Skip to main content

Non-Invasive Assessment of Tumor Oxygenation Status by Integrated 31P NMR Spectroscopy and 1H NMR Imaging

  • Chapter
Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

  • 24 Accesses

Abstract

Tumors develop an abnormal vascular architecture during growth, resulting in poor perfusion and the occurrence of vessels with intermittent circulation, stasis, and thrombosis1,2. Local areas with hypoxic and anoxic cells, acid pH, and necrotic tissue arise gradually as a consequence of the insufficient blood supply3,4. These abnormal physiological conditions may cause resistance to radio-and chemotherapy, induce gene amplification, and lead to enhanced metastatic potential5,6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.K. Jain, Determinants of tumor blood flow: A review, Cancer Res. 48:2641 (1988).

    PubMed  CAS  Google Scholar 

  2. P. Vaupel, F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review, Cancer Res. 49:6449 (1989).

    PubMed  CAS  Google Scholar 

  3. C.N. Coleman, Hypoxia in tumors: A paradigm for the approach to biochemical and physiologic heterogeneity, J. Nail. Cancer Inst. 80:310 (1988).

    Article  CAS  Google Scholar 

  4. I.F. Tannock and D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Res. 49:4373 (1989).

    PubMed  CAS  Google Scholar 

  5. R.M. Sutherland, J.S. Rasey, and R.P. Hill, Tumor biology, Am. J. Clin. Oncol. 11:253 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. R.P. Hill, Tumor progression: Potential role of unstable genomic changes, Cancer Met. Reviews 9:137 (1990).

    Article  CAS  Google Scholar 

  7. J.D. Chapman, Measurement of tumor hypoxia by invasive and non-invasive procedures: A review of recent clinical studies, Radiother. Oncol. Suppl. 20:13 (1991).

    Article  PubMed  Google Scholar 

  8. W. Mueller-Klieser, K.-H. Schlenger, S. Walenta, M. Gross, U. Karbach, M. Hoeckel, and P. Vaupel, Pathophysiological approaches to identifying tumor hypoxia in patients, Radiother. Oncol. Suppl. 20:21 (1991).

    Article  PubMed  Google Scholar 

  9. P.F. Daly and J.S. Cohen, Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: A review, Cancer Res. 49:770 (1989).

    PubMed  CAS  Google Scholar 

  10. E.K. Rofstad, NMR spectroscopy in prediction and monitoring of radiation response of tumours in vivo, Int. J. Radial. Biol. 57:1 (1990).

    Article  CAS  Google Scholar 

  11. C.T.W. Moonen, P.C.M. van Zip, J.A. Frank, D. Le Bihan, and E.D. Becker, Functional magnetic resonance imaging in medicine and physiology, Science 250:53 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. D.G. Gadian, Magnetic resonance spectroscopy as a probe of tumour metabolism, Eur. J. Cancer 27:526 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. R.G. Steen, Characterization of tumor hypoxia by 31P MR spectroscopy, Am. J. Roentgenol. 157:243 (1991).

    CAS  Google Scholar 

  14. R.G. Steen, Edema and tumor perfusion: Characterization by quantitative 1H MR imaging, Am. J. Roentgenol. 158:259 (1992).

    CAS  Google Scholar 

  15. E.K. Rofstad, A. Wahl, T. Stokke, and J.M. Nesland, Establishment and characterization of six human melanoma xenograft lines, Acta Pachol. Microbiol. Immunol. Scand. 98:945 (1990).

    CAS  Google Scholar 

  16. H. Lyng, A. Skretting, and E.K. Rofstad, Blood flow in six human melanoma xenograft lines with different growth characteristics, Cancer Res. 52:584 (1992).

    PubMed  CAS  Google Scholar 

  17. D. Canet, J. Brondeu, and K. Elbayed, Superfast T 1, determination by inversion-recovery, J. Magn. Resort. 77:483 (1988).

    Google Scholar 

  18. R.H. Thomlinson and L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9:539, (1955).

    Article  PubMed  CAS  Google Scholar 

  19. R.C. Urtasun, J.D. Chapman, J.A Raleigh, A.J. Franko, and C.J. Koch, Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia, Int. J. Radial. Oncol. Biol. Phys. 12:1263 (1986).

    Article  CAS  Google Scholar 

  20. D.G. Hirst, V.K. Hirst, B. Joiner, V. Prise, and K.M. Shaffi, Changes in tumour morphology with alterations in oxygen availability: Further evidence for oxygen as a limiting substrate, Br. J. Cancer 64:54 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. I. Lee, Y. Boucher, and R.K. Jain, Nicotinamide can lower tumor interstitial fluid pressure: Mechanistic and therapeutic implications, Cancer Res. 52:3237 (1992).

    PubMed  CAS  Google Scholar 

  22. R.K. Jain, Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors, Cancer Res. 50:814s (1990).

    PubMed  CAS  Google Scholar 

  23. H.D. Roh, Y. Boucher, S. Kalnicki, R. Buchsbaum, W.D. Bloomer, and R.K. Jain, Interstitial hypertension in carcinoma of uterine cervix in patients: Possible correlation with tumor oxygenation and radiation response, Cancer Res. 51:6695 (1991).

    PubMed  CAS  Google Scholar 

  24. E.K. Rofstad, P. DeMuth, B.M. Fenton, and R.M. Sutherland, 31P nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin saturation status and tumor hypoxia, Cancer Res. 48:5440 (1988).

    PubMed  CAS  Google Scholar 

  25. T.R. Brown, S.D. Buchthal, J. Murphy-Boesch, S.J. Nelson, and J.S. Taylor, A multislice sequence for 31P in vivo spectroscopy. 1D chemical-shift imaging with an adiabatic half-passage pulse, J. Magn. Resort. 82:629 (1989).

    CAS  Google Scholar 

  26. R.M. Henkelmann, Diffusion-weighted MR imaging: A useful adjunct to clinical diagnosis or a scientific curiousity?, Am. J. Roentgenol. 155:1066 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rofstad, E.K., Lyng, H., Olsen, D.R., Steinsland, E. (1994). Non-Invasive Assessment of Tumor Oxygenation Status by Integrated 31P NMR Spectroscopy and 1H NMR Imaging. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics