme of collagen synthesis, from chick embryos as a homogeneous protein, Biochem. J. 189:247–253.

    Google Scholar 

  • Van, P. N., Peter, F., and Soling, H.-D., 1989, Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium, J. Biol. Chem. 264:17494–17501.

    PubMed  CAS  Google Scholar 

  • van Haarlem, L. J. M., Soute, B. A. M., and Vermeer, C., 1987, Vitamin-K dependent carboxylase: Possible role for thioredoxin in the reduction of vitamin-K metabolites in liver, FEBS Lett. 222:353–357.

    Article  PubMed  Google Scholar 

  • Vermeer, C., 1990, γ-Carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase, J. Biochem. 266:625–636.

    CAS  Google Scholar 

  • Vogel, J. P., Misra, L. M., and Rose, M. D., 1990, Loss of Bip/GRP78 function blocks translocation of secretory proteins in yeast, J. Cell Biol. 110:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G., 1985, Signal sequences: The limits of variation, J. Mol. Biol. 184:99–105.

    Article  Google Scholar 

  • Vuori, K., Myllyla, R., Pihlajaniemi, T., and Kivirikko, K. I., 1992a, Expression and site-directed mutagenesis of human protein disulphide isomerase in Escherichia coli, J. Biol. Chem. 267:7211–7214.

    PubMed  CAS  Google Scholar 

  • Vuori, K., Pihlajaniemi, T., Manilla, M., and Kivirikko, K., 1992b, Characterisation of the human prolyl-4-hydroxylase tetramer and its multifunctional protein disulphide-isomerase subunit synthesized in a baculovirus expression system, Proc. Natl. Acad. Sci. USA 89:7467–7470.

    Article  PubMed  CAS  Google Scholar 

  • Watson, M. E. E., 1984, Compilation of published signal sequences, Nucleic Acid Res. 12:5145–5164.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, J. S., and Kim, P. S., 1991, Reexamination of the folding pathway of BPTI: Predominance of native intermediates, Science 253:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  • Welch, W. J., 1990, The mammalian stress response: Cell physiology and biochemistry of stress proteins, in: Stress Proteins in Biology and Medicine (R. I. Morimoto, A. Tissieres, and G. Georgopoulos, eds.), 223–278, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Wells, W. W., Xu, D. P., Yang, Y, and Rocque, P. A., 1990, Mammalian thioltransferase (glutaredoxin) and protein disulphide isomerase have dehydroascorbate reductase activity, J. Biol. Chem. 265:15361–15364.

    PubMed  CAS  Google Scholar 

  • Wetterau, J. R., Combs, K. A., Spinner, S. N., and Joiner, B. J., 1990, Protein disulphide isomerase is a component of the microsomal triglyceride transfer protein complex, J. Biol. Chem. 265:9800–9807.

    PubMed  CAS  Google Scholar 

  • Wetterau, J. R., Aggerback, L. P., Laplaud, P. M., and McLean, L. R., 1991a, Structural properties of the microsomal triglyceride-transfer protein complex, Biochemistry 30:4406–4412.

    Article  PubMed  CAS  Google Scholar 

  • Wetterau, J. R., Combs, K. A., McLean, L. R., Spinner, S. N., and Aggerback, L. P., 1991b, Protein disulphide isomerase appears necessary to maintain catalytically active structure of the microsomal triglyceride-transfer protein, Biochemistry 30:9728–9735.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Buchner, J., Zimmerman, R., and Jakob, U., 1992, HSP-90 chaperones protein folding in vitro, Nature 358:169–170.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., Zhang, Y, Sabatini, D. D., and Kreibich, G., 1989, Reconstitution of translocationcompetent membrane vesicles from detergent solubilised dog pancreas rough microsomes, Proc. Natl. Acad. Sci. USA 86:9931–9935.

    Article  PubMed  CAS  Google Scholar 

  • Zapun, A., Creighton, T. E., Rowling, P. J. E., and Freedman, R. B., 1992, Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum, Proteins 14:10–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rowling, P.J.E., Freedman, R.B. (1993). Folding, Assembly, and Posttranslational Modification of Proteins within the Lumen of the Endoplasmic Reticulum. In: Borgese, N., Harris, J.R. (eds) Endoplasmic Reticulum. Subcellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2912-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2912-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6263-0

  • Online ISBN: 978-1-4615-2912-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics