Skip to main content

Effect of heat and ultrasound on microorganisms and enzymes

  • Chapter
New Methods of Food Preservation

Abstract

Heat treatment and low temperature storage are at present amongst the main methods of food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, G., Debray, E., Candau, Y. and Piar, G. (1990) Mathematical model of thermal destruction of Bacillus stearothermophilus spores. Applied and Environmental Microbiology, 56 3073–80.

    CAS  Google Scholar 

  • Ahmed, F.I.K. and Russell, C. (1975) Synergism between ultrasonic waves and hydrogen peroxide in the killing of microorganisms Journal of Applied Bacteriology, 39 31–40.

    CAS  Google Scholar 

  • Alderton, G., Chen, J.K. and Ito, K.A. (1980) Heat resistance of the chemical resistance forms of Clostridium botulinum 62A spores over the water activity range 0 to 0.9. Applied and Environmental Microbiology, 40 511–15.

    CAS  Google Scholar 

  • Affiger, H. (1975) Ultrasonic disruption. American Laboratory, 10 75–85.

    Google Scholar 

  • Atchley, A.A. and Crump, L.A. (1988) Acoustic cavitation and bubble dynamics. In Ultrasounds. Its chemical, physical, and biological effects (ed. K.S. Suslick), VCH Publishers, New York, pp. 1–64.

    Google Scholar 

  • Baldwin, R.L. (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proceedings of National Academic of Science, 83 8069–72.

    CAS  Google Scholar 

  • Beaman, T.C. and Gerhard, P. (1986) Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization and thermal adaptation. Applied and Environmental Microbiology, 52 1242–46.

    CAS  Google Scholar 

  • Berger, J.A. and Marr, A.G. (1960) Sonic disruption of spores of Bacillus cereus. Journal of General Microbiology, 22 147–157.

    CAS  Google Scholar 

  • Berlan, J. and Mason, T.J. (1992) Sonochemistry: from research laboratories to industrial plants. Ultrasonics, 30 203–212.

    CAS  Google Scholar 

  • Berliner, S. (1984) Application of ultrasonic processors. International Biotechnology Laboratory, 2 42–49.

    Google Scholar 

  • Bigelow, W.D. (1921) The logarithmic nature of thermal death-time curves. Journal of Infectious Diseases, 28 528–532.

    Google Scholar 

  • Blocher, J.C. and Busta, F.F. (1983) Bacterial spore resistance to acid. Food Technology, 11 87–99.

    Google Scholar 

  • Boucher, R.M.G. (1978) Process for ultrasonic pasteurization. United States Patent, 4 211, 744.

    Google Scholar 

  • Brenner, D. (1990) Historical introduction to Sonochemistry. In Advances in Sonochemistry, Vol. 1 (ed. T. Mason), Jai Press, London, pp. 1–37.

    Google Scholar 

  • Brown K.L. and Ayres, C.A. (1985) Thermobacteriology of UHT processed foods. In Developments in Food Microbiology (ed. R. Davies), Applied Sciences Publishers, London, pp. 119–52.

    Google Scholar 

  • Burgos, J., Ordofiez, J.A. and Sala, F.J. (1972) Effect of ultrasonics waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores. Applied Microbiology, 24 497–98.

    CAS  Google Scholar 

  • Burleson, G.R., Murray, T.M. and Pollard, M. (1975) Inactivation of viruses and bacteria by ozone, with and without sonication. Applied Microbiology, 29 340–4.

    CAS  Google Scholar 

  • Burton, H. (1988) Ultrahigh-temperature Processing of Milk and Milk Products, Elsevier Applied Science, London.

    Google Scholar 

  • Cerf, O. and Hermier, J. (1973) Thermoresistance anormale de spores bacteriennes chauffees par injection directe dans la vapeur. Le lait,43 23–29.

    Google Scholar 

  • Cerf, O. (1977) Tailing of survival curves of bacterial spores. Journal of Applied Bacteriology, 42 1–19.

    CAS  Google Scholar 

  • Chang, B.S., Park, K.H. and Lund, D.B. (1988) Thermal inactivation kinetics of horseradish peroxidase. Journal of Food Science, 153 920–23.

    Google Scholar 

  • Coarkley, W.T., Brown, R.C., James, C.J. and Gould, R.K. (1973) The inactivation of enzymes by ultrasonic cavitation. Archives of Biochemistry and Physics, 159 722–29.

    Google Scholar 

  • Cogan, T.N. (1977) A review of heat resistant lipases and proteinases and the quality of dairy products. Journal of Food Science and Technology, 1, 95–105.

    CAS  Google Scholar 

  • Cole, M.B., Davies, K.W., Munro, G., Holyoak, C.D. and Kilsby, D.C. (1993) A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Journal of Industrial Microbiology, 12 232–39.

    Google Scholar 

  • Condon, S. and Sala, F.J. (1991) Heat resistance of Bacillus subtilis in buffer and foods of different pH. Journal of Food Protection, 55 605–8.

    Google Scholar 

  • Condon, S., Garcia, M.L., Otero, A. and Sala, F.J. (1992a) Effect of culture age, pre-incubation at low temperature and pH on the thermal resistance of Aeromonas hydrophila. Journal of Applied Bacteriology, 72 322–6.

    CAS  Google Scholar 

  • Condon, S., Bayarte, M. and Sala, F.J. (1992b) Influence of the sporulation temperature upon the heat resistance of Bacillus subtilis. Journal of Applied Bacteriology, 73, 251–6.

    CAS  Google Scholar 

  • Cook, A.M. and Gilbert, R.J. (1968) Factors affecting the heat resistance of B. stearother-mophilus spores. Journal of Food Technology, 3, 385–93.

    Google Scholar 

  • David, J.R. and Merson, R.L. (1990) Kinetic parameters for inactivation of Bacillus stearothermophilus at high temperatures. Journal of Food Science, 55 488–93.

    Google Scholar 

  • Davies, R. (1959) Observations on the use of ultrasound waves for the disruption of microorganisms. Biochimica et Biophysica Acta, 33 491–93.

    Google Scholar 

  • Davies, P.W., Greenhalgh, S.H., Donnelly, J.K. and Stentiford, E.I. (1992) Treatment of water. European Patent Application 0567225 Al.

    Google Scholar 

  • DeGrois, X. and Baldo, X. (1969) Explanatory hypothesis of the absence of erosion, of chemical effects and of sonoluminescence in true ultrasonic cavitation. Acustica Internat. 21(4) 222–8.

    Google Scholar 

  • Dewhurst, E., Rawson, D.M. and Steele, G.C. (1986) The use of a model system to compare the efficiency of ultrasound and agitation in the recovery of Bacillus subtilis spores from polymer surfaces. Journal of Applied Bacteriology, 61 357–363.

    CAS  Google Scholar 

  • Dharkar, S.D. (1964) Sensitization of microorganisms to radiation by previous ultrasonic treatment. Journal of Food Science, 29 241–3.

    Google Scholar 

  • Dognon, A. and Simonot, Y. (1948) Actions des ultrasounds sur les suspensions. Influence de la concentration des particles. Comptes Rendue Academic Sciences, 227 1234–42.

    Google Scholar 

  • Dominguez, J.M., Acebal, C., Jimenez, J. Mata, A., Macarron, R. and Castillon, M.P. (1992) Mechanisms of thermoinactivation of endoglucanase I from Trichoderma roseiii QM 9414. Biochemistry Journal, 287 583–88.

    CAS  Google Scholar 

  • Donnelly, L.S. and Busta, F.F. (1980) Heat resistance of Desulfotomaculatum nigrificans in soy protein infant formula preparations. Applied and Environmental Microbiology, 40 727–5.

    Google Scholar 

  • Dubs, C.A. (1966) Ultrasonic effects on isoenzymes. Clinical Chemistry, 12 181–86.

    Google Scholar 

  • Dunn, F. and Macleod, R.M. (1968) Journal of Acoustic Society of America, 40 932–40.

    Google Scholar 

  • El’Piner, I.E. (1964) Ultrasounds: Physical Chemical and Biological Effects, Consultants Bureau, New York, pp. 149–229.

    Google Scholar 

  • El-Piner, I.E. and Surova, M.D. (1954) Acceleration of protein degradation process in an ultrasonic field. Doklady Akad Nauk SSSR, 94 243–50.

    Google Scholar 

  • Feeherry, F.E., Munsey, D.T. and Lowley, D.R. (1987) Thermal inactivation and injury of Bacillus sterarothermophilus spores. Applied and Environmental Microbiology, 53 365–70.

    CAS  Google Scholar 

  • Gaboriaud, P.L.F. (1986) Stérilisation de liquides par ultrasons. French Patent 2 575–641 Al.

    Google Scholar 

  • Ganthavom, C., Nagel, C.W. and Powers, J.R. (1991) Thermal inactivation of asparagus lipoxygenase and peroxidase. Journal of Food Science, 56 47–9.

    Google Scholar 

  • Garcia, M.L. (1985) Acción de los tratamientos ultrasonicos y térmicos en los esporos de B. subtilis. Doctoral Thesis. Facultad de Veterinaria, Universidad Complutense, Madrid.

    Google Scholar 

  • Garcia, M.L., Burgos, J., Sanz, B. and Ordoñez, J.A. (1989) Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. Journal of Applied Bacteriology, 67 619–28.

    CAS  Google Scholar 

  • Gould, G.W. (1973) Inactivation of spores in food by combined heat and hydrostatic pressure. Acta Alimentaria, 2 377–83.

    Google Scholar 

  • Gould, G.W. and Dring, G.J. (1975) Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature, 258 402–5.

    CAS  Google Scholar 

  • Gould, G.W. (1989) Heat-induced injury and inactivation. In Mechanisms of Action of Food Preservation Procedures (ed. G.W. Gould), Elsevier Applied Science, London, pp. 11–42.

    Google Scholar 

  • Grabar, P., Voinovitch and Prudhome, R.O. (1949) Action des ultrasonides sur une oxidase. Biochemica et Biophysica Acta, 3 412–17.

    CAS  Google Scholar 

  • Hansen, N.J. and Riemann, H. (1963) Factors affecting the heat resistance of nonsporting organisms. Journal of Applied Bacteriology, 20 314–18.

    Google Scholar 

  • Harvey, E. and Loomis, A. (1929) The destruction of luminous bacteria by high frequency sound waves. Journal of Bacteriology, 17 373–9.

    CAS  Google Scholar 

  • Harvey, E. and Loomis, A. (1932) High speed photomicrografy on living cell subjected to supersonic vibrations. Journal of General Physiology, 15 147.

    Google Scholar 

  • Hermier, J., Begue, P. and Cerf, O. (1975) Relationship between temperature and sterilising efficiency of heat treatments of equal duration. Experimental testing with suspensions of espores in milk heated in an ultra-high-temperature sterilizer. Journal of Dairy Research, 42 437–44.

    Google Scholar 

  • Hughes, D.E. and Nyborg, W.L. (1962) Cell disruption by ultrasound. Science, 138 108–14.

    CAS  Google Scholar 

  • Jacobs, S.E. and Thornley, M.J. (1954) The lethal action of ultrasonic waves on bacteria suspended in milk and other liquids. Journal Applied Bacteriology, 17 38–55.

    Google Scholar 

  • Joly, M. (1965) A Physicochemical Approach to Denaturation of Proteins, Academic Press,New York.

    Google Scholar 

  • Kashkooli, H., Roony, J. and Rooxby, R. (1980) Effects of ultrasound on catalase and malatedehydrogenase. Journal of Acoustic Society of America,67 1798–1801.

    CAS  Google Scholar 

  • Kelly, S.M. and Price, N.C. (1991) The unfolding and refolding of pig heart fumarase. Biochemical Journal, 275 745–49.

    CAS  Google Scholar 

  • Kinsloe, H., Ackerman, E. and Reid, J.J. (1954) Exposure of microorganisms to measured sound fields. Journal of Bacteriology, 68 373–80.

    CAS  Google Scholar 

  • Klibanov, A. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29 1–28.

    CAS  Google Scholar 

  • Kruus, P. (1991) Sonochemical initiation of polymerization. In Advances in Sonochemistry, vol. 2 (ed. T.J. Mason), JAI Press, London, pp. 2–21.

    Google Scholar 

  • Lapanje, S. (1978) Physicochemical Aspects of Protein Denaturation, Wiley, New York.

    Google Scholar 

  • Law, B. (1979) Reviews of the progress of dairy science. Enzymes of psychotrophic bacteria and their effects on milk and milk products. Journal of Dairy Research, 46 573–88.

    CAS  Google Scholar 

  • Lee, B.H., Kermasha, S. and Baker, B.E. (1989) Thermal ultrasonic and inactivation of Salmonella in thin films of aqueous media and chocolate. Food Microbiology, 6 143–42.

    Google Scholar 

  • Lepeschkin, W.W. and Golman, D.E. (1952) Effects of ultrasound on cell structure. Journal of Cellular Composition and Physiology, 40 393–97.

    Google Scholar 

  • Lewis, J.C., Snell, N.S. and Alderton, G. (1965) Dormancy and activation of bacterial spores. In Spores III (eds L.L. Campbell and H.O. Halvorson), American Society for Microbiology, Washington, D.C., pp. 47–55.

    Google Scholar 

  • Liang, S.J., Lin, Y.Z., Zhou, J.M., Tsou, C.L., Wu, P.Q. and Zhou, Z.M. (1990) Comparison of inactivation and conformational changes of D-glyceraldehyde-3-phosphate dehydrogenase during thermal inactivation. Biochimica et Biophysica Acta, 1038 247–52.

    Google Scholar 

  • Lopez, P., Sala, F.J., Fuente, J.L., Condon, S., Raso, J. and Burgos, J. (1994) Inactivation of peroxidase, lipoxygenase and polyphenoloxidase by manotermosonication. Journal of Agriculture and Food Chemistry, 42 552–56.

    Google Scholar 

  • Lu, A.T. and Whitaker, J.R. (1974) Some factors affecting rates of heat inactivation and reactivation of horseradish peroxidase. Journal of Food Science, 39 1173–78.

    CAS  Google Scholar 

  • Luca, R. and Zamfirescu-Georgiu, M. (1970) Ultrasonic effect on some physico-chemical properties of serum proteins and enzymes. Revue Rumaine Medicine Interne, 7 421–25.

    CAS  Google Scholar 

  • Mackey, B.M. and Derrick, C.M. (1986a) Elevation of the heat resistance of Salmonella typhimurium during heating at rising temperatures. Letters in Applied Microbiology, 4 13–16.

    Google Scholar 

  • Mackey, B.M. and Derrick, C.M. (1986b) Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. Journal of Applied Bacteriology, 61 389–93.

    CAS  Google Scholar 

  • Mason, T.J. and Lorimer, J.P. (1988) Sonochemistry: Theory, Application and Uses of Ultrasound Chemistry, Ellis Horwood, Chichester, pp. 42–47.

    Google Scholar 

  • Mason, T.J. (1993) Sonochemistry: A technology for tomorrow. Chemistry and Industry, 47–50.

    Google Scholar 

  • Matsudaira, M. and Sato, A. (1933) Effect of supersonic ray on enzymes. Tohoku Journal of Experimental Medicine,22 412–16.

    Google Scholar 

  • McCleod, R.M. and Dun, F. (1967) Effects of ultrasonic cavitation on trypsin, chymotrypsin and lactate dehydrogenase solutions. Journal of Acoustic Society of America, 42 527–29.

    Google Scholar 

  • Mett, H. Schacher, B. and Wegman, L. (1988) Ultrasonic disintegration of bacteria may lead to irreversible inactivation of lactamase. Journal of Antimicrobial Chemotherapy, 22 293–98.

    CAS  Google Scholar 

  • Moats, W.A., Dabbah, R. and Edwards, V.M. (1971) Interpretation of nonlogarithmic survivor curves of heated bacteria. Journal of Food Science, 36 523–6.

    Google Scholar 

  • Naimark, G.M. and Mosher, W.A. (1953) Effects of sonic vibration on the proteolytic activity of pepsin. Journal of Acoustic Society of America, 25 289.

    CAS  Google Scholar 

  • Neppiras, E.A. (1980) Acoustic cavitation. Physics Reports, 61 159–251.

    Google Scholar 

  • Oparin, A.I., Bardinskaya, M.S. and E1’Piner, I.E. (1954) Action of ultrasonic waves on yeast invertase. Doklady Akad Nauk SSSR, 99 423–432.

    CAS  Google Scholar 

  • Ordoñez, J.A., Sanz, B., Hernandez, P.E. and Lopez-Lorenzo, P. (1984) A note on the effect of combined ultrasonic and heat treatments on the survival of thermoduric streptococci. Journal of Applied Bacteriology, 56 175–77.

    Google Scholar 

  • Ordoñez, J.A., Aguilera, M.A., Garcia, M.L. and Sanz, B. (1987) Effect of combined ultrasonic and heat treatment (thermoultrasonication) on the survival of a strain of Staphylococcus aureus. Journal of Dairy Research, 54 61–7.

    Google Scholar 

  • Ordoñez, J.A., Burgos, J., Raso, J., Lopez, P., Condon, S. and Sala, F.J. (1992) Procedimiento para la destrucción de microorganismos y enzimas: Proceso-MTS. Spanish Patent No. 93/00021.

    Google Scholar 

  • Paci, C. (1953) L’emploi des ultra-sons pour l’assainissement du lait. Le Lait, 33 610–15.

    Google Scholar 

  • Palacios, P., Burgos, J., Hoz, L., Sanz, B. and Ordoñez, J.A. (1991) Study of substances released to ultrasonic treatment from Bacillus stearothermophilus spores. Journal of Applied Bacteriology, 71 445–51.

    CAS  Google Scholar 

  • Pethric, R.A. (1991) Ultrasonic studies of polymeric solids and solutions. In Advances in Sonochemistry, vol. 2 (ed. T. Mason), Jai Press, London, pp. 66–129.

    Google Scholar 

  • Price, G.J. (1990) The use of ultrasound for the controlled degradation of polymer solutions. In Advances in Sonochemistry, vol. 1 (ed. T.J. Mason), Jai Press, London, pp. 231–287.

    Google Scholar 

  • Privalov, P.L. Griko, Y.V., Venyamino, Y.S. and Kutyshenko, V.P. (1986) Cold denaturation of myoglobin. Journal of Molecular Biology, 19 487–98.

    Google Scholar 

  • Prudhome, R.O. and Grabar, P. (1947) Etude de la denatuartio des proteides. I. Action des US sur les proteides du serum de cheval normal et sur les acides aminès cycliques. Bulletin Société Chimie Biologie, 29 122–33.

    Google Scholar 

  • Put, H.M. and Aalbergsberg, W.I.J. (1967) Occurrence of Bacillus subtilis with high heat resistance. Journal of Applied Bacteriology, 30 411–19.

    CAS  Google Scholar 

  • Putman, F.W. (1954) Protein denaturation. In The Proteins, Vol. 1B (eds H. Neurath and K. Bailey), Academic Press, New York, pp. 808–92.

    Google Scholar 

  • Ray, W.J. and Koshland, D.E. Jr. (1961) A method for characterizing the type and number of groups involved in enzyme action. Journal of Biological Chemistry, 236 1973–1979.

    CAS  Google Scholar 

  • Rodriguez, A.C., Smerage, G.H., Teixeira, A.A., Lindsay, J.A. and Busta, F.F. (1991) Population model of bacterial spores for validation of dynamic thermal processes. Journal of Food Process Engineering, 15 1–30.

    Google Scholar 

  • Santamaria, L., Castellani, A. and Levi, F.A. (1952) Hyalurodinase inactivation by ultrasonic waves and its mechanisms. Enzymologia, 15 285–95.

    CAS  Google Scholar 

  • Sanz, B., Palacios, P., Lopez, P. and Ordoñez, J.A. (1985) Effect of ultrasonic waves on the heat resistance of Bacillus stearothermophilus spores. In Fundamental and Applied Aspects of Bacterial Spores (eds G.J. Dring, D.J. Ellar and G.W. Gould), Academic Press, New York, pp. 251–59.

    Google Scholar 

  • Sapru, V., Teixeira, A.A., Smerage, G.H. and Lindsay, J.A. (1992) Predicting thermophilic spore population dynamics for UHT sterilization processes. Journal of Food Science, 57 1248–57.

    Google Scholar 

  • Sapru, V., Smerage, G.H., Teixeira, A.A. and Lindsay, J.A. (1993) Comparison of predictive models for bacterial spore population responses to sterilization temperatures. Journal of Food Science, 58 223–8.

    Google Scholar 

  • Scherba, G., Weigel, R.M. and O’Brien, J.R. (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57 2079–84.

    CAS  Google Scholar 

  • Shull, J.J., Cargo, G.T. and Ernst, R.R. (1963) Kinetics of heat activation of thermal death of bacterial spores. Applied Microbiology, 11, 485–7.

    CAS  Google Scholar 

  • Sierra, G. (1972) Sterilization with gluteraldehyde. United States Patent 3,697–222.

    Google Scholar 

  • Stumbo, C.R. (1973) Thermobacteriology in Food Processing2, 2nd edn, Academic Press, New York.

    Google Scholar 

  • Suslick, K.S. (1988) Homogeneous sonochemistry. In Ultrasounds. Its Chemical, Physical and Biological Effects (ed. K.S. Suslick), VCH Publishers, New York.

    Google Scholar 

  • Suslick, K.S. (1989) The chemical effects of ultrasound. Scientific American, 2 62–8.

    Google Scholar 

  • Tanford, C. (1968) Protein denaturation: part C characterization of the denaturate state. In Advance in Protein Chemistry, vol. 23. Academic Press, pp. 121–282.

    CAS  Google Scholar 

  • Utsunomiya, Y. and Kosaka, Y. (1979) Application of supersonic waves to foods. Journal of Faculty of Applied Biological Science, 18, 225–31.

    Google Scholar 

  • Versteeg, C., Pectinesterases from orange juice — their purification, general characteristics and juice cloud destabilizing properties. PhD Thesis. Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Versteeg, C., Rombouts, F.M., Spaansen, C.H. and Pilnik, W. (1980) Thermostability and orange cloud destabilizing properties of multiple pectinesterases from orange. Journal of Food Science, 45 969–988.

    CAS  Google Scholar 

  • Wang, D.I., Scharer, J. and Humphrey, A.E. (1964) Kinetic of death of bacterial spores at elevated temperatures. Applied Microbiology, 12 451–54.

    CAS  Google Scholar 

  • Weissler, A. (1960) Effects of ultrasonic irradiation on hemoglobin. Journal of Acoustic Society of America, 32 1208–12.

    CAS  Google Scholar 

  • Williams, A.R., Stafford, D.A., Callely, A.G. and Hughes, D.E. (1970) Ultrasonic dispersal of activated sludge flocs. Journal of Applied Bacteriology, 33 656–63.

    Google Scholar 

  • Winter, E. (1971) Hitzebestandigkeit der peroxidase. Z. Lebensm Unters. Forsch, 145 3–6.

    CAS  Google Scholar 

  • Zhou, H-M., Zhang, X-A., Ying, Y. and Tsou, C-L. (1993) Conformational changes at the active site of creatine kinase at low concentrations of guanidine chloride. Biochemical Journal, 291 103–7.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sala, F.J., Burgos, J., Condón, S., Lopez, P., Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In: Gould, G.W. (eds) New Methods of Food Preservation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2105-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2105-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5876-3

  • Online ISBN: 978-1-4615-2105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics