Skip to main content

Oxidation of Methane by Deep-Sea Mytilids in the Gulf of Mexico

  • Chapter
Biogeochemistry of Global Change

Abstract

At least four different species of mytilids which harbor abundant bacterial symbionts in their gills have been discovered in three general areas of the Gulf of Mexico. Two of the species harbor methanotrophic symbionts, one harbors both methanotrophic and chemoautotrophic sulfur-oxidizing symbionts, and the fourth harbors only chemoautotrophic sulfur-oxidizing symbionts. Mytilids with methanotrophic symbionts can reach very high densities and dominate the habitats in which they occur. Estimates of methane oxidation by the most shallow of these mytilid communities (500–700 m) are made based on mussel population size structures and densities, measurements of live animal methane oxidation rates and requirements for methane, in situ levels of dissolved methane, and the empirically determined relation between shell size and tissue biomass. This estimation indicates that oxidation rates between 22.4 and 42.4 g CH4 m-2 d-1 are occurring within beds of these mytilids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anthony, C., and L.J. Zatman. 1965. The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem. J. 96:808–812.

    CAS  Google Scholar 

  2. Bayne, B.L. 1976. Marine Mussels, Their Ecology and Physiology, Cambridge University Press, New York.

    Google Scholar 

  3. Brooks, J.M., M.C. Kennicutt, C.R. Fisher, S.A. Macko, K. Cole, J.J. Childress, R.R. Bidigare, and R.D. Vetter. 1987. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 20:1138–1142.

    Article  Google Scholar 

  4. Brooks, J.M., D.A. Wiesenburg, H. Roberts, R.S. Carney, I.R. MacDonald, C.R. Fisher, N.L.J. Guinasso, W.W. Sager, S.J. McDonald, R.A.J. Burke, P. Aharon, and T.J. Bright. 1990. Salt, seeps and symbiosis in the Gulf of Mexico. EOS 71:1772–1773.

    Article  Google Scholar 

  5. Cary, C., B. Fry, H. Felbeck, and R.D. Vetter. 1988. Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment. Marine Biol. 100:411–418.

    Article  Google Scholar 

  6. Cary, S.C., C.R. Fisher, and H. Felbeck. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240:78–80.

    Article  CAS  Google Scholar 

  7. Cavanaugh, C.M. 1985. Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Washington 6:373–388.

    Google Scholar 

  8. Cavanaugh, C.M., P.R. Levering, J.S. Maki, M.E. Lidstrom, and R. Mitchell. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–348.

    Article  Google Scholar 

  9. Childress, J.J., C.R. Fisher, J.M. Brooks, M.C. Kennicutt II, R. Bidigare, and A. Anderson. 1986. A methanotrophic marine molluscan symbiosis: Mussels fueled by gas. Science 233:1306–1308.

    Article  CAS  Google Scholar 

  10. Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338.

    Article  CAS  Google Scholar 

  11. Fisher, C.R. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2:399–436.

    CAS  Google Scholar 

  12. Fisher, C.R., J.M. Brooks, J.S. Vodenichar, J.M. Zande, J.J. Childress, and R.A. Burke Jr. 1993. The co-occurrence of methanotrophic and chemoantrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Marine Ecol. (in press).

    Google Scholar 

  13. Fisher, C.R., J.J. Childress, A.J. Arp, J.M. Brooks, D. Distel, J.A. Favuzzi, H. Felbeck, R. Hessler, K.S. Johnson, M.C. Kennicutt II, S.A. Macko, A. Newton, M.A. Powell, G.N. Somero, and T. Soto. 1988. Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos rift. Deep-Sea Res. 35:1769–1792.

    Article  Google Scholar 

  14. Fisher, C.R., J.J. Childress, R.S Oremland, and R.R. Bidigare. 1987. The importance of methane and thiosulphate in the metabolism of the symbionts of two deep-sea mussels. Marine Biol. 96:59–71.

    Article  CAS  Google Scholar 

  15. Fisher, C.R., M.C. Kennicutt II and J.M. Brooks. 1990. Stable carbon isotopic evidence for carbon limitation in hydrothermal vent vestimentiferans. Science 247: 1094–1096.

    Article  CAS  Google Scholar 

  16. Frenzel, P., B. Thebrath, and R. Conrad. 1990. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol. Ecol. 73:149–158.

    CAS  Google Scholar 

  17. Hecker, B. 1985. Fauna from a cold sulfur seep in the Gulf of Mexico: Comparison with hydrothermal vent communities and evolutionary implications. Bull. Biol. Soc. Washington 6:465–474.

    Google Scholar 

  18. Kenk, V.C., and B.R. Wilson. 1985. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift Zone. Malacologia 26:253–271.

    Google Scholar 

  19. Kennicutt, M.C., II, J.M. Brooks, R.R. Bidigare, and G.J. Denoux. 1988. Gulf of Mexico hydrocarbon seep communities-I. Regional distribution of hydrocarbon seepage and associated fauna. Deep-Sea Res. 35:1639–1651.

    Article  CAS  Google Scholar 

  20. Kochevar, R., J.J. Childress, C.R. Fisher, and E. Minnich. 1992. The methane mussel: roles of symbiont and host in the metabolic utilization of methane. Marine Biol. 112:389–401.

    Article  CAS  Google Scholar 

  21. Kuivila, K.M., J.W. Murray, A.H. Devol, M.E. Lidstrom, and C.E. Reimers. 1988. Methane cycling in the sediments of Lake Washington. Limnol. Oceanogr. 33:571–578.

    CAS  Google Scholar 

  22. Lee, R.W., E.V. Thuesen, J.J. Childress, and C.R. Fisher. 1992 Ammonium and free amino acid uptake by a deep-sea mussel containing methanotrophic bacterial symbionts. Marine Biol. 113:99–106.

    Article  CAS  Google Scholar 

  23. MacDonald, I.R., G.S. Boland, J.S. Baker, J.M. Brooks, M.C. Kennicutt II, and R.R. Bidigare. 1989. Gulf of Mexico hydrocarbon seep communities. II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Marine Biol. 101: 235–247.

    Article  CAS  Google Scholar 

  24. MacDonald, I.R., J.F.I. Reilly, N.L.J. Guinasso, J.M. Brooks, R.C. Carney, W.A. Bryant, and T.J. Bright. 1990. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099.

    Article  CAS  Google Scholar 

  25. MacDonald, I.R., W. Russell Callender, R.A. Burke, Jr., S.J. McDonald, and R.S. Carney. 1990. Fine-scale distribution of methanotrophic mussels at a Louisiana cold seep. Prog. Oceanog. 24:15–24.

    Article  Google Scholar 

  26. McDonald, S.J., D.A. Wiesenburg, C.R. Fisher, J.M. Brooks, R.A. Burke Jr., W.W. Sager, P. Aharon, and R.S. Carney. 1992. Gulf of Mexico hydrocarbon seep communities: VIII. New deep water petroleum seep communities in Alaminos Canyon. Deep-Sea Res. (in submission).

    Google Scholar 

  27. Mosier, A., D. Schimel, D. Valentine, K. Bronson, and W. Parton. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332.

    Article  CAS  Google Scholar 

  28. Page, H.M., C.R. Fisher, and J.J. Childress. 1990. The role of suspension-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts. Marine Biol. 104:251–257.

    Article  Google Scholar 

  29. Paull, C.K., B. Hecker, R. Commeau, R.P. Freeman-Lynde, C. Neumann, W.P. Corso, S. Golubic, J.E. Hook, E. Sikes, and J. Curray. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965–966.

    Article  CAS  Google Scholar 

  30. Paull, C.K., A.J.T. Jull, L.J. Toolin, and T. Linick. 1985. Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317:709–711.

    Article  CAS  Google Scholar 

  31. Paull, C.K., C.S. Martens, J.P. Chanton, A.C. Neumann, J. Coston, A.J.T. Jull, and L.J. Toolin. 1989. Old carbon in living organisms and young CaCO3 cements from abyssal brine seeps. Nature 342:166–168.

    Article  CAS  Google Scholar 

  32. Powell, E.N., A.C. Morrill, and R.R. Bidigare. 1989. Catalase in sulfide-and methane-dependent macrofauna from petroleum seeps. Experientia 45:198–200.

    Article  CAS  Google Scholar 

  33. Sackett, W.M., W. Nakaparksin, and D. Dalrymple. 1970. Carbon isotope effects in methane production by thermal cracking. In G.D. Hobson and G.C. Speers (eds.), Advances in Organic Geochemistry, Pergamon Press, Oxford, pp. 37–53.

    Google Scholar 

  34. Schmaljohann, R. 1987. Endosymbiosen zwischen methylotrophen Bakterien and marinen Invertebraten. Forum Mikrobiologie 10:166–171.

    Google Scholar 

  35. Schmaljohann, R., and H.J. Flügel. 1987. Methane-oxidizing bacteria in Pogonophora. Sarsia 72:91–98.

    CAS  Google Scholar 

  36. Schoell, M., E. Farber, and M.L. Coleman. 1983. Carbon and hydrogen isotope comparisons of the NBS-22 and NBS-21 stable isotope reference materials: an inter-laboratory comparison. Organ. Geochem. 5:3–6.

    Article  CAS  Google Scholar 

  37. Whalen, S.C., and W.S. Reeburgh. 1990. Consumption of atmospheric methane by tundra soils. Nature 346:160–162.

    Article  CAS  Google Scholar 

  38. Whalen, S.C., W.S. Reeburgh, and K.A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56:3405–3411.

    CAS  Google Scholar 

  39. Wishnick, M., and M.D. Lane. 1971. Ribulose diphosphate carboxylase from spinach leaves. Meth. Enzym. 23:570–577.

    Google Scholar 

  40. Yavitt, J.B., D.M. Downey, G.E. Lang, and A.J. Sexstone. 1990. Methane consumption in two temperate forest soils. Biogeochemistry 9:39–52.

    Article  CAS  Google Scholar 

  41. Brooks, J.M., M.C. Hennicutt II, I.R. MacDonald, D.L. Wilkinson, N.L. Guinasso Jr., and R.R. Bidigare. 1989. Gulf of Mexico hydrocarbon seep communities: Part IV-Descriptions of known chemosynthetic communities. Offshore Technology Conference Proceedings 5954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fisher, C.R. (1993). Oxidation of Methane by Deep-Sea Mytilids in the Gulf of Mexico. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics