Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 2))

Abstract

An introduction to ratio optimization problems is provided which covers various applications as well as major theoretical and algorithmic developments. In addition to an extensive treatment of single-ratio fractional programming, three types of multi-ratio fractional programs are discussed: maximization of the smallest of several ratios, maximization of a sum of ratios and multi-objective fractional programs. Earlier as well as recent developments are discussed and open problems are identified. The article concludes with a comprehensive, up-to-date bibliography in fractional programming. Well over one thousand articles have appeared in more than thirty years of increasingly intensive research in fractional programming. The bibliography includes all references from the beginning until late 1993 to the extent they are known to the author at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography for Fractional Programming

  1. Abadie, J.M. and Williams, A.C. (1963), Dual and Parametric Methods in Decomposition, in Graves, R. and Wolfe, P., (eds.), Recent Advances in Mathematical Programming, McGraw–Hill, New York, 149–158.

    Google Scholar 

  2. Abrham, J. and Buie, R.N. (1980), Duality in Continuous Fractional Programming, Utilitas Mathematica 17, 35–44.

    MathSciNet  MATH  Google Scholar 

  3. Abrham, J. and Luthra, S. (1977), Comparison of Duality Models in Fractional Linear Programming, Zeitschrift für Operations Research 21, 125–130.

    MathSciNet  Google Scholar 

  4. Aggarwal, R.C. (1969), A New Approach to Planning and Programming in Agriculture Linear Fractional Functionals Programming, Indian J. of Agriculture Economics 24, 24–25.

    Google Scholar 

  5. Aggarwal, S. and Bhatia, D. (1991), Duality for Nondifferentiable Nonlinear Programming Problems: A Feasible Direction Approach, Opsearch 28 (4), 282–290.

    MATH  Google Scholar 

  6. Aggarwal, S., Bhatia, D. and Lau, N. (1991), Duality in Multiple Right–Hand Choice Linear Fractional Problems, J. of Information and Optimization Sciences 12 (1), 13–24.

    MathSciNet  MATH  Google Scholar 

  7. Aggarwal, S.P. (1966), Stability of the Solution to a Linear Fractional Functional Programming Problem, Zeitschrift für Angewandte Mathematik und Mechanik 46, 343–349.

    MathSciNet  MATH  Google Scholar 

  8. Aggarwal, S.P. (1967), Contributions to the Theory of Fractional Programming, PhD. Thesis, Delhi University.

    Google Scholar 

  9. Aggarwal, S.P. (1968), A Note on Quasiconvex Programming, Metrika 12, 97105.

    Google Scholar 

  10. Aggarwal, S.P. (1968), Parametric Linear Fractional Functionals Programming, Metrika 12, 1968, 106–114.

    MathSciNet  MATH  Google Scholar 

  11. Aggarwal, S.P. (1968), Standard Error Fractional Functional Programming, Istanbul Universitesi Fen Fakultesi Mecmuasi, A Serisi 30, 45–51.

    MathSciNet  MATH  Google Scholar 

  12. Aggarwal, S.P. (1970), Analyses of the Solution to a Linear Fractional Functionals Programming, Metrika 16, 9–26.

    MathSciNet  MATH  Google Scholar 

  13. Aggarwal, S.P. (1972), Indefinite Quadratic Fractional Programming, Ekonomicko–Matematicky Obzor 8, 191–199.

    MathSciNet  Google Scholar 

  14. Aggarwal, S.P. (1972), Quadratic Fractional Functionals Programming with Non–Linear Constraints, Ricerca Operativa 2, 51–53. [Italian]

    Google Scholar 

  15. Aggarwal, S.P. (1972), Transportation Technique for Quadratic Fractional Programming, Revue Belge de Statistique d’ Informatique et de Recherche Operationelle 12 (2), 3–7.

    Google Scholar 

  16. Aggarwal, S.P. (1972), Variation in Parameters of Quadratic Fractional Functional Programming, Revue Belge de Statistique d’ Informatique et de Recherche Operationelle 11 (4), 3–12.

    MathSciNet  Google Scholar 

  17. Aggarwal, S.P. (1973), Indefinite Quadratic Fractional Programming with a Quadratic Constraint, Cahiers du Centre d’Etudes de Recherche Operationelle 15, 405–410.

    MathSciNet  MATH  Google Scholar 

  18. Aggarwal, S.P. (1973), Quadratic Fractional Functionals Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 15, 157–165.

    MathSciNet  MATH  Google Scholar 

  19. Aggarwal, S.P. (1973), Upper Bounds and Quadratic Fractional Functional Programming, Revue Belge de Statistique d’ Informatique et de Recherche Operationelle 12 (4), 17–21.

    Google Scholar 

  20. Aggarwal, S.P. and Arora, S. (1974), A Special Class of Non–Linear Fractional Functional Programming Problems, SCIMA Journal of Management Science and Applied Cybernetics 3, 30–39.

    MATH  Google Scholar 

  21. Aggarwal, S.P. and Parkash, O. (1978), Duality in General Linear Fractional Functional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 20, 75–81.

    MathSciNet  MATH  Google Scholar 

  22. Aggarwal, S.P. and Patkar, V.N. (1978), Dual of a Linear Fractional Program Through Geometric Programming, Portugaliae Mathematica 37 (1–2), 8186.

    MathSciNet  Google Scholar 

  23. Aggarwal, S.P. and Saxena, P.C. (1974), Duality Theorems for Fractional Functional Programming with Quadratic Constraint, Ekonomicko Matematicky Obzor 10, 86–92.

    MathSciNet  Google Scholar 

  24. Aggarwal, S.P. and Saxena, P.C. (1975), Duality Theorems for Non–Linear Fractional Programs, Zeitschrift für Angewandte Mathematik und Mechanik 55, 523–525.

    MathSciNet  MATH  Google Scholar 

  25. Aggarwal, S.P. and Saxena, P.C. (1976), The Decomposition Method for Linear Programming Problems with Linear and Fractional Target Functions, Przeglad Statyst 23, 211–219.

    MathSciNet  MATH  Google Scholar 

  26. Aggarwal, S.P. and Saxena, P.C. (1979), A Class of Fractional Functional Programming Problems, New Zealand Operational Research 7, 79–90.

    MathSciNet  Google Scholar 

  27. Aggarwal, S.P. and Sharma, I.C. (1970), Maximization of the Transmission Rate of a Discrete Constant Channel, Unternehmensforschung 14, 152155.

    MathSciNet  Google Scholar 

  28. Aggarwal, S.P. and Swamp, K. (1966), Fractional Functionals Programming with a Quadratic Constraint, Operations Research 14, 950–956.

    MATH  Google Scholar 

  29. Aggarwal, V., Aneja, Y.P. and Nair, K.P.K. (1981), Ratio Rewards in Networks, RAIRO Rech. Oper. 15 (2), 129–138.

    MathSciNet  MATH  Google Scholar 

  30. Aggarwal, V., Chandrasekaran R. and Nair, K.P.K. (1977), Markov Ratio Decision Processes, Journal of Optimization Theory and Applications 21, 27–37.

    MathSciNet  MATH  Google Scholar 

  31. Aggarwal, V., Chandrasekaran, R. and Nair, K.P.K. (1980), Discounted Stochastic Ratio Games, SIAM J. Algebraic Discrete Methods 1 (2), 201210.

    MathSciNet  Google Scholar 

  32. Aggarwal, V., Nair, K.P.K. and Chandrasekaran, R. (1980), Non Terminating Stochastic Ratio Game, RAIRO Rech. Oper. 14 (1), 21–30.

    MathSciNet  Google Scholar 

  33. Agrawal, S.C. (1974), A Primal Integer Programming Algorithm with Parabolic Constraints, Opsearch 11, 59–80.

    MathSciNet  Google Scholar 

  34. Agrawal, S.C. (1975), On Integer Solutions to Linear Fractional Functional Programming Problems, Acta Ciencia Indica 1, 203–208.

    MathSciNet  Google Scholar 

  35. Agrawal, S.C. (1976), On Integer Solutions to Linear Fractional Functionals by a Branch and Bound Technique, Acta Ciencia Indica 2, 75–78.

    MathSciNet  MATH  Google Scholar 

  36. Agrawal, S.C. (1977), An Alternative Method on Integer Solutions to Linear Fractional Functionals by a Branch and Bound Technique, Zeitschrift far Angewandte Mathematik and Mechanik 57, 52–53.

    MATH  Google Scholar 

  37. Agrawal, S.C. and Chand, M. (1978), On Integer Solutions to Complementary Programming Problems with Linear Fractional Objective Function by a Branch and Bound Technique, Acta Ciencia Indica 4, 283–289.

    MathSciNet  MATH  Google Scholar 

  38. Agrawal, S.C. and Chand, M. (1979), On Intersection Cuts in Fractional Interval Integer Programming, Acta Ciencia Indica 5, 140–142.

    MathSciNet  MATH  Google Scholar 

  39. Agrawal, S.C. and Chand, M. (1979/80), On Mixed Integer Solutions to Complementary Programming Problems with Linear Fractional Objective Function, Alighar Bull. Math. 9, 21–30.

    Google Scholar 

  40. Agrawal, S.C. and Chand, M. (1980), A Note on the Sum of Linear and Fractional Interval Programming, Revista de Informatica e Investigacion Operativa 20, 33–36.

    Google Scholar 

  41. Agrawal, S.C. and Chand, M. (1980), On Integer Solutions to Complementary Programming Problems with Linear Fractional Objective Functions, Ricerca Operativa 10 (13), 19–30.

    Google Scholar 

  42. Agrawal, S.C. and Chand, M. (1981), A Note on Integer Solutions to Linear Fractional Interval Programming Problems by a Branch & Bound Technique, Naval Research Logistics Quarterly 28 (4), 671–677.

    MathSciNet  MATH  Google Scholar 

  43. Agrawal, S.C. and Chand, M. (1985), An Alternative Method on Integer Solutions to Complementary Programming Problems with Linear Fractional Objective Function by a Branch and Bound Technique, Acta Ciencia Indica Mathematics 11 (3), 213–221.

    MathSciNet  MATH  Google Scholar 

  44. Agrawal, S.C. and Verma, R.K. (1980), p–Variables Replacement in Linear Fractional Functional Programming, Acta Ciencia Indica 6, 95–103.

    MathSciNet  MATH  Google Scholar 

  45. Agrawal, S.C. and Verma, R.K. (1981), A Suboptimization Method for the Sum of Linear and Linear Fractional Interval Programming Problems, Acta Ciencia Indica Mathematics 7 (1–4), 14–24.

    MathSciNet  MATH  Google Scholar 

  46. Agrawal, S.C. and Verma, R.K. (1981), On Explicit Solutions for Linear Fractional Interval Programming Problems, Revista de Informatica e Investigacion Operativa 11, 97–114.

    Google Scholar 

  47. Agrawal, S.C. and Verma, R.K. (1983), On the Solutions of the Sum of Linear and Linear Fractional Interval Programming Problems, Pure and Applied Mathematica Sciences 17 (1–2), 73–81.

    MathSciNet  MATH  Google Scholar 

  48. Agrawal, U., Swarup, K. and Garg, K.C. (1984), Goal Programming Problem with Linear Fractional Objective Function, Cahiers du Centre d’Etudes de Recherche Opérationelle 26, 33–41.

    MathSciNet  MATH  Google Scholar 

  49. Ahuja, R.K. (1988), Minimum Cost–Reliability Ratio Path Problem, Computers and Operations Research 15 (1), 83–89.

    MATH  Google Scholar 

  50. Ahuja, R.K., Bata, J.L. and Gupta, S.K. (1983), Combinatorial Optimization with Rational Objective Functions: A Communication, Mathematics of Operations Research 8 (2), 314.

    MathSciNet  Google Scholar 

  51. Ali, A.I. (1991), Strict vs Weak Ordinal Relations for Multipliers in Data Envelopement Analysis, Management Science 37 (6), 733–738.

    MATH  Google Scholar 

  52. Almogy, Y. and Levin, O. (1970), Parametric Analysis of a Multi–stage Stochastic Shipping Problem, in Lawrence, J., (ed.), Operational Research ‘69, Tavistock Publications, London, 359–370.

    Google Scholar 

  53. Almogy, Y. and Levin, O. (1971), A Class of Fractional Programming Problems, Operations Research 19, 57–67.

    MathSciNet  MATH  Google Scholar 

  54. Almogy, Y. and Levin, O. (1971), The Fractional Fixed–Charge Problem, Naval Research Logistics Quarterly 18, 307–315.

    MathSciNet  MATH  Google Scholar 

  55. Anand, P. (1971), Dual and Parametric Methods in Decomposition for Linear Fractional Programs, Studia Scientarium Mathematicarum Hungarica 6, 267–275.

    MathSciNet  Google Scholar 

  56. Anand, P. (1973), Decomposition Procedure for Linear Fractional Programs with Upper Bounds, Zeitschrift für Angewandte Mathematik and Mechanik 53, 635–636.

    MathSciNet  MATH  Google Scholar 

  57. Anand, P. and Swarup, K. ( 1970), The Procedure for Local Separable Programming, Zeitschrift für Angewandte Mathematik und Mechanik 50, 320–321.

    MathSciNet  MATH  Google Scholar 

  58. Aneja, Y.P. and Nair, K.P.K. (1984), Ratio Dynamic Program, Operations Research Letters 3, 167–173.

    MathSciNet  MATH  Google Scholar 

  59. Anstreicher, K M. (1986), A Monotonic Projective Algorithm for Fractional Linear Programming, Algorithmica 1 (4), 483–498.

    MathSciNet  MATH  Google Scholar 

  60. Anstreicher, K M. (1989), A Combined Phase I–Phase H Projective Algorithm for Linear Programming, Mathematical Programming 43 (2), 209–223.

    MathSciNet  MATH  Google Scholar 

  61. Anzai, Y. (1974), On Integer Fractional Programming, Journal of the Operations Research Society of Japan 17, 49–66.

    MathSciNet  MATH  Google Scholar 

  62. Arbuzova, N.I. (1968), Interdependence of the Stochastic e–Stabilities of Linear and Linear Fractional Programming Problems of a Special Form, Ekonom. i Mat. Metody 4, 108–110. [Russian]

    Google Scholar 

  63. Arisawa, S. and Elmaghraby, S.E. (1972), Optimal Time–Cost Trade Offs in GERT–Networks, Management Science 18, 589–599.

    MathSciNet  MATH  Google Scholar 

  64. Armstrong, R. et al. (1980), Effective Solution of Non–Convex Multi–Objective Ratio Goal Problems, Research Report CCS 390, Center for Cybernetic Studies, University of Texas, Austin.

    Google Scholar 

  65. Armstrong, R., Charnes, A. and Haksever, C. (1987), Successive Linear Programming for Ratio Goal Problems, European J. of Operational Research 32 (3), 426–434.

    MathSciNet  MATH  Google Scholar 

  66. Armstrong, R., Charnes, A. and Haksever, C. (1988), Implementation of Successive Linear Programming Algorithms for Non–Convex Goal Programming, Computers and Operations Research 15, 37–49.

    MathSciNet  MATH  Google Scholar 

  67. Arora, S. R., Puri, M.C. and Swarup, K. (1977), Cutting Plane Technique for Set Covering Problem with Linear Fractional Functional, Zeitschrift für Angewandte Mathematik und Mechanik 57, 597–602.

    MathSciNet  MATH  Google Scholar 

  68. Arora, S.R. (1977), A Note on Fractional Fixed Charge Problems, New Zealand Operational Research 5, 66–71.

    Google Scholar 

  69. Arora, S.R. (1977), A Set Partitioning Problem with Linear Fractional Objective Function, Indian Journal of Pure and Applied Mathematics 8, 961–968.

    MathSciNet  MATH  Google Scholar 

  70. Arora, S.R. and Aggarwal, S.P. (1977), Dynamic Programming Approach to Linear Fractional Functional Programming, Revue Belge de Statistique d’Informatique et de Recherche Operationelle 17, 10–23.

    MATH  Google Scholar 

  71. Arora, S.R. and Aggarwal, S.P. (1977), Linear Fractional Functionals Programming with a Parameter in an Activity Vector, Economic Computation and Economic Cybernetics Studies and Research 3, 37–56.

    MathSciNet  Google Scholar 

  72. Arora, S.R. and Puri, M.C. (1977), Enumeration Technique for the Set Covering Problem with a Linear Fractional Functional as the Objective Function, Zeitschrift für Angewandte Mathematik und Mechanik 57, 181186.

    Google Scholar 

  73. Arora, S.R., Puri, M.C. and Swamp, K. (1977), The Set Covering Problem with Linear Fractional Functionals, Indian Journal of Pure and Applied Mathematics 8, 578–588.

    MathSciNet  MATH  Google Scholar 

  74. Arsham, H. and Kahn, A.B. (1990), A Complete Algorithm for Linear Fractional Programs, Computers and Mathematics with Applications 20 (7), 11–23.

    MathSciNet  Google Scholar 

  75. Artjuhin, A.V. (1973), An Algorithm for the Solution of the Distribution Problem of Parametric Fractional Linear Programming, lzdat. “Him”, Frunze, 30–36. [Russian]

    Google Scholar 

  76. Artjuhin, A.V. (1973), Some Applications of Parametric Fractional Linear Programming, lzdat., “Ilim”, Frunze, 37–54. [Russian]

    Google Scholar 

  77. Ashton, D.J. and Atkins, D.R. (1979), Multi–Criteria Programming for Financial Planning, Journal of the Operational Research Society 30, 259270.

    Google Scholar 

  78. Averbakh, I.L. (1990), An Additive Method for Optimization of Two–Stage Stochastic Systems with Discrete Variables, Izvestiya Akademii Nauk SSR. Tekhnicheskaya Kibernetika 1, 162–166. [Russian]; Translation: Soviet Journal of Computer and Systems Sciences 28 (4), 161–165.

    Google Scholar 

  79. Averochkin, V.A., Veranov, P.Y. and Tokolov, V.S. (1987), A Recursive Filter which Maximizes the Output Signal–to–Noise Ratio, Soy. J. Commun. Technol. Electron. (USA) 32 (8), 115–118. Translation of Radiotekh Elektron [USSR]

    Google Scholar 

  80. Avriel, M. (1976), Nonlinear Programming: Analysis and Methods, Prentice–Hall, Englewood–Cliffs, N.J.

    Google Scholar 

  81. Avriel, M. and Schaible, S. (1978), Second–Order Characterizations of Pseudo–Convex Functions, Mathematical Programming 14, 170–185.

    MathSciNet  MATH  Google Scholar 

  82. Avriel, M., Diewert, W.E., Schaible, S. and Zang, I. (1988), Generalized Concavity, Plenum Press, New York–London.

    Google Scholar 

  83. Avriel, M., Diewert, W.E., Schaible, S. and Ziemba, W.T. (1981), Introduction to Concave and Generalized Concave Functions, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 21–50.

    Google Scholar 

  84. Awerbuch, S., Ecker, J.G. and Wallace, W.A. (1976), A Note: Hidden Nonlinearities in the Application of Goal Programming, Management Science 22, 918–920.

    MATH  Google Scholar 

  85. Aylawadi, D.R. (1977), Duality for Homogeneous Fractional Programming with Nonlinear Constraints, Journal of Mathematical Sciences 12 (13), 2932.

    MathSciNet  Google Scholar 

  86. Babayev, D.A. (1974), Methode der Lösung einer Klasse Nichtlinearer Programmierungsprobleme, Akademiya Nauk Azerbaidzan SSR. Dokl. 30 (9), 3–6.

    MathSciNet  Google Scholar 

  87. Babayev, D.A. (1975), Mathematical Models for Optimal Timing of Drilling on Multilayer Oil and Gas Fields, Management Science 21, 1361–1369.

    MATH  Google Scholar 

  88. Babayev, D.A. (1976), A General Fractional Programming Problem, Central Ekonom.–Mat. Inst., Akad, Nauk SSSR, Moscow. [Russian]

    Google Scholar 

  89. Bakhshi, H. C. (1979/80), A Study of Sensitivity in Extreme Point Linear Fractional Functional Programming Problems, J. Math. Sci. 14–15.

    Google Scholar 

  90. Bakhshi, H.C. (1979), Sensitivity Analysis in Linear Fractional Functionals Programming Problems with Extreme Point Restriction, SCIMA Journal of Management Science and Applied Cybernetics 8, 6–15.

    MATH  Google Scholar 

  91. Bakhshi, H.C. and Puri, M.C. (1979), An Efficient Technique for Extreme Point Mathematical Programming Problems, Cahiers du Centre d’ Etudes de Recherche Operationelle 21, 257–268.

    MathSciNet  MATH  Google Scholar 

  92. Baluta, M., Dobrescu, V. and Paun, G. (1979), Algorithm for Solving a Combinatorial Problem of Optimal Selection, Economic Computation and Economic Cybernetics Studies and Research 1, 87–95.

    MathSciNet  Google Scholar 

  93. Banker, R.D. (1980), A Gametheoretic Approach to Measuring Efficiency, European Journal of Operational Research 5, 262–266.

    MathSciNet  MATH  Google Scholar 

  94. Banker, R.D., Charnes A. and Cooper, W.W. (1984), Some Models for Estimating Technical and Scale Inefficiencies in Data Envelope Analysis, Management Science 30, 1078–1092.

    MATH  Google Scholar 

  95. Banker, R.D., Charnes, A., Cooper, W.W. and Schinnar, A.P. (1981), A BiExtremal Principle for Frontier Estimation and Efficiency Evaluations, Management Science 27, 1370–1382.

    MATH  Google Scholar 

  96. Bansal, S. (1981), Absolute Value Linear Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 23, 43–52.

    MathSciNet  MATH  Google Scholar 

  97. Bansal, S. (1982), On Extreme Point Programming Problems, Journal of Information and Optimization Sciences 3, 173–184.

    MathSciNet  MATH  Google Scholar 

  98. Barlow, R.E. and Proschan, F. (1965), Mathematical Theory of Reliability, J. Wiley, New York.

    Google Scholar 

  99. Barrodale, I. (1973), Best Rational Approximation and Strict Quasiconvexity, SIAM J. of Numerical Analysis 10, 8–12.

    MathSciNet  MATH  Google Scholar 

  100. Barrodale, I., Powell, M.J.D. and Roberts, F.D.K. (1972), The Differential Correction Algorithm for Rational Lam–Approximation, SIAM J. Numerical Analysis 9, 493–504.

    MathSciNet  MATH  Google Scholar 

  101. Bayalinov, E.B. (1981), On a Question of Duality in Fractional–Linear Programming. lzvestiya Akademii Nauk Kirgizskoi SSR 2, 10–20, 101. [Russian]

    Google Scholar 

  102. Bayalinov, E.B. (1982), The Effect of Changes in the Conditions of a Linear Fractional Programming Problem on the Optimum of the Target Function, Application of Mathematical Economics Methods in Improving Control of the Economy,’ihm’, Frunze, 144–155. [Russian]

    Google Scholar 

  103. Bayalinov, E.B. (1986), A Method of Successive Reduction of Residues for Solving a Problem of Fractional–Linear Programming, Application of Mathematics in Economics, ‘Ilim’, Frunze, 153–162, 194. [Russian]

    Google Scholar 

  104. Bayalinov, E.B. (1986), Second Algorithm for a Method of Successive Improvement of a Plan in Fractional–Linear Programming, Applications of Mathematics in Economics, 143–153, 194. [Russian]

    Google Scholar 

  105. Bayalinov, E.B. (1987), Economic Interpretation of Dual Estimates in Linear Fractional Programming, Izvestiya Akademii Nauk Kirgizskoi SSR 3 , 8–11, 81. [Russian]

    Google Scholar 

  106. Bayalinov, E.B. (1988), Coincidence of Optimal Plans for Problems of Linear and Linear–Fractional Programming, Izvestiya Akademii Nauk Kirgizskoi SSR 3 , 9–15, 91. [Russian]

    Google Scholar 

  107. Bayalinov, E.B. (1988), On a System of Interconnected Dual Estimates, Izvestiya Akademii Nauk Kirgizskoi SSR 2 , 8–12, 91. [Russian]

    Google Scholar 

  108. Bayalinov, E.B. (1988), The Economic Meaning of Dual Variables in Linear– Fractional Programming, Ekonomika i Matematicheskie Metody 24 (3), 558–561. [Russian]

    Google Scholar 

  109. Bazaara, M.S. and Shetty, C.M. (1979), Nonlinear Programming, Theory and Algorithms, J. Wiley, New York.

    Google Scholar 

  110. Beale, E.M.L. (1980), Fractional Programming with Zero–One Variables, in Fiacco, A.V. and Kortanek, K.O., (eds.), Extremal Methods and Systems Analysis, Springer, Berlin, 430–432.

    Google Scholar 

  111. Beato–Moreno, A. and Ruiz–Canales, P. (1991), A Comparison of the Efficiency of Two Methods for Integral Fractional Linear Programming, [Spanish, English Summary], XV Jornades Luso–Espanholas de Matematica, Vol. IV (Proceedings of the XVth Portugese–Spanish Conference on Mathematics), 355–360. [Spanish]

    Google Scholar 

  112. Becher, O. (1965), Das Problem der Optimalen Routenwahl einer Transporteinheit bei Beschäftigung mit Gelegenheitsfahrten, Zeitschrift für die gesamte Staatswissenschaft 121, 196–221.

    Google Scholar 

  113. Bector, C.R. (1968), Certain Aspects of Duality in Nonlinear Indefinite Functional Programming, Ph.D. Thesis, Dept. of Mathematics, I.I.T. Kanpur (India).

    Google Scholar 

  114. Bector, C.R. (1968), Duality in Fractional and Indefinite Programming, Zeitschrift für Angewandte Mathematik und Mechanik 48, 418–420.

    MathSciNet  MATH  Google Scholar 

  115. Bector, C.R. (1968), Nonlinear Fractional Functional Programming with Nonlinear Constraints, Zeitschriftfür Angewandte Mathematik und Mechanik 48, 284–286.

    MathSciNet  MATH  Google Scholar 

  116. Bector, C.R. (1968), Programming Problems with Convex Fractional Functions, Operations Research 16, 383–391.

    MathSciNet  MATH  Google Scholar 

  117. Bector, C.R. (1970), Some Aspects of Nonlinear Indefinite Fractional Functional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 12, 22–34.

    MathSciNet  MATH  Google Scholar 

  118. Bector, C.R. (1970), Some Aspects of Quasi–Convex Programming, Zeitschrift für Angewandte Mathematik und Mechanik 50, 495–502.

    MathSciNet  MATH  Google Scholar 

  119. Bector, C.R. (1971), Indefinite Quadratic Fractional Functional Programming, Metrika 18, 21–30.

    MATH  Google Scholar 

  120. Bector, C.R. (1973), Duality in Linear Fractional Programming, Utilitas Mathematica 4, 155–168.

    MathSciNet  MATH  Google Scholar 

  121. Bector, C.R. (1973), Duality in Nonlinear Fractional Programming, Utilitas Mathematica 4, 8193.

    MathSciNet  Google Scholar 

  122. Bector, C.R. (1973), Duality in Nonlinear Fractional Programming, Zeitschrift für Operations Research 17, 183–193.

    MathSciNet  MATH  Google Scholar 

  123. Bector, C.R. (1973), On Convexity, Pseudo–Convexity and Quasi–Convexity of Composite Functions, Cahiers du Centre d’Etudes de Recherche Operationelle 15, 411–428.

    MathSciNet  MATH  Google Scholar 

  124. Bector, C.R. (1974), A Note on a Dual Fractional Program, Cahiers du Centre d’Etudes de Recherche Operationelle 16, 107–115.

    MathSciNet  MATH  Google Scholar 

  125. Bector, C.R. and Bector, M.K. (1989), Fritz John Sufficient Optimality Conditions and Duality for Generalized Minimax Program, Journal of Information and Optimization Sciences 10 (1), 193–205.

    MathSciNet  MATH  Google Scholar 

  126. Bector, C.R. and Bhatia, B.L. (1984), An Optimization Theorem with Applications in some Mathematical Programming Problems, Utilitas Mathematica 26, 249–258.

    MathSciNet  MATH  Google Scholar 

  127. Bector, C.R. and Bhatia, B.L. (1985), Duality for a Multiple Objective Nonlinear Nonconvex Program, Utilitas Mathematica 28, 175–192.

    MathSciNet  Google Scholar 

  128. Bector, C.R. and Bhatia, B.L. (1985), Generalized Duality for Nonlinear Programming in Complex Space, Econom Comput. Econom. Cybernet. Stud. Res., 20 (2), 75–80.

    MathSciNet  MATH  Google Scholar 

  129. Bector, C.R. and Bhatia, B.L. (1986), Nature of RENYI’s Entropy and Associated Divergence Function, Naval Res. Logist. 34 (4), 741–746.

    MathSciNet  Google Scholar 

  130. Bector, C.R. and Bhatt S.K. (1976), A Linerization Technique for Solving Interval Linear Fractional Programs, in: Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, Congressus Numerantium XVI, Winnipeg, Utilitas Mathematica, 221–229.

    Google Scholar 

  131. Bector, C.R. and Bhatt, S.K. (1977), Duality for a Nonconvex Program in a Real Banach Space, Zeitschrift für Angewandte Mathematik und Mechanik 57 (3), 193–194.

    MATH  Google Scholar 

  132. Bector, C.R. and Bhatt, S.K. (1978), Pseudo–Monotonic Interval Programming, Naval Research Logistics Quarterly 25, 309–314.

    MathSciNet  MATH  Google Scholar 

  133. Bector, C.R. and Bhatt, S.K. (1985), Nonlinear Programming in Complex Space: Necessary and Sufficient Conditions, Revue Roumaine de Mathematiques Pures et Appliquees 30 (7), 497–503.

    MathSciNet  MATH  Google Scholar 

  134. Bector, C.R. and Cambini, A. (1990), Fractional Programming—Some Recent Results. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 86–98.

    Google Scholar 

  135. Bector, C.R. and Chandra, S. (1986), Duality for Pseudolinear Minmax Programs, Asia–Pacific J. of Operational Research 2, 86–94.

    Google Scholar 

  136. Bector, C.R. and Chandra, S. (1986), First and Second Order Duality for a Class of Nondifferentiable Fractional Programming Problem, Journal of Information and Optimization Sciences 7 (3), 335–348.

    MathSciNet  MATH  Google Scholar 

  137. [ 137]Bector, C.R. and Chandra, S. (1986), Second Order Duality for GeneralizedFractional Programming, Methods of Operations Research 56, 11–28.

    Google Scholar 

  138. Bector, C.R. and Chandra, S. (1987), (Generalized) Bonvexity and Higher Order Duality for Fractional Programming, Opsearch 24 (3), 143–154.

    MathSciNet  MATH  Google Scholar 

  139. Bector, C.R. and Chandra, S. (1992), Generalized Continuous Fractional Programming Duality: A Parametric Approach, Utilitas Mathematica 42, 39–60.

    MathSciNet  MATH  Google Scholar 

  140. Bector, C.R. and Grover, T.R. (1973), Minimizing Certain Nonconvex Quadratic Fractional Programs by Ranking the Extreme Points, in: Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, Winnipeg, Utilitas Mathematica, 95–100.

    Google Scholar 

  141. Bector, C.R. and Jolly, P.L. (1979), Pseudo Monotonic Integer Programming, Proceedings of the Manitoba Conference on Numerical Mathematics and Computing, 211–218.

    Google Scholar 

  142. Bector, C.R. and Jolly, P.L. (1984), Programming Problems with Pseudomonotonic Objectives, Math. Operationsforschung Statist. Ser. Optimization 15 (2), 217–229.

    MathSciNet  MATH  Google Scholar 

  143. Bector, C.R. and Kumar, U. (1984), Duality for Multiple Objective Fractional Programs, Cahiers du Centre d’Etudes de Recherche Operationelle 26 (34), 201–207.

    MathSciNet  MATH  Google Scholar 

  144. Bector, C.R. and Suneja, S.K. (1988), Duality in Generalized Fractional Programming Involving Nondifferentiable Functions, Congressus Numerantium 62, 159–164.

    MathSciNet  Google Scholar 

  145. Bector, C.R. and Suneja, S.K. (1988), Duality in Nondifferentiable Generalized Fractional Programming, Asia Pacific Journal of Operational Research 5 (2), 134–139.

    MathSciNet  MATH  Google Scholar 

  146. Bector, C.R., Bector, M.K. and Klassen, J.E. (1977), Duality for a Nonlinear Programming Problem, Utilitas Mathematica 11, 87–99.

    MathSciNet  MATH  Google Scholar 

  147. Bector, C.R., Bhatia, D. and Aggarwal, S. (1992), Multiobjective Fractional Programming Duality: A Nondifferentiable Case, Congressus Numerantium 87, 77–85.

    MathSciNet  Google Scholar 

  148. Bector, C.R., Chandra, S. and Bector, M.K. (1985), Optimality Conditions and Duality for Minmax Programs under Generalized Convexity, Research Report No. 85–20, Department of Actuarial and Management Sciences, The University of Manitoba.

    Google Scholar 

  149. Bector, C.R., Chandra, S. and Bector, M.K. (1989), Generalized Fractional Programming Duality: A Parametric Approach, Journal of Optimization Theory and Applications 60 (2), 243–260.

    MathSciNet  Google Scholar 

  150. Bector, C.R., Chandra, S. and Bector, M.K. (1991), Duality for Minmax Problems, Congressus Numerantium 80, 33–48.

    MathSciNet  Google Scholar 

  151. Bector, C.R., Chandra, S. and Durga–Prasad, M.V. (1988), Duality in Pseudolinear Multiobjective Programming, Asia–Pacific J. Oper. Res. 5 (2), 150–159.

    MathSciNet  MATH  Google Scholar 

  152. Bector, C.R., Chandra, S. and Durga–Prasad, M.V. (1988), Nonlinear Fractional Programming Duality for Hanson–Mond Class of Functions with Nondifferentiable Terms, Congressus Numerantium 62, 165–170.

    Google Scholar 

  153. Bector, C.R., Chandra, S. and Gulati, T.R. (1974), Duality for Complex Nonlinear Fractional Programming Over Cones, in: Proceedings of the Third Manitoba Conference on Numerical Mathematics, Winnipeg, Utilitas Mathematica, 87–103.

    Google Scholar 

  154. Bector, C.R., Chandra, S. and Gulati, T.R. (1976), Duality for Fractional Control Problems, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, Winnipeg, Utilitas Mathematica, 231–241.

    Google Scholar 

  155. Bector, C.R., Chandra, S. and Gulati, T.R. (1977), A Lagrangian Approach toDuality for Complex Nonlinear Fractional Programming Over Cones, Mathematische Operationsforschung and Statistik, Series Optimization 8, 17–25.

    MathSciNet  Google Scholar 

  156. Bector, C.R., Chandra, S. and Singh, C. (1990), Duality in Multiobjective Fractional Programming. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 232–241.

    Google Scholar 

  157. Bector, M.K., Husain, I., Chandra, S. and Bector, C.R. (1988), A Duality Model for a Generalized Minmax Program, Naval Research Logistics 35 (5), 493–501.

    MathSciNet  MATH  Google Scholar 

  158. Bedi, M.K. (1978), Duality for a Special Class of Quasi–Convex Programming Problems, Zeitschrift für Angewandte Mathematik and Mechanik 58, 165166.

    MathSciNet  Google Scholar 

  159. Behringer, F.A. (1977), Lexicographic Quasiconcave Multiobjective Programming, Zeitschrift für Operations Research 21, 103–116.

    MathSciNet  MATH  Google Scholar 

  160. Belen ‘Kij, A.S. (1980), Minimax Problem with Linear Constraints, Automation and Remote Control 41, 562–568; translated from Autom. Telemekh 4, 151–158. [Russian]

    Google Scholar 

  161. Belenova, N.K. and Kim, K.V. (1984), On Algorithms for Solving a Balance Problem with a Uniform Criterion. Algorithms for Solving Network Problems, Akad. Nauk SSSR, Tsentral. Ekonom. Mat. Inst., Moskow, 2532. [Russian]

    Google Scholar 

  162. Bell, E.J. (1965), Primal–Dual Decomposition Programming, Ph.D. Thesis, Operations Research Center, University of California, Berkeley.

    Google Scholar 

  163. Bellman, R. (1957), Dynamic Programming, Princeton University Press, Princeton.

    Google Scholar 

  164. Belov, J.A. (1981), Two–Level Optimization for a Single–Step Stochastic Programming Problem with Probability Constraints, Kievskii Gosudarstvennyi Universitet. Mezhvedomstvennyi Nauchnyi Sbornik. Vychislitelnaya i Prikladnaya Matematika 43, 78–85, 158. [Russian]

    Google Scholar 

  165. [ 165]Belykh, V.M. and Gavurin, M.K. (1980), Minimization Algorithm for a Linear–Fractional Function,Vestnik Leningradskogo Universiteta, Matematika, Mehanika, Astronomija 4, 10–15. [Russian]

    Google Scholar 

  166. Belykh, V.M. and Gavurin, M.K. (1981), An Algorithm for Minimization of a Fractional–Linear Function, Mathematische Operationsforschung und Statistik, Serie Optimization 12 (1), 10–15, 115. [Russian]

    Google Scholar 

  167. Benadada, Y. (1989), Approches de Résolution du Problème de Programmation Fractionaire Généralisée, Thèse de Doctorat, Université de Montréal.

    Google Scholar 

  168. Benadada, Y. and Ferland, J.A. (1988), Partial Linearization for Generalized Fractional Programming, Zeitschrift für Operations Research 32 (2), 101–106.

    MathSciNet  MATH  Google Scholar 

  169. Benadada, Y., Crouzeix, J.P. and Ferland, J.A. (1990), An Interval–Type Algorithm for Generalized Fractional Programming. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 106–120.

    Google Scholar 

  170. Benadada, Y., Crouzeix, J.P. and Ferland, J.A. (1993), Rate of Convergence of a Generalization of Newton’s Method, Journal of Optimization Theory and Applications 78, 599–604.

    MathSciNet  MATH  Google Scholar 

  171. Benson, H.P. (1985), Finding Certain Weakly–Efficient Vertices in Multiple Objective Linear Fractional Programming, Management Science 31 (2), 240–245.

    MathSciNet  MATH  Google Scholar 

  172. Beoni, C. (1986), A Generalization of Fenchel Duality Theory, Journal of Optimization Theory and Applications 49 (3), 375–387.

    MathSciNet  MATH  Google Scholar 

  173. Bereanu, B. (1963), Distribution Problems in Stochastic Linear Programming and Minimum Risk Solutions, Dissertation Abstract, Faculty of Mathematics and Mechanics, Bucharest. [Romanian]

    Google Scholar 

  174. Bereanu, B. (1964), Programme de Risque Minimal en Programmation Lineaire Stochastique, Compte Revue Academie Science, Paris, 981–983.

    Google Scholar 

  175. Bereanu, B. (1964), Solutions of Minimum Risk in Linear Programming, Analele Universitatii Bucuresti, Seria Stiintele Naturii, MatematicaMecanica 13, 121–140. [Romanian]

    Google Scholar 

  176. Bereanu, B. (1965), Decision Regions and Minimum Risk Solutions in Linear Programming, in Prekopa, A., (ed.), Colloquium on Applications of Mathematics to Economics, Hungarian Academy of Sciences, Budapest, 37–42.

    Google Scholar 

  177. Bereanu, B. (1972), Quasi–Convexity, Strict Quasi–Convexity and Pseudo–Convexity of Composite Objective Functions, Revue Francaise d’Automatique, Informatique et Recherche Operationelle, 15–26.

    Google Scholar 

  178. Bergthaller, C.A. (1970), Quadratic Equivalent of the Minimum Risk Problem, Revue Roumaine de Mathematiques Pures et Appliquees 15, 17–23.

    MathSciNet  MATH  Google Scholar 

  179. Bernard, J.C. (1986), Quelques Aspects Théoriques en Programmation Fractionnaire Généralisée et Algorithmes, Thèse de Doctorat, Université de Montréal.

    Google Scholar 

  180. Bernard, J.C. and Ferland, J.A. (1989), Convergence of Interval–Type Algorithms for Generalized Fractional Programming, Mathematical Programming 43 (3), 349–363.

    MathSciNet  MATH  Google Scholar 

  181. Bessent, A. and Bessent W. (1979), Determining the Comparative Efficiency of Schools through Data Envelopment Analysis, Research Report CCS 361, Center for Cybernetic Studies, University of Texas, Austin.

    Google Scholar 

  182. Bessent, A., Bessent, W., Elam, J. and Clark, T. (1988), Efficiency Frontier Determination by Constrained Fleet Analysis, Operations Research 36 (5), 785–796.

    MATH  Google Scholar 

  183. Bessent, A., Bessent, W., Kennington, J. and Reagan, B. (1982), An Application of Mathematical Programming to Assess Productivity in the Houston Independent School District, Management Science 28, 13551367.

    Google Scholar 

  184. Bhatia, D. and Datta, N. (1985), Necessary Conditions and Subgradient Duality for Nondifferentiable and Nonconvex Multi–objective Programming Problem, Cahiers du Centre d’Etudes de Recherche Operationelle 27 (12), 131–139.

    MathSciNet  MATH  Google Scholar 

  185. Bhatia, D. and Gupta, B. (1980), Efficiency in Certain Nonlinear Fractional Vector Maximization Problems, Indian Journal of Pure and Applied Mathematics 11, 669–672.

    MathSciNet  MATH  Google Scholar 

  186. Bhatia, D. and Jain, P. (1991), Nondifferentiable Multiobjective Fractional Programming with Hanson–Mond Classes of Functions, Journal of Information and Optimization Sciences 12 (1), 35–47.

    MathSciNet  MATH  Google Scholar 

  187. Bhatia, D. and Pandey, S. (1991), A Note on Multiobjective Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 33 (1–2), 3–11.

    MathSciNet  MATH  Google Scholar 

  188. Bhatia, D. and Pandey, S. (1991), Subgradient Duality and Duality for Multiobjective Fractional Programming Involving Invex Functions, Cahiers du Centre d’Etudes de Recherche Operationelle 33 (3–4), 167181.

    Google Scholar 

  189. Bhatia, H.L. (1978), Solid Transportation Problem in Linear Fractional Programming, Revue Belge de Statistique d’ Informatique et de Recherche Operationelle 18, 35–50.

    MATH  Google Scholar 

  190. Bhatt, S.K. (1973), An Existence Theorem for a Fractional Control Problem, Journal of Optimization Theory and Applications 11, 379–385.

    MathSciNet  MATH  Google Scholar 

  191. Bhatt, S.K. (1973), Sequential Unconstrained Minimization Technique for a Non–Convex Program, Cahiers du Centre d’Etudes de Recherche Operationelle 15, 429–435.

    MathSciNet  MATH  Google Scholar 

  192. Bhatt, S.K. (1974), Generalized Pseudo–Convex Programming in Real Banach Space and Duality, Cahiers du Centre d’Etudes de Recherche Operationelle 16, 7–16.

    MathSciNet  MATH  Google Scholar 

  193. Bhatt, S.K. (1981), Linearization Technique for Linear Fractional and Pseudo–Monotonic Programs Revisited, Cahiers du Centre d’Etudes de Recherche Operationelle 23 (1–2), 53–56.

    MathSciNet  MATH  Google Scholar 

  194. Bhatt, S.K. (1989), Equivalence of Various Linearization Algorithms for Linear Fractional Programming, Zeitschrift für Operations Research 33 (1), 3943.

    MathSciNet  Google Scholar 

  195. Bhatt, S.K. and Rosenbloom, E.S. (1985), A Dynamic Programming Approach to Generalized Linear Fractional Programs, Cahiers du Centre d’Etudes de Recherche Operationelle 27 (3–4), 207–212.

    MathSciNet  MATH  Google Scholar 

  196. Bitran, G.R. (1979), Experiments with Linear Fractional Problems, Naval Research Logistics Quarterly 26, 689–693.

    MATH  Google Scholar 

  197. Bitran, G.R. and Magnanti, T.L. (1976), Duality and Sensitivity Analysis for Fractional Programs, Operations Research 24, 675–699.

    MathSciNet  MATH  Google Scholar 

  198. Bitran, G.R. and Novaes, A.G. (1973), Linear Programming with a Fractional Objective Function, Operations Research 21, 22–29.

    MathSciNet  MATH  Google Scholar 

  199. Blau, R.A. (1973), Decomposition Technique for the Chebychev Problem, Operations Research 21, 1157–1162.

    MATH  Google Scholar 

  200. Böhm, H.H. (1962), Die Maximierung der Kapitalrentabilität, Zeitschrift für Betriebswirtschaft 32, 489–512.

    Google Scholar 

  201. Boncompte, M. (1985), Programacion Fraccional Generalizada, Thesis, Universidad di Barcelona, Facultad De Matematicas.

    Google Scholar 

  202. Boncompte, M. (1990), Analisi Subdifferencial en Programacion Fraccional, Doctoral Dissertation, Departamento de Matematica Aplicada y Analisis, Universidad di Barcelona. [Spanish]

    Google Scholar 

  203. Boncompte, M. and Martinez–Legaz, J.E. (1991), Fractional Programming by Lower Subdifferentiability Techniques, Journal of Optimization Theory and Applications 68 (1), 95–116.

    Google Scholar 

  204. Borde, J. (1985), Quelques Aspects Theoriques et Algorithmiques en Quasiconvexite, Doctoral Thesis, Universite de Clermont II, Departement de Mathematiques Appliquees.

    Google Scholar 

  205. Borde, J. and Crouzeix, J.P. (1987), Convergence of a Dinkelbach–Type Algorithm in Generalized Fractional Programming, Zeitschrift für Operations Research. Serie A 31 (1), 31–54.

    MathSciNet  MATH  Google Scholar 

  206. Borwein, J.M. (1976), Fractional Programming Without Differentiability, Mathematical Programming 11, 283–290.

    MathSciNet  Google Scholar 

  207. Boyadzhiev, A.V. (1981), On a Nonlinear Pragramming Problem, God. Vissh. Uchebn. Zaved, Prilozhna Mat. 17 (1), 107–112. [Bulgarian]

    Google Scholar 

  208. Boyd, G. and Färe, R. (1984), Measuring the Efficiency of Decision Making Units: A Comment, European Journal of Operational Research 15 (3), 331–332.

    Google Scholar 

  209. Bradley, G.H. (1971), Transformation of Integer Programs to Knapsack Problems, Discrete Mathematics 1 (1), 29–45.

    MathSciNet  MATH  Google Scholar 

  210. Bradley, S.P. and Frey, S.C. (1974), Fractional Programming with Homogeneous Functions, Operations Research 22, 350–357.

    MathSciNet  MATH  Google Scholar 

  211. Brännlund, U. (1993), On Relaxation Methods for Nonsmooth Convex Optimization, Doctoral Thesis, Department of Mathematics, Royal Institute of Technology Stockholm, Sweden.

    Google Scholar 

  212. Brender, D.M. (1963), A Surveilance Model for Recurrent Events, IBM Watson Research Center Report.

    Google Scholar 

  213. Brosh, I. (1981), Optimal Cargo Allocation on Board a Plane: A Sequential Linear Programming Approach, European Journal of Operational Research 8 (1), 40–46.

    MathSciNet  MATH  Google Scholar 

  214. Bühler, W. (1975), A Note on Fractional Interval Programming, Zeitschrift für Operations Research 19, 29–36.

    MATH  Google Scholar 

  215. Bühler, W. and Dick, R. (1972/73), Stochastische Lineare Optimierung, Teil I, Zeitschrift für Betriebswirtschaft 42, 1972, 667–692; Teil II, Zeitschrift für Betriebswirtschaft 43, 101–120.

    Google Scholar 

  216. Bühler, W. and Newinger, N. (1973), On the Convergence of Martos’ Hyperbolic Programming Algorithm, Arbeitsbericht, Lehrstuhl für Unternehmensforschung, Rheinisch–Westfälische Technische Hochschule, Aachen.

    Google Scholar 

  217. Bum–Il, L. and Dong–Wan, T. (1989), An Interactive Procedure for Fuzzy Programming Problems with Linear Fractional Objectives, Comput. Ind. Eng. (UK) 16 (2), 269–275.

    Google Scholar 

  218. Burkard, R.E., Dlaska, K. and Klinz. B. (1993), The Quickest Flow Problem, Zeitschrift für Operations Research 37, 31–58.

    MathSciNet  MATH  Google Scholar 

  219. Burley, S.P. (1974), Dynamic Generalizations of the Von Neumann Model, Math. Mod. Econ., Amsterdam, 27–33.

    Google Scholar 

  220. Bykadorov, I.A. (1985), A Problem of Linear–Fractional Programming,Akademiva Nauk SSSR Sibirskoe Otdelenie, Institut Matematiki, Optimizatsiya 35 (52), 51–55,159. [Russian]

    Google Scholar 

  221. Bykadorov, I.A. (1985), Finite Systems of Linear–Fractional Inequalities, Akademiya Nauk SSSR Sibirskoe Otdelenie, Institut Matematiki, Optimizatsiya 35 (52), 43–50, 158. [Russian]

    Google Scholar 

  222. Bykadorov, I.A. (1986), Conditions for the Quasiconvexity of Sums of Linear–Fractional Functions, Akademiya Nauk SSSR Sibirskoe Otdelenie, Institut Matematiki, Optimizatsiya 39 (56), 25–41, 158. [Russian]

    Google Scholar 

  223. Bykadorov, I.A. (1989), Differential Quasiconvexity Criteria for Finite Sums of Linear Fractional Functions, Preprint No. 24, AN SSSR Sibirskoe Otdelenie, Institut Matematiki, Novosibirsk. [Russian]

    Google Scholar 

  224. Bykadorov, I.A. (1990), Differential Quasiconvexity Criteria for Ratios of Polynomials of Several Variables, Preprint No. 12, AN SSSR Sibirskoe Otdelenie, Institut Matematiki, Novosibirsk. [Russian]

    Google Scholar 

  225. Bykadorov, I.A. (1990), Quasiconvexity Conditions for some Classes of Fractional Functions, Preprint No. 18, AN SSSR Sibirskoe Otdelenie, Institut Matematiki, Novosibirsk. [Russian]

    Google Scholar 

  226. Bykadorov, I.A. (1990), Quasiconvexity Criteria for Objective Functions in Fractional Programming Problems, Doctoral Thesis in Philosophy (Mathematics), Institut Matematiki, Novosibirsk. [Russian]

    Google Scholar 

  227. Bykadorov, I.A. (1994), On Quasiconvexity in Fractional Programming. Komlosi, S., Rapcsak, T. and Schaible, S. (eds.), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, Berlin, to appear.

    Google Scholar 

  228. Bykadorov, I.A. and Pozhidaev, D.M. (1993), On an Approach to Solving Special Classes of Multiextremal Problems, Preprint No. 3, AN SSSR Sibirskoe Otdelenie, Institut Matematiki, Novosibirsk.

    Google Scholar 

  229. Cabot, A.V. (1978), Maximizing the Sum of Certain Quasiconcave Functions Using Generalized Benders Decomposition, Naval Research Logistics Quarterly 25, 473–482.

    MathSciNet  MATH  Google Scholar 

  230. Callahan, J.R. and Bector, C.R. (1973), Optimization with General Stochastic Objective Functions, Proceedings of the Third Manitoba Conference on Numerical Mathematics, 127–137.

    Google Scholar 

  231. Cambini, A. (1977), Un Algoritmo per il Massimo del Quoziente di Due Forme Affini con Vincoli Lineari, Paper No. A–42, Department of Operations Research, University of Pisa, Italy.

    Google Scholar 

  232. Cambini, A. (1978), Sulla Programmazione Lineare Frazionaria Stocastica, Paper No. A–50, Dipartimento di Recerco Operativa e Scienze Statistiche, Universita di Pisa, Italy.

    Google Scholar 

  233. Cambini, A. (1979), Sulla Esistenza di Moltiplicatori Esponenziali per i Problem di Programmazione Lineare Frazionaria, Publication No. 67, Serie A. Dipartimento di Ricerca Operativa e Scienze Statistiche, Universita di Pisa, Italy.

    Google Scholar 

  234. Cambini, A. (1981), An Algorithm for a Special Class of Fractional Programs, in Schaible,S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 491–508.

    Google Scholar 

  235. Cambini, A. (1987), Concavità Generalizzata e Programmazione Frazionaria: Stato dell’Arte (Relazione Invitata), Atti XI Convegno A.M.A.S.E.S., Aosta.

    Google Scholar 

  236. Cambini, A. and Martein, L. (1986), A Modified Version of Martos’s Algorithm for the Linear Fractional Problem. Proceedings of Xth Symposium on Operations Research, Methods of Operations Research 53, 33–44.

    MathSciNet  MATH  Google Scholar 

  237. Cambini, A. and Martein, L. (1986), On the Fenchel–Like and Lagrangian Duality in Fractional Programming. Xth Symposium on Operations Research, Methods of Operations Research 53, 21–32.

    MathSciNet  MATH  Google Scholar 

  238. Cambini, A. and Martein, L. (1989), Equivalence in Linear Fractional Programming, Dipartimento di Statistica e Matematica Applicata all’ Economia, Universita di Pisa, Report No. 28; to appear in Optimization 23 (1992).

    Google Scholar 

  239. Cambini, A. and Martein, L. (1990), Linear Fractional and Bicriteria Linear Fractional Programs. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 155–166.

    Google Scholar 

  240. Cambini, A. and Sodini, C. (1982), Un Algoritmo per un Problema di Programmazione Frazionaria non Lineare Derivante da un Problema di Selezione del Portafoglio, Publication No. 88, Serie A. Dipartimento di Ricerca Operativa e Scienze Statistiche, Universita di Pisa, Italy. Also in: Atti del Quinto Convegno A.M.A.S.E.S., Perugio 22–24 Ottobre, 1981, 4961

    Google Scholar 

  241. Cambini, A. and Sodini, C. (1983), Sulla Equivalenza di Alcuni Algorithmi di Programmazione Lineare Frazionaria, Report No. A–105, Dipartimento di Matematica, Universita di Pisa.

    Google Scholar 

  242. Cambini, A. and Sodini, C. (1987), On Parametric Linear Fractional Programs, Report No. 6, Dipartimento di Statistica e Matematica Applicata all’ Economia, Universita di Pisa.

    Google Scholar 

  243. Cambini, A., Castagnoli, E., Martein, L., Mazzoleni, P. and Schaible, S., (eds.), (1990), Generalized Convexity and Fractional Programming with Economic Applications. Proceedings of an International Workshop at Pisa, 1988, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin.

    Google Scholar 

  244. Cambini, A., Martein, L. and Pellegrini, L. ( 1978), Decomposition Methods and Algorithms for a Class of Non–linear Programming Problems, First Meeting AFCET–SMF Palaiseau, Ecole Polytechnique Palaiseau Paris, 179–189.

    Google Scholar 

  245. Cambini, A., Martein, L. and Schaible, S. (1989), On Maximizing a Sum of Ratios, Journal of Information and Optimization Sciences 10 (1), 65–79.

    MathSciNet  MATH  Google Scholar 

  246. Cambini, A., Martein, L. and Sodini, C. (1983), An Algorithm for Two Particular Nonlinear Fractional Programs. Proceedings of VIIth Symposium on Operations Research, Methods of Operations Research 45, 61–70.

    MathSciNet  MATH  Google Scholar 

  247. Cambini, A., Schaible, S. and Sodini, C. (1993), Parametric Linear Fractional Programming for an Unbounded Feasible Region, J. of Global Optimization 3, 157–169.

    MathSciNet  MATH  Google Scholar 

  248. Cambini, R. (1994), A Class of Nonlinear Programs: Theoretical and Algorithmic Results. Komlosi, S., Rapcsak, T. and Schaible, S. (eds.), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, BerlinHeidelberg–New York, to appear.

    Google Scholar 

  249. Canestrelli, E. and Giove, S. (1993), Bidimensional Approach to Fuzzy Linear Goal Programming. Delgado, Kaeprzyk, Verdegay and Vile (eds.), Fuzzy Optimization—Recent Advances, to appear.

    Google Scholar 

  250. Carotenuto, L., Muraca, P. and Raiconi, G. (1988), Observation Strategy for a Parallel Connection of Discrete–Time Linear Systems, Mathematics and Computers in Simulation 30 (5), 389–403.

    MathSciNet  MATH  Google Scholar 

  251. Castagnoli, E. and Mazzoleni, P. (1990), Differentiable (a,20–Concave Functions. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345 Springer, Berlin, 52–76.

    Google Scholar 

  252. Cernov, J.P. (1970), A Certain Problem of Parametric Linear–Fractional Programming, Izvestija Akademii Nauk Kirgizskoi SSR 3, 20–27. [Russian]

    Google Scholar 

  253. Cernov, J.P. (1970), Several Problems of Parametric Fractional Linear Programming, Optimal Planirovanie Vyp. 16, 98–111. [Russian]

    Google Scholar 

  254. Cernov, J.P. (1971), The Problems of Fractional Programming with Linear Separable and Quadratic Functions, Econom. i Mat. Metody 7, 721–732. [Russian]

    Google Scholar 

  255. Cernov, J.P. (1972), An Application of the 8–Method to the Solution of Fractional Programming Problems with Separable Functions, Mathematical Methods for the Solution of Economic Problems (Suppl. to Ekonom. i Mat. Metody 3), 68–73. [Russian].

    Google Scholar 

  256. Cernov, J.P. and Bayalinov, E.B. (1981), A Dual Fractional Linear Programming Problem, Mathematical Modeling of Economic Processes, ‘Ilim’, Frunze, 115–122. [Russian]

    Google Scholar 

  257. Cernov, J.P. and Bayalinov, E.B. (1981), Linear Analogue of a Fractional Linear Programming Problem, Mathematical Modeling of Economic Processes, ‘Ilim’, Frunze, 109–115, 236. [Russian]

    Google Scholar 

  258. Cernov, J.P. and Lange, E.G. (1970), A Transport Problem of Fractional Programming, Optimal. Planirovanie Vyp. 16, 112–132. [Russian]

    Google Scholar 

  259. Cernov, J.P. and Lange, E.G. (1974), An Application of the Method of Successive Computations to the Solution of a Certain Class of Fractional Concave Programming Problems, Mathematical Methods of Solution of Economic Problems (Suppl. to Ekonom. i Mat. Metody 5), 37–49. [Russian]

    Google Scholar 

  260. Cernov, J.P. and Lange, E.G. (1978), Zadachi Nelineinogo Programmirovanya s Udelnymi Ekonomicheskimi Pokazatelyami. (Nonlinear Programming Problems with Specific Economic Indices), Metody i Prilozheniya. (Methods and Applications), ‘Ilim’, Frunze, 291 pp. [Russian]

    Google Scholar 

  261. Cernov, J.P., Lange, E.G. and Zusupbaev, A. (1979), Application of the Successive Calculation Method to Solving a Production Allocation Problem with a Fractional–Convex Functional, lzvestija Akademii Nauk Kirgizskoi SSR 2, 27–34. [Russian]

    Google Scholar 

  262. Chadha, S.S. (1967), A Decomposition Principle for Fractional Programming, Opsearch 4, 123–132.

    Google Scholar 

  263. Chadha, S.S. (1969), An Extension of Upper Bounded Technique for a Linear Fractional Program, Metrika 20, 25–35.

    MathSciNet  Google Scholar 

  264. Chadha, S.S. (1971), A Dual Fractional Program, Zeitschrift für Angewandte Mathematik und Mechanik 51, 560–561.

    MathSciNet  MATH  Google Scholar 

  265. Chadha, S.S. (1971), A Linear Fractional Functional Program with a Two Parameter Objective Function, Zeitschrift für Angewandte Mathematik und Mechanik 51, 479–481.

    MathSciNet  MATH  Google Scholar 

  266. Chadha, S.S. (1971), A Linear Fractional Functionals Program with Variable Coefficients, Revue de la Faculte des Sciences de l’Universite d’Istanbul, Serie A 36, 7–13.

    MathSciNet  Google Scholar 

  267. Chadha, S.S. (1973), A Generalized Upper Bounded Technique for a Linear Fractional Program, Metrika 20, 25–35.

    MathSciNet  MATH  Google Scholar 

  268. Chadha, S.S. (1973), Duality Theorems for A Generalized Linear and Linear Fractional Program, Cahiers du Centre d’Etudes de Recherche Operationelle 15, 167–173.

    MATH  Google Scholar 

  269. Chadha, S.S. (1977), A Decomposition Principle for a Generalized Linear and Piece–wise Linear Program, Trabajos de Estadistica e Investigacion Operativa 28, 85–92.

    MathSciNet  MATH  Google Scholar 

  270. Chadha, S.S. (1983), Quadratic Parametric Linear Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 25 (1–2), 23–28.

    MathSciNet  MATH  Google Scholar 

  271. Chadha, S.S. (1984), A Dual Non–Linear Program, Acta Math. Appl. Sin., Engl. Ser. 1, 163–167.

    MATH  Google Scholar 

  272. Chadha, S.S. (1987), Hyperbolic Programming—A new Criteria, Economic Computation and Economic Cybernetics Studies and Research 22 (4), 8388.

    MathSciNet  Google Scholar 

  273. Chadha, S.S. (1988), A Parametric Linear Fractional Program, J. Comb. Inform. System Sci. 13 (3–4), 106–113.

    MathSciNet  MATH  Google Scholar 

  274. Chadha, S.S. (1988), Duality Theorems for a Class of Non–Linear Programming Problems, Trab. Invest. Oper. 3 (1), 141–148.

    MATH  Google Scholar 

  275. Chadha, S.S. (1989), Multiparametric Linear Fractional Functionals Programming, Trabajos de Investigacion Operativa (Spain) 4 (1), 3–10.

    Google Scholar 

  276. Chadha, S.S. (1992), Optimization of a Quadratic Fractional Function, Cahiers du Centre d’Etudes de Recherche Operationelle 34 (1), 3–6.

    MathSciNet  MATH  Google Scholar 

  277. Chadha, S.S. and Gupta, J.M. (1976), Sensitivity Analysis of the Solution of a Generalized Linear and Piece–wise Linear Program, Cahiers du Centre d’Études de Recherche Operationelle 18, 309–321.

    MathSciNet  MATH  Google Scholar 

  278. Chadha, S.S. and Kaul, R.N. (1972), A Dual Nonlinear Program, Metrika 19,18–22.

    MathSciNet  MATH  Google Scholar 

  279. Chadha, S.S. and Kaul, R.N. (1972), A Linear Fractional Functionals Program with Variable Coefficients, Journal of Mathematical Sciences 7, 15–20.

    MathSciNet  Google Scholar 

  280. Chadha, S.S. and Shivpuri S. (1973), A Simple Class of Parametric Linear Fractional Functionals Programming, Zeitschrift für Angewandte Mathematik und Mechanik 53, 641 646.

    MathSciNet  Google Scholar 

  281. Chadha, S.S. and Shivpuri, S. (1977), Parametrization of a Generalized Linear and Piece–wise Linear Programming Problem, Trabajos de Estadistica e Investigacion Operativa 28, 151–160.

    MathSciNet  MATH  Google Scholar 

  282. Chadha, S.S. and Shivpuri, S. (1980), Enumerative Technique for an Extreme Point Fractional Program, European Journal of Operational Research 4, 54–59.

    MathSciNet  Google Scholar 

  283. Chambers, D. (1967), Programming the Allocation of Funds Subject to Restrictions on Reported Results, Operational Research Quarterly 10, 407–431.

    Google Scholar 

  284. Chandra, S. (1967), Linear Fractional Functional Programming, Journal of the Operations Research Society of Japan 10, 1–2.

    Google Scholar 

  285. Chandra, S. (1967), The Capacitated Transportation Problem in Linear Fractional Programming, Journal of the Operations Research Society of Japan 10, 18–26.

    Google Scholar 

  286. Chandra, S. (1968), Decomposition Principle for Linear Fractional Functional Programs, Revue Francaise d’Informatique et de Recherche Operationelle 2, 65–72.

    MATH  Google Scholar 

  287. Chandra, S. (1969), Duality in Banach Spaces; Transformation, Assignment and Large–Structured Fractional Programs, Ph.D. Thesis, Dept. of Mathematics, Indian Institute of Technology, Kanpur (India).

    Google Scholar 

  288. Chandra, S. (1972), Strong Pseudo–Convex Programming, Indian Journal of Pure and Applied Mathematics 3, 278–282.

    MathSciNet  MATH  Google Scholar 

  289. Chandra, S. and Chandramohan, M. (1976), Duality and Algorithmic Aspects of Integer Linear Fractional Programming, Research Report, Department of Mathematics, Indian Institute of Technology, New Delhi.

    Google Scholar 

  290. Chandra, S. and Chandramohan, M. (1979), An Improved Branch and Bound Method for Mixed Integer Linear Fractional Programs, Zeitschrift für Angewandte Mathematik und Mechanik 59, 575–577.

    MathSciNet  MATH  Google Scholar 

  291. Chandra, S. and Chandramohan, M. (1979), Duality in Mixed Integer Nonconvex and Nondifferentiable Programming, Zeitschrift für Angewandte Mathematik und Mechanik 59, 205–209.

    MathSciNet  MATH  Google Scholar 

  292. Chandra, S. and Chandramohan, M. (1980), A Branch and Bound Method for Integer Non–linear Fractional Programs, Zeitschrift für Angewandte Mathematik und Mechanik 60, 735–737.

    MathSciNet  MATH  Google Scholar 

  293. Chandra, S. and Chandramohan, M. (1980), A Note on Integer Linear Fractional Programming, Naval Research Logistics Quarterly 27, 171174.

    MathSciNet  Google Scholar 

  294. Chandra, S. and Gulati, T.R. (1976), A Duality Theorem for a Nondifferentiable Fractional Programming Problem, Management Science 23, 32–37.

    MathSciNet  MATH  Google Scholar 

  295. Chandra, S. and Husain, I. (1989), Symmetric Dual Continuous Fractional Programming, Journal of Information and Optimization Sciences 10 (1), 241–255.

    MathSciNet  Google Scholar 

  296. Chandra, S. and Kumar, V. (1991), Equivalent Lagrangians for Generalized Fractional Programming, Technical Report, Dept. of Mathematics, Indian Institute of Technology, Kanpur (India).

    Google Scholar 

  297. Chandra, S. and Saxena, P.K. (1983), Fractional Transportation Problem with Impurities, Advances in Management Studies 2, 335–349.

    Google Scholar 

  298. Chandra, S. and Saxena, P.K. (1984), Fractional Transportation Problem with Penalty Costs and Impurities, Advances in Management Studies 3, 57–65.

    MATH  Google Scholar 

  299. Chandra, S. and Saxena, P.K. (1987), Cost/Completion–Date Tradeoffs in Quadratic Fractional Transportation Problem, Economic Computation and Economic Cybernetics Studies and Research 22 (3), 67–72.

    MathSciNet  MATH  Google Scholar 

  300. Chandra, S., Craven, B.D. and Husain, I. (1985), Continuous Programming Containing Arbitrary Norms, J. Austr. Math. Soc. Ser. A 39, 28–38.

    MathSciNet  MATH  Google Scholar 

  301. Chandra, S., Craven, B.D. and Mond, B. (1985), Nonlinear Programming Duality and Matrix Game Equivalence, J. Austr. Math. Soc. Ser. B 26, 422–429.

    MathSciNet  MATH  Google Scholar 

  302. Chandra, S., Craven, B.D. and Mond, B. (1985), Symmetric Dual Fractional Programming, Zeitschrift für Operations Research, Serie A 29 (1), A59–A64.

    MathSciNet  Google Scholar 

  303. Chandra, S., Craven, B.D. and Mond, B. (1986), Generalized Fractional Programming Duality: A Ratio Game Approach, Australian Mathematical Society, Journal Series B, Applied Mathematics 28 (2), 170–180.

    MathSciNet  MATH  Google Scholar 

  304. Chandra, S., Craven, B.D. and Mond, B. (1990), Vector–Valued Lagrangian and Multi–Objective Fractional Programming Duality, Numerical Functional Analysis and Optimization 11 (3–4), 239–254.

    MathSciNet  MATH  Google Scholar 

  305. Chandra, S., Craven, B.D. and Mond, B. (1991), Multiobjective Fractional Programming Duality. A Lagragian Approach, Optimization 22 (4), 549556.

    Google Scholar 

  306. Chandra, S., Mond, B. and Durga–Prasad, M.V. (1988), Constrained Ratio Games and Generalized Fractional Programming, Zeitschrift für Operations Research 32 (5), 307–314.

    MathSciNet  MATH  Google Scholar 

  307. Chandrasekaran, R. (1977), Minimum Ratio Spanning Trees, Networks 7, 335342.

    MathSciNet  Google Scholar 

  308. Chandrasekaran, R. and Tamir, A. (1984), Optimization Problems with Algebraic Solutions: Quadratic Fractional Programs and Ratio Games, Mathematical Programming 30 (3), 326–339.

    MathSciNet  MATH  Google Scholar 

  309. Chandrasekaran, R. and Tamir, A. (1984), Polynomial Testing of the Query “Is a b >— c°? with Application to Finding a Minimal Cost Reliability Ratio Spanning Tree, Discrete Appl. Math. 9, 117–123.

    MathSciNet  MATH  Google Scholar 

  310. Chandrasekaran, R., Anija, Y.P. and Nair, K.P.K. (1981), Minimal Cost Reliability Ratio Spanning Tree. Studies on Graphs and Discrete Programming, Annals of Discrete Mathematics 11, 53–60.

    MATH  Google Scholar 

  311. Charnes, A. and Cooper, W.W. (1962), Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly 9, 181–186.

    MathSciNet  MATH  Google Scholar 

  312. Charnes, A. and Cooper, W.W. (1962), Systems Evaluation and Repricing Theorems, Management Science 9, 33–49.

    MathSciNet  Google Scholar 

  313. Charnes, A. and Cooper, W.W. (1963), Deterministic Equivalents for Optimizing and Satisficing Under Chance Constraints, Operations Research 11, 18–39.

    MathSciNet  MATH  Google Scholar 

  314. Charnes, A. and Cooper, W.W. (1963), Programming with Linear Fractional Functionals, a Communication, Naval Research Logistics Quarterly 10, 273–274.

    Google Scholar 

  315. Charnes, A. and Cooper, W.W. (1973), An Explicit General Solution in Linear Fractional Programming, Naval Research Logistics Quarterly 20, 449467.

    MathSciNet  Google Scholar 

  316. Charnes, A. and Cooper, W.W. (1977), Goal Programming and Multi–Objective Optimization, Part I, European Journal of Operational Research 1, 39–54.

    MathSciNet  MATH  Google Scholar 

  317. Charnes, A. and Cooper, W.W. (1980), Auditing and Accounting for Program Efficiency and Management Efficiency in Not–for–Profit Entities, Accounting, Organizations and Society 5, 87–107.

    Google Scholar 

  318. Charries, A. and Cooper, W.W. (1980), Management Science Relations for Evaluation and Management Accountability, Journal of Enterprise Management 2, 143–162.

    Google Scholar 

  319. Charnes, A. and Cooper, W.W. (1981), The Effective Solution of the Class of Non–Convex Multi–Objective Problems with Ratio Goals, Operational Research ‘81, North–Holland, Amsterdam, 20–24.

    Google Scholar 

  320. Charnes, A. and Cooper. W.W. (1984), The Non–Archimedean CCR Ratio for Efficiency Analysis: A Rejoinder to Boyd and Färe, European Journal of Operational Research 15 (3), 333–334.

    MathSciNet  Google Scholar 

  321. Charries, A. and Granot, D. (1976), Constrained Non–Cooperative von Neumann Ratio Games, Working Paper No. 368, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver.

    Google Scholar 

  322. Charnes, A. and Neralic, L. (1989), Sensitivity Analysis in Data Envelopment Analysis, Glasnik Matematicki 24 (44), No.1, 211–226.

    Google Scholar 

  323. Charries, A., Cooper, W.W. and Rhodes, E. (1978/79), Measuring the Efficiency of Decision Making Units, European Journal of Operational Research 2, 429444; also Corrections, op. cit. 3, 339.

    Google Scholar 

  324. Charries, A., Cooper, W.W. and Rhodes, E. (1981), Evaluation Program and Managerial Efficiency, An Application of Data Envelopment Analysis for Program Follow Through, Management Science 27, 668–697.

    Google Scholar 

  325. Charnes, A., Cooper, W.W. and Thrall, R.M. (1986), Classifying and Characterizing Effinciencies and Inefficiencies in Data Development Analysis, Operations Research Letters 5 (3), 105–110.

    MATH  Google Scholar 

  326. Charnes, A., Cooper, W.W., Golany, B. and Seiford, L. (1984), Foundations of Data Envelopment Analysis for Pareto–Koopmans Efficient Emperical Production Functions, J. Econometrics 30, 91–107.

    MathSciNet  Google Scholar 

  327. Charries, A., Cox, L. and Lane, M. (1970), A Note on the Redesigning of a Rate Structure for Allocation of State Funds to Educational Institutions, Working Paper 70–49 of Project GUM, University of Texas, Austin.

    Google Scholar 

  328. Charnes, A., Granot, D. and Granot, F. (1976), A Note on Explicit Solutions in Linear Fractional Programming, Naval Research Logistics Quarterly 23, 161–167.

    MathSciNet  Google Scholar 

  329. Charnes, A., Granot, D. and Granot, F. (1976), An Algorithm for Solving General Fractional Interval Programming Problems, Naval Research Logistics Quarterly 23, 53–65.

    MathSciNet  MATH  Google Scholar 

  330. Charnes, A., Granot, D. and Granot, F. (1978), On Solving Linear Fractional Interval Programming Problems, Cahiers du Centre d’Etudes de Recherche Operationelle 20, 45–57.

    MathSciNet  MATH  Google Scholar 

  331. Chatterjee, S. and Sen, R. (1985), On a Certain Type of Bicriterion Programming Problems, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 29 (4), 297–306.

    MathSciNet  Google Scholar 

  332. Cheney, E.W. and Loeb, H.L. (1961), Two New Algorithms for Rational Approximation, Numerische Mathematik 3, 72–75.

    MathSciNet  MATH  Google Scholar 

  333. Chernov, Y.P. and Bayalinov, E.B. (1981), A Dual Fractional–Linear Programming Problem, Mathematical Modeling of Economic Processes, ‘Ilim’, Frunze, 115–122, 236. [Russian]

    Google Scholar 

  334. Chernov, Y.P. and Bayalinov, E.B. (1981), Linear Analogue of a Fractional–Linear Programming Problem, Mathematical Modeling of Economic Processes, ‘Ilim’, Frunze, 109–115, 236. [Russian]

    Google Scholar 

  335. Chew, K.L. and Choo, E.U. (1984), Pseudolinearity and Effficiency, Mathematical Programming 28 (2), 226–239.

    MathSciNet  MATH  Google Scholar 

  336. Chong, J.H. and Kim, J.O. (1975), A Solution of Linear and Fractional Linear Programming with Both Restrictions, Su–hak kwa Mul–li 19, 9–15. [Korean]

    Google Scholar 

  337. Choo, E.U. (1980), Multicriteria Linear Fractional Programming, Ph.D. Thesis, University of British Columbia, Vancouver.

    Google Scholar 

  338. Choo, E.U. (1984), Proper Efficiency and the Linear Fractional Vector Maximum Problem, Oper. Res. 32 (1), 216–220.

    MATH  Google Scholar 

  339. Choo, E.U. and Atkins, D.R. (1980), An Interactive Algorithm for Multicriteria Programming, Computer and Operations Research 7, 81–87.

    Google Scholar 

  340. Choo, E.U. and Atkins, D.R. (1982), Bicriteria Linear Fractional Programming, Journal of Optimization Theory and Applications 36, 204–220.

    MathSciNet  MATH  Google Scholar 

  341. Choo, E.U. and Atkins, D.R. (1983), Connectedness in Multiple Linear Fractional Programming, Management Science 29 (2), 250–255.

    MathSciNet  MATH  Google Scholar 

  342. Choo, E.U., Schaible, S. and Chew, K.P. (1985), Connectedness of the Efficient Set in Three Criteria Quasiconcave Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 27, 213–220.

    MathSciNet  MATH  Google Scholar 

  343. Chowdhuri, S. and Breuer, M.A. (1988), Optimization Algorithms for a Class of Nonlinear Programming Problems, Comput. Math. Appl. 15 (3), 175184.

    Google Scholar 

  344. Christov, G. (1979), Hyperbolic Optimization Problem, Proceedings of IX. International Symposium on Mathematical Programming, Budapest, 1976, A. Prékopa (ed.), North–Holland, Amsterdam.

    Google Scholar 

  345. Christov, G. (1983), Properties and Method for Solving Fractional–Linear Optimization Problems, Doklady Bolgarskoi Akademii Nauk, Comptes Rendus de l’Academie Bulgare des Sciences 36 (1), 61–64.

    MathSciNet  MATH  Google Scholar 

  346. Christov, G., Karamiteva, Z. and Stoyanov, T.E. (1985), A Numerical Method and Program for Solving a Linear–Fractional Optimization Problem, Mathematics and Mathematical Education (Sunny Beach), Slunchev Bryag, Bulg. Akademii Nauk, Sofia, 566–570. [Bulgarian]

    Google Scholar 

  347. Chung, K.J. (1989), A Note on Maximal Mean/Standard Deviation Ratio in an Undiscounted MDP, Oper. Res. Lett. 8 (4), 201–203.

    MathSciNet  MATH  Google Scholar 

  348. Climaco, J.C.N. and Cardoso, D.M. (1990), Linear Fractional Programming, a new Bicriteria Approach, Belg. J. Oper. Res. Stat. Comput. Sci 29 (3), 324.

    Google Scholar 

  349. Climaco, J.C.N., Martins, E.Q.V. and Rosa, M.S. (1981), A Simplex Based Algorithm for the Minimal Average Speed Path Problem, Technical Report, Dept. of Mathematics, University of Coimbra, Coimbra, Portugal.

    Google Scholar 

  350. Colantoni, C.S., Manes, R.P. and Whinston, A. (1969), Programming, Profit Rates and Pricing Decisions, Accounting Review, 467–481.

    Google Scholar 

  351. Collatz, L. (1989), Some Advantages of Rational Approximation Compared with Polynomial Approximation. Chui, C.K., Shumaker, L.L. and Ward, J.D. (eds.) Approximation Theory 6, Academic Press, New York, 145148.

    Google Scholar 

  352. Collatz, L. and Wetterling, W. (1971), Optimierungsaufgaben, 2nd ed., Springer, Berlin.

    Google Scholar 

  353. Conde, E. and Ruiz–Canales, P. (1991), A Branch–and–Bound Algorithm for Discrete Fractional Programming, [Spanish, English Summary], XV Jornades Luso–Espanholas de Matematica, Vol. IV (Proceedings of the XVth Portugese–Spanish Conference on Mathematics), 361–366. [Spanish]

    Google Scholar 

  354. Cook, W.D., Kirby, M.J.L. and Mehndiratta, S.L. (1975), A Linear Fractional Max–Min Problem, Operations Research 23, 511–521.

    MathSciNet  MATH  Google Scholar 

  355. Corban, A. (1973), Duality in Transportation Problems in Fractional Programming, Studii si Cercetari Matematice 25, 347–357. [Romanian]

    Google Scholar 

  356. Corban, A. (1973), Programming with Fractional Linear Objective Function, Revue Roumaine de Mathematique Pures et Appliquees 18, 633–637.

    MathSciNet  MATH  Google Scholar 

  357. Corban, A. (1974), Duality in Non–Linear Programming, Studii si Cercetari Matematice 26, 375–399. [Romanian]

    Google Scholar 

  358. Corban, A. (1975), Non–Linear Three–Dimensional Programming, Revue Roumaine de Mathematiques Pures et Appliquees 20, 1043–1059.

    MathSciNet  MATH  Google Scholar 

  359. Craven, B.D. (1978), Mathematical Programming and Control Theory, Chapman and Hall, London.

    Google Scholar 

  360. Craven, B.D. (1981), Duality for Generalized Convex Fractional Programs, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 473–490.

    Google Scholar 

  361. Craven, B.D. (1988), Fractional Programming, Sigma Series in Applied Mathematics 4, Heldermann Verlag, Berlin.

    Google Scholar 

  362. Craven, B.D. (1988), Fractional Programming—A Survey, Opsearch 25 (3), 165–176.

    MathSciNet  MATH  Google Scholar 

  363. Craven, B.D. and Mond, B. (1973/76), The Dual of a Fractional Linear Program, Journal of Mathematical Analysis and Applications 42, 507512; Journal of Mathematical Analysis and Applications 55, 807.

    Google Scholar 

  364. Craven, B.D. and Mond, B. (1975), On Fractional Programming and Equivalence, Naval Research Logistics Quarterly 22, 405–410.

    MathSciNet  MATH  Google Scholar 

  365. Craven, B.D. and Mond, B. (1976), Duality for Homogeneous Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 18, 413–417.

    MathSciNet  MATH  Google Scholar 

  366. Craven, B.D. and Mond, B. (1979), A Note on Duality in Homogenous Fractional Programming, Naval Research Logistics Quarterly 26, 153156.

    MathSciNet  Google Scholar 

  367. Craven, B.D. and Mond, B. (1979), On Duality for Fractional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 59, 278–279.

    MathSciNet  MATH  Google Scholar 

  368. Craven, B.D. and Mond, B. (1983), On Maximizing a Ratio of Optimization Problems, Cahiers du Centre d’Etudes de Recherche Operationelle 25 (12), 29–34.

    MathSciNet  MATH  Google Scholar 

  369. Crouzeix, J.P. (1977), Contributions a l’Etude des Fonctions Quasiconvexes, Doctoral Thesis, Université de Clermont, France.

    Google Scholar 

  370. Crouzeix, J.P. (1981), A Duality Framework in Quasiconvex Programming, in Schaible, S. and Ziemba,W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 207–225.

    Google Scholar 

  371. Crouzeix, J.P. and Lindberg, P.O. (1986), Additively Decomposed Quasiconvex Functions, Mathematical Programming 35, 42–57.

    MathSciNet  MATH  Google Scholar 

  372. Crouzeix, J.P., and Ferland, J.A. (1991), Algorithms for Generalized Fractional Programming, Mathematical Programming 52 (Ser. B), 191–207.

    Google Scholar 

  373. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1981), Duality in Generalized Linear Fractional Programming, Technical Report No. 399, Departement d’Informatique et de Recherche Operationelle, Universite de Montreal.

    Google Scholar 

  374. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1983), Duality in Generalized Linear Fractional Programming, Mathematical Programming 27 (3), 342354.

    MathSciNet  Google Scholar 

  375. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1984), Erratum: “Duality in Generalized Linear Fractional Programming”, Mathematical Programming 29 (2), 243.

    MathSciNet  Google Scholar 

  376. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1985), An Algorithm for Generalized Fractional Programs, Journal of Optimization Theory and Applications 47 (1), 35–49.

    MathSciNet  MATH  Google Scholar 

  377. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1986), A Note on an Algorithm for Generalized Fractional Programs, Journal of Optimization Theory and Applications 50 (1), 183–187.

    MathSciNet  MATH  Google Scholar 

  378. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1990), Improved Analysis of the Generalized Convexity of a Function in Portfolio Theory. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 287–294.

    Google Scholar 

  379. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1992), Generalized Convexity of Functions on Affine Subspaces with an Application to Potential Functions, Mathematical Programming 56, 223–232.

    MathSciNet  MATH  Google Scholar 

  380. Csebfalvi, A. and Csebfalvi, G. (1994), Post–Buckling Analysis of Frames by a Hybrid Path–Following Method. Komlosi, S., Rapcsak, T. and Schaible, S. (eds.), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, Berlin–Heidelberg–New York, to appear.

    Google Scholar 

  381. Dantzig, G.B., Blattner, W. and Rao, M.R. (1966), All Shortest Routes From a Fixed Origin in a Graph, in Theory of Graphs, Intern. Symp., Dunod, Paris, and Gordon and Breach, New York, 85–90.

    Google Scholar 

  382. Dantzig, G.B., Blattner, W. and Rao, M.R. (1966), Finding a Cycle in a Graph with Minimum Cost to Time Ratio with Applications to a Ship Routing Problem, in Theory of Graphs, Intern. Symp., Dunod, Paris, and Gordon and Breach, New York, 77–83.

    Google Scholar 

  383. Das, C. and Swarup, K. (1975), Complex Fractional Functionals Programming with Nonlinear Constraints, Zeitschrift für Angewandte Mathematik und Mechanik 55, 441–442.

    MathSciNet  MATH  Google Scholar 

  384. Datta, N. (1982), Efficiency in Multi–Objective Fractional Functional Programming, Journal of Information and Optimization Sciences 3, 262268.

    Google Scholar 

  385. Datta, N. and Bhatia, D. (1984), A Note on Duality Theory for Concave Convex Fractional Programming Problem in Complex Space, Indian Journal of Pure and Applied Mathematics 15 (12), 1289–1295.

    MathSciNet  MATH  Google Scholar 

  386. Datta, N. and Bhatia, D. (1984), Algorithm to Determine an Initial Efficient Basic Solution for a Linear Fractional Multiple Objective Transportation Problem, Cahiers du Centre d’Etudes de Recherche Operationelle 26 (12), 127–136.

    MathSciNet  MATH  Google Scholar 

  387. De Angelis, V. (1979), Linear Programming with Uncertain Objective Function, Minimax Solution for Relative Loss, Calcolo 16, 125–141.

    MATH  Google Scholar 

  388. Delman, C. (1962), On Sequential Decisions and Marcov Chains, Management Science 9, 16–24.

    MathSciNet  Google Scholar 

  389. Deshpande, D.V. and Zionts, S. (1980), Sensitivity Analysis in Multiple Objective Linear Programming: Changes in the Objective Function Matrix, Multiple Criteria Decision Making Theory and Application, Lecture Notes in Economics and Mathematical Systems 177, Springer, Berlin–New York, 26–39.

    Google Scholar 

  390. Deumlich, R. and Elster, K.H. (1978), Duality Theorems for Nonconvex Optimization Problems, Mathematische Operationsforschung und Statistik, Serie Optimization 9, 335–347.

    MathSciNet  MATH  Google Scholar 

  391. Deumlich, R. and Elster, K.H. (1980), Duality Theorems and Optimality Conditions for Nonconvex Optimization Problems, Mathematische Operationsforschung und Statistik, Serie Optimization 11 (2), 181–219.

    MathSciNet  MATH  Google Scholar 

  392. Deumlich, R. and Elster, K.H. (1981), A Contribution to Duality Theory of Nonlinear Programming, Methods of Mathematical Programming, PWNWarszawa 31–40.

    Google Scholar 

  393. Deumlich, R. and Elster, K.H. (1983), (D—Conjugation and Nonconvex Optimization, I. A Survey, Mathematische Operationsforschung und Statistik, Serie Optimization 14, 125–149.

    MathSciNet  MATH  Google Scholar 

  394. Deumlich, R. and Elster, K.H. (1984), (D—Conjugation and Nonconvex Optimization, II. A Survey, Mathematische Operationsforschung und Statistik, Serie Optimization 15 (4), 499–515.

    MathSciNet  MATH  Google Scholar 

  395. Deumlich, R. and Elster, K.H. (1984), On a Class of Nonconvex Optimization Problems, Proceedings of the VIIIth Symposium in Operations Research, University of Karlsruhe/Germany, August 22–25, 1983. Lecture Notes in Economics and Mathematical Systems, 226, Springer Verlag, Berlin–New York, 13–29.

    Google Scholar 

  396. Deumlich, R. and Elster, K.H. (1985), (D—Conjugation and Nonconvex Optimization, III. A Survey, Optimization 16 (6), 789–803.

    MathSciNet  Google Scholar 

  397. Deumlich, R. and Elster, K.H. (1985), Fractional Programming in View of Generalized Conjugation, Proceedings of the IXth Symposium in Operations Research, Methods of Operations Research 49, 3–16.

    MathSciNet  MATH  Google Scholar 

  398. Deumlich, R. and Elster, K.H. (1986), On Perturbations of Certain Nonconvex Optimization Problems, J. Optim Theory Appl. 48 (1), 81–93.

    MathSciNet  MATH  Google Scholar 

  399. Dexter, N.S., Yu, M.W. and Ziemba, W.T. (1980), Portfolio Selection in a Lognormal Market when the Investor has a Power Utility Function, Computational Results, in Dempster, M.A.H., (ed.), Stochastic Programming, Academic Press, New York, 507–523.

    Google Scholar 

  400. Dezhurko, L.F. and Fam–Tkhe–Long (1983), On Methods for Solving the General Fractional–Linear Programming Problem, Doklady Akademii Nauk BSSR 27 (7), 595–598. [Russian]

    Google Scholar 

  401. Ding, B. and Wang, C.L. (1991), Stability Analysis for Linear and Linear Fractional Programs, Congressus Numerantium 80, 107–115.

    MathSciNet  Google Scholar 

  402. Dinkelbach, W. (1962), Die Maximierung eines Quotienten zweier linearer Funktionen unter linearen Nebenbedingungen, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1, 141–145.

    MathSciNet  MATH  Google Scholar 

  403. Dinkelbach, W. (1967), On Nonlinear Fractional Programming, Management Science 13, 492–498.

    MathSciNet  MATH  Google Scholar 

  404. Dombi, P. (1985), On Extremal Points of Quasiconvex Functions, Mathematical Programming 33, 115–119.

    MathSciNet  MATH  Google Scholar 

  405. Dormany, M. (1979), Specialis Alaku Parametrikus Linearis es Hiperbolikus Programozasi Feladatok Megoldasa Revide alt Szimplex Modszerral, Nehez. Musz. Egyetem Kozl. 4, 25 (1), 53–62. [Hungarian]

    Google Scholar 

  406. Dormany, M. (1983), On Solving a Bicriterion Program, Alkalmaz. Mat. Lapok 9 (3–4), 393–404. [Hungarian]

    Google Scholar 

  407. Dorn, W.S. (1962), Linear Fractional Programming, IBM Research Report RC–830.

    Google Scholar 

  408. Dorn, W.S. (1963), Nonlinear Programming, A Survey, Management Science 9, 171–208.

    MathSciNet  MATH  Google Scholar 

  409. Dragomirescu, M. (1972), An Algorithm for the Minimum–Risk Problem of Stochastic Programming, Operations Research 20, 154–164.

    MathSciNet  MATH  Google Scholar 

  410. Drezner, Z., Schaible, S. and Simchi–Levi, D. (1990), Queuing–Location Problems on the Plane, Naval Research Logistics 37, 929–935.

    MathSciNet  MATH  Google Scholar 

  411. Duca, D. (1977), On a Fractional Programming Problem, Studii si Cercetari Matematice 29, 487–497. [Romanian]

    Google Scholar 

  412. Duca, D. (1979), On the Ordering of the Efficient Extremal Points in a Vectorial Programming Problem, Stud. Univ. Babes – Bolyai, Math. 24, 57–63. [Romanian]

    Google Scholar 

  413. Duca, D. (1980), On the Hierarchy of Extremal Solutions in a Problem of Fractional Programming, Studii si Cercetari Matematice 32, 179–185. [Romanian]

    Google Scholar 

  414. Duca, E. (1979), An Algorithm for the Calculation of Efficient Extreme Points in Problems of Vector Programming, Operations Research Proceedings of the 3rd Colloquium, Cluj–Napoca (Romania), 90–97.

    Google Scholar 

  415. Dumitru, V. and Luban, F. (1980), Mathematical Programming Real Variable Models for Integer and Mixed–Integer Problems, Econ. Comp. & Econ. Cyb. Stud. & Res. 14 (3), 69–79.

    MathSciNet  Google Scholar 

  416. Dumitru, V. and Luban, F. (1981), Mathematical Programming Real Variable Models for Integer and Mixed–Integer Problems and some Applications to Production Scheduling, Math. Rev. Anal Numer. Theor. Approximation, Math. 23 (46), 11–23.

    Google Scholar 

  417. Dutta, D., Rao, J.R. and Tiwari, R.N. (1992), Sensitivity Analysis in Fuzzy Linear Fractional Programming Problem, Fuzzy Sets and Systems 48 (2), 211–216.

    MathSciNet  MATH  Google Scholar 

  418. Dutta, D., Tiwari, R.N. and Rao, J.R. (1992), Multiple Objective Linear Fractional Programming—A Fuzzy Set–Theoretic Approach, Fuzzy Sets and Systems 52 (1), 39–45.

    MathSciNet  MATH  Google Scholar 

  419. Egisapetov, E.G. (1969), Teaching Pattern Recognition with the Help of Decision Functions, lzvestja Akademii Nauk SSSR, Tekhnicheskaya Kibernetika (USSR) 5, 84–93. [Russian]

    Google Scholar 

  420. Egorova, E.N. (1986), On an Approach to the Solution of Special Problems of Fractional–Cubic Programming, Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matimatiki. Optimizatsiya 39 (56), 81–98. [Russian]

    Google Scholar 

  421. Egorova, E.N. (1988), On a Mistaken Generalization of Methods of Linear and Linear Fractional Programming, Metody Optimiz. v Econ.–Mat. Modelir., 129–133. [Russian]

    Google Scholar 

  422. Egudo, R.R. (1988), Multiobjective Fractional Duality, Bulletin of the Australian Mathematical Society 37 (3), 367–378.

    MathSciNet  MATH  Google Scholar 

  423. Eichhorn, W. (1972), Effektivität von Produktionsverfahren, Operations Research Verfahren 12, 98–115.

    Google Scholar 

  424. Eichhorn, W. (1978), Functional Equations in Economics, Addison–Wesley, New York.

    Google Scholar 

  425. Eichhorn, W. (1990), Generalized Convexity in Economics: Some Examples. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 266–275.

    Google Scholar 

  426. Ellero, A. (1993), Soluzioni Ottime di Livello in Programmazione Lineare Frazionaria e in Alcune sue Generalizzazioni: Aspetti teorici ed Algortmici, Tesi di Dottorato di Recerca, Università di Triesta–Università di Venezia. [Italian]

    Google Scholar 

  427. Ellero, A. and Moretti Tomasin, E. (1992), A Computational Comparison Between Algorithms for Linear Fractional Programming, J. of Information and Optimization Sciences 13, 343–362.

    MathSciNet  MATH  Google Scholar 

  428. Ellero, A. and Moretti Tomasin, E. (1992), Equivalence Between Two Algorithms for Linear Bicriteria Programming Problems. Mazzoleni, P. (ed.), Generalized Concavity, Proceedings, Pisa, April 1992, Tecnoprint S.N.C., Bologna, 41–52.

    Google Scholar 

  429. Elmaghraby, S.E. and Arisawa, S. (1972), On Hyperbolic Programming with a Single Constraint and Upper–Bounded Variables, Management Science 19, 42–45.

    MathSciNet  MATH  Google Scholar 

  430. Elster, K.H. (1979), On the Theory of Nonconvex Optimization Problems. Third Symposium on Operations Research, University Mannheim, 1978, Operations Research Verfahren 31, 173–184.

    MathSciNet  MATH  Google Scholar 

  431. Elster, K.H. (1990), On Duality Results in Nonconvex Optimization, Functional Analysis, Optimization, and Mathematical Economics, 235247.

    Google Scholar 

  432. Elster, K.H. and Deumlich, R. (1981), Lagrange Duality for Nonconvex Optimization Problems, Operations Research Verfahren 43, 53–61.

    MATH  Google Scholar 

  433. Elster, K.H. and Wolf, A. (1990), Generalized Convexity and Fractional Optimization. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 219–231.

    Google Scholar 

  434. Elton, E.J., Gruber, M.J. and Padberg, M.W. (1976), Simple Criteria for Optimal Portfolio Selection, Journal of Finance 31, 1341–1357.

    Google Scholar 

  435. Elton, E.J., Gruber, M.J. and Padberg, M.W. (1977), Simple Criteria for Optimal Portfolio Selection with Upper Bounds, Operations Research 25, 952–957.

    MathSciNet  Google Scholar 

  436. Elzinga, J., Hearn, D. and Randolph, W.D. (1976), Minimax Multifacility Location with Euclidian Distances, Transportation Science 10, 321–336.

    MathSciNet  Google Scholar 

  437. Emol’eva, L.G. (1972), A Problem of Fractional Nonlinear Programming, Kibernetika (Kiev) 2, 45–47. [Russian]

    Google Scholar 

  438. Eriksson, J. (1980), A Note on Solution of Large Sparse Maximum Entropy Problems with Linear Equality Constraints, Mathematical Programming 18 (2), 146–154.

    MathSciNet  MATH  Google Scholar 

  439. Ezio, M. (1976), Equilibrium Points of National N–Person Games, Journal of Mathematical Analysis and Applications 54 (1), 1–4.

    MathSciNet  MATH  Google Scholar 

  440. Faaland, B.H. and Jacob, N.L. (1981), The Linear Fractional Portfolio Selection Problem, Management Science 27, 1383–1389.

    MATH  Google Scholar 

  441. Faiziev, N.G., Serman, I.M. and Nuritdinov, S. (1976), Application of a Certain Class of Target Functions in the Optimization of Engineering Processes, Dokl. Akad. Nauk Uz. SSR. 6, 16–18. [Russian]

    Google Scholar 

  442. Falk, J.E. (1969), Maximization of Signal–to–Noise Ratio in an Optical Filter, SIAM Journal of Applied Mathematics 7, 582–592.

    MathSciNet  Google Scholar 

  443. Falk, J.E. and Palocsay, S.W. (1992), Optimizing the Sum of Linear Fractional Functions. Collection: Recent Advances in Global Optimization, 221–258.

    Google Scholar 

  444. Falk, J.E., Polacsay, S.W., Sacco, W.J., Copes, W.S. and Champion, H.R. (1992), Bounds on a Trauma Outcome Function Via Optimization, Operations Research 40 (S1), S86–S95.

    Google Scholar 

  445. Färe, R. and Hunsaker, W. (1986), Notions of Efficiency and their Reference Sets, Management Science 32 (2), 237–243.

    MATH  Google Scholar 

  446. Ferland, J.A. and Potvin, J.Y. (1985), Generalized Fractional Programming: Algorithms and Numerical Experimentation, European Journal of Operational Research 20 (1), 92–101.

    MathSciNet  MATH  Google Scholar 

  447. Filipovich, E.I. (1964), On Solving Fractional Programming Problems, lzd. Gor’skogo Isledovatel’scogo Fiziko–Matematiceskogo Instituta Gor’kii. [Russian]

    Google Scholar 

  448. Flachs, J. (1981), Global Saddle–Point Duality for Quasi–concave Programs, Mathematical Programming 20, 327–347.

    MathSciNet  MATH  Google Scholar 

  449. Flachs, J. (1982), Global Saddle–Point Duality for Quasiconcave Programs, II., Mathematical Programming 24 (3), 326–345.

    Google Scholar 

  450. Flachs, J. (1985), Generalized Cheney–Loeb–Dinkelbach–Type Algorithms, Mathematics of Operations Research 10, 674–687.

    MathSciNet  MATH  Google Scholar 

  451. Flachs, J. and Pollatschek, M. A. (1982), Equivalence Between a Generalized Fenchel Duality Theorem and a Saddle–Point Theorem for Fractional Programs, Journal of Optimization Theory and Applications 37 (1), 2332.

    MathSciNet  Google Scholar 

  452. Florian, M. and Robillard, P. (1970), A Note on Hyperbolic Programming, Publication No. 31, Département d’Informatique, Université de Montréal.

    Google Scholar 

  453. Florian, M. and Robillard, P. (1971), Programmation Hyperbolique en Variables Bivalentes, Revue Francaise d’Informatique et de Recherche Operationelle 1, 3–9.

    MathSciNet  Google Scholar 

  454. Fox, B. (1966), Markov Renewal Programming by Linear Fractional Programming, SIAM Journal of Applied Mathematics 14, 1418–1432.

    MATH  Google Scholar 

  455. Fox, B. (1969), Finding Minimum Cost–Time Ratio Circuits, Operations Research 17, 546–550.

    Google Scholar 

  456. Frair, L. (1982), A Scheduling Procedure to Minimize Community Annoyance from Airport Noise, Technical Report, Department of Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University.

    Google Scholar 

  457. Freund, R.W. and Jarre, F. (1993), A Polynomial–Time Algorithm for Fractional Programs with Convex Constraints, Numerical Analysis Manuscript 93–08, AT&T Bell Laboratories, Murray–Hill, NJ; to appear in Zeitschrift für Angewandte Mathematik und Mechanik.

    Google Scholar 

  458. Freund, R.W. and Jarre, F. (1993), An Interior–Point Method for Multi–Fractional Programs with Convex Constraints, Numerical Analysis Manuscript 93–07, AT&T Bell Laboratories, Murray–Hill, NJ.

    Google Scholar 

  459. Gabasov, R. and Dezhurko, L.F. (1985), An Adaptive Method of Solution of the General Fractional–Linear Programming Problem, Doklady Akademii Nauk BSSR 29 (8), 685–687, 763. [Russian]

    Google Scholar 

  460. Galambos, G. and Imreh, B. (1984), Solution of One–Dimensional Cutting Stock Problems by Column–Generation, Alkamaz. Mat. Lapok 10 (1–2), 73–85. [Hungarian]

    Google Scholar 

  461. Gamidov, S.I. and Dem’yanov, V.F. (1984), Minimization of the Ratio of Maximum and Minimum Functions, Vestn. Leningr. Univ. 1984, No. 13; Mat. Mech. Astron. 3, 14–18. [Russian]

    Google Scholar 

  462. Garg, K.C. and Swarup, K. (1978), Complementary Programming with Linear Fractional Objective Function, Cahiers du Centre d’ Etudes de Recherche Operationelle 20, 83–94.

    MathSciNet  MATH  Google Scholar 

  463. Garg, K.C. and Swarìtp, K. (1978), Linear Fractional Functional Complementary Programming with Extreme Point Optimization, Indian Journal of Pure and Applied Mathematics 9, 556–563.

    MATH  Google Scholar 

  464. Garg, K.C. and Swarup, K. (1980), The Use of Cuts in Linear Fractional Functional Complementary Programming, Zeitschrift für Angewandte Mathematik und Mechanik 60, 53–54.

    MathSciNet  MATH  Google Scholar 

  465. Gasparotto, G. (1987), On the Charnes–Cooper Transformation in Linear Fractional Programming, Report No. 3, Dipartimento di Statistica e Matematica Applicata all’ Economia, Universita di Pisa.

    Google Scholar 

  466. Gass, S.I. (1985), Linear Programming: Methods and Applications, 5th ed., McGraw–Hill, New York.

    Google Scholar 

  467. Gaudioso, M. and Monaco, M.F. (1991), Quadratic Approximations in Convex Non–differentiable Optimization, SIAM J. Control and Optimization 29 (1), 58–70.

    MathSciNet  MATH  Google Scholar 

  468. Gavurin, M.K. (1982), Linear Fractional Programming on an Unbounded Set, Vestnik Lenigradskogo Universiteta. Matematika, Mekhanika, Astronomiya 4, 12–16, 110. [Russian]

    Google Scholar 

  469. Gavurin, M.K. (1982), On the Minimization of a Function Expressed Through Linear–Fractional Functions, The Tohoku Mathematical Journal, Second Series 34 (2), 5–8, 124. [Russian]

    Google Scholar 

  470. Geoffrion, A.M. (1967), Solving Bi–criterion Mathematical Programs, Operations Research 15, 39–54.

    MathSciNet  MATH  Google Scholar 

  471. Geoffrion, A.M. (1967), Stochastic Programming with Aspiration and Fractile Criteria, Management Science 13, 672–679.

    MathSciNet  MATH  Google Scholar 

  472. Geoffrion, A.M., Dyer, J.S. and Feinberg, A. (1972), An Interactive Approach for Multicriterion Optimization with an Application to the Operation of an Academic Department, Management Science 19, 357–368.

    MATH  Google Scholar 

  473. Gilmore, P.C. and Gomory, R.E. (1963), A Linear Programming Approach to the Cutting Stock Problem—Part II, Operations Research 11, 863–888.

    MATH  Google Scholar 

  474. Glover, F. and Woosley, R.E. (1970), Aggregating Diophantine Equations, Report 70–4, University of Colorado.

    Google Scholar 

  475. Gogia, N.K. (1967), The Multiplex Method for Linear Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 9, 123–133.

    MathSciNet  MATH  Google Scholar 

  476. Gogia, N.K. (1968), Revised Simplex Algorithm for the Linear Fractional Functionals Programming Problem, Mathematical Student 36, 55–57.

    MathSciNet  MATH  Google Scholar 

  477. Gogia, N.K. (1969), The Non–Linear Fractional Functional Programming Problem with Separable Functions, Journal of Mathematical Sciences 4, 77–84.

    MathSciNet  Google Scholar 

  478. Gol’stein, E.G. (1967), Dual Problems of Convex and Fractionally–Convex Programming in Functional Spaces, Soviet Mathematics Doklady 8, 212216.

    Google Scholar 

  479. Gol’stein, E.G. (1972), Theory of Convex Programming, Translation of Mathematical Monographs, American Mathematical Society.

    Google Scholar 

  480. Gol’stein, E.G. (1973), Konvexe Optimierung, Akademie–Verlag, Berlin,

    Google Scholar 

  481. Gol’stein, E.G., Borisova, E.P. and Dubson, M.S. (1984), A Dialog System of Vector Optimization with Linear–Fractional Criteria and Linear Constraints, Wissenschaftliche Zeitschrift der Hochschule Ilmenau 30 (5), 17–31. [Russian]

    Google Scholar 

  482. Goldfarb, D. and Mehrotra, S. (1989), A Self–Correcting Version of Karmarkar’s Algorithm, SIAM J. Numer. Anal. 26 (4), 1006–1015.

    MathSciNet  MATH  Google Scholar 

  483. Goldfarb, D. and Xiao, D. (1989), A Primal Projective Interior Point Method for Linear Programming, Technical Report, Department of Industrial Engineering and Operations Research, Columbia University.

    Google Scholar 

  484. Golitschek, M.V. (1987), The Cost–to–Time Ratio Problem for Large or Infinite Graphs, Discrete Appl. Math. 16 (1), 1–9.

    MATH  Google Scholar 

  485. Golub, G.H. and Underwood, R. (1970), Stationary Values of the Ratio of Quadratic Forms Subject to Linear Constraints, Zeitschrift für Angewandte Mathematik und Physik 21, 318–326.

    MathSciNet  MATH  Google Scholar 

  486. Gondran, M. (1980), Les Problemes de Ratio Minimum en Optimization Combinatoire, Note EDF HI 13433–02.

    Google Scholar 

  487. Gondran, M. (1982), Optimization with Rational Objective Functions, Bull. Direction Etudes Rech. Ser. C Math. Inform. 1, 49–54.

    MathSciNet  Google Scholar 

  488. Goswami, M.K. and Sharma, J.K. (1986), Enumerative Technique for Fractional Programming Problem, Methods of Operations Research 56, 93–100.

    MathSciNet  MATH  Google Scholar 

  489. Goswami, M.K. and Sharma, J.K. (1988), Cutting Plane Technique for Linear Fractional Complementary Programming Problem, Acta Cienc. Indica 14 (2), 75–83..

    MathSciNet  MATH  Google Scholar 

  490. Goswami, M.K. and Sharma, J.K. (1990), Fractional Fixed Charge Complementary Programming Problem, Methods of Operations Research 61, 21–35.

    MathSciNet  Google Scholar 

  491. Granot, D. and Granot, F. (1976), On Solving Fractional (0,1) Programs by Implicit Enumeration, Canadian Journal of Operational Research and Information Processing 14, 241–249.

    MathSciNet  MATH  Google Scholar 

  492. Granot, D. and Granot, F. (1977), On Integer and Mixed Integer Fractional Programming Problems, Annals of Discrete Mathematics 1, 221–231.

    MathSciNet  Google Scholar 

  493. Grinold, R.C. and Stanford, R.E. (1976), Limiting Distributions in a Linear Fractional Flow Model, SIAM Journal on Applied Mathematics 30, 402406.

    MathSciNet  Google Scholar 

  494. Grunspan, M. (1971), Fractional Programming: A Survey, Technical Report 50, Department of Industrial and Systems Engineering, University of Florida.

    Google Scholar 

  495. Grunspan, M. and Thomas, M.E. (1973), Hyperbolic Integer Programming, Naval Research Logistics Quarterly 20, 341–356.

    MathSciNet  Google Scholar 

  496. Guerra, F. and Verdaguer, R. (1988), An Algorithm for Two–Criterion Linear Fractional Programming, Investigacion Operacional 9 (3), 3–13. [Spanish]

    Google Scholar 

  497. Gugat, M. (1991), A Method for General Restricted Rational TchebycheffApproximation, Technical Report, Department of Mathematics, University of Trier, Germany.

    Google Scholar 

  498. Gulati, T.R. (1975), Optimality Criterion and Duality in Complex Fractional and Indefinite Programming, Ph.D. Thesis, I.I.T. New Delhi.

    Google Scholar 

  499. Gulati, T.R. (1979), Duality for a Nondifferentiable Fractional Program, Cahiers du Centre d’Etudes de Recherche Operationelle 21, 325–330.

    MathSciNet  MATH  Google Scholar 

  500. Gulati, T.R. and Chandra, S. (1975), A Duality Theorem for Complex Fractional Programming, Zeitschrift für Angewandte Mathematik and Mechanik 55, 348–349.

    MathSciNet  MATH  Google Scholar 

  501. Gulati, T.R. and Islam, M.A. (1988), Proper Efficiency in a Linear Fractional Vector Maximization Problem with Generalized Convex Constraints, European Journal of Operational Research 36 (3), 339–345.

    MathSciNet  MATH  Google Scholar 

  502. Gulati, T.R and Islam, M.A. (1989), Efficiency in Linear Fractional Vector Maximization Problem with Nonlinear Constraints, Optimization 20 (4), 477–482.

    MathSciNet  MATH  Google Scholar 

  503. Gulati, T.R. and Talaat, N. (1991), Duality in Nonconvex Multiobjective Programming, Asia–Pacific J. Oper. Res. 8 (1), 62–69.

    MathSciNet  MATH  Google Scholar 

  504. Gulati, T.R. and Talaat, N. (1991), Duality in Nonconvex Vector Minimum Problems, Bull. Austral. Math. Soc. 44 (3), 501–509.

    MathSciNet  MATH  Google Scholar 

  505. Gupta, A.K. and Sharma, J.K. (1981), Fractional Functional Programming, A Brief Survey, Technical Report, Saharanpur.

    Google Scholar 

  506. Gupta, B. (1981), Finding the Set of all Efficient Solutions for the Linear Fractional Multi–Objective Program with Zero–One Variables, Opsearch 18 (4), 204–214.

    MATH  Google Scholar 

  507. Gupta, B. (1982), Existence and Duality Relations for Multi–Objective Programs in Complex Space, Opsearch 19 (3), 178–182.

    MathSciNet  MATH  Google Scholar 

  508. Gupta, B. (1983), Linear Fractional Vector Maximization Problem. Existence and Duality, Cahiers du Centre d’Etudes de Recherche Operationelle 25 (1–2), 35–40.

    MATH  Google Scholar 

  509. Gupta, B. (1983), Programming with Multi–Objective Linear Fractional Functionals, Acta Ciencia Indica Mathematics 9 (1–4), 195–201.

    MathSciNet  MATH  Google Scholar 

  510. Gupta, B. and Swamp, K. (1981), On Extreme Point Fractional Programming, Portugaliae Mathematica 37 (1–2), 13–29.

    Google Scholar 

  511. Gupta, B., Swamp, K. and Banwarilal (1981), Stochastic Fractional Programming under Chance Constraints with Random Technology Matrix, Gujarat Statistical Review 8 (1), 23–34.

    MathSciNet  Google Scholar 

  512. Gupta, R.K. (1971), Basic Feasible Solutions and Decomposition Principle for Linear Fractional Functional Programming Problem, Trabajos de Estradistica 22, 185–193.

    MATH  Google Scholar 

  513. Gupta, R.K. (1973), A Simple Class of Parametric Linear Fractional Functionals Programming Problem, Cahiers du Centre d’Etudes et de Recherche Operationelle 15, 185–196.

    MATH  Google Scholar 

  514. Gupta, R.K. (1974), A Simple Class of Parametric Linear Fractional Functional Programming Problem, Erratum, Cahiers du Centre d’Etudes de Recherche Operationelle 16, 179.

    MATH  Google Scholar 

  515. Gupta, R.K. (1977), Decomposition Method and Transportation Type Problems with a Fractional Objective Function, Zeitschrift für Angewandte Mathematik und Mechanik 57, 81–88.

    MATH  Google Scholar 

  516. Gupta, R.K. and Bector, C.R. (1968), Nature of Quotients, Products and Rational Powers of Convex (Concave)–Like Functions, Mathematical Student 36, 63–67.

    MathSciNet  MATH  Google Scholar 

  517. Gupta, R.K. and Bhatt, S.K. (1972), Generalized Pseudo–Convex Functions, Cahiers du Centre d’Etudes de Recherche Operationelle 14, 213–222.

    MathSciNet  Google Scholar 

  518. Gupta, R.K. and Swarup, K. (1969), Approximate Method of Solution for Nonlinear Fractional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 49, 753–756.

    MathSciNet  Google Scholar 

  519. Gupta, R.K. and Swarup, K. (1974), A Cutting Plane Algorithm for Extreme Point Linear Fractional Functional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 16, 161–177.

    MathSciNet  MATH  Google Scholar 

  520. Gupta, R.K. and Swarup, K. (1978), On Extreme Point Fractional Programming, Portugaliae Mathematica 37, 13–29.

    MathSciNet  MATH  Google Scholar 

  521. Gupta, S.N. and Jain, A.K. (1986), Optimization with the Ratio of Independent Normal Variates, Acta Ciencia Indica Mathematics 12 (3), 209–212.

    MathSciNet  MATH  Google Scholar 

  522. Gupta, S.N. and Jain, R.K. (1986), Stochastic Fractional Programming under Chance Constraints with Random Technology Matrix, Acta Ciencia Indica Mathematics 12 (3), 191–198.

    MathSciNet  MATH  Google Scholar 

  523. Gupta, S.N. and Swamp, K. (1979), Stochastic Fractional Functionals Programming, Ricerca Operativa 9 (10), 65–79.

    Google Scholar 

  524. Gupta, S.N. and Swarup, K. (1980), Duality in Stochastic Fractional Functionals Programming, Ricerca Operativa 10 (3), 53–63.

    Google Scholar 

  525. Gupta, S.N., Jain, A.K. and Swarup, K. (1987), Stochastic Linear Fractional Programming with the Ratio of Independent Cauchy Variates, Naval Research Logistics 34 (2), 293–305.

    MathSciNet  MATH  Google Scholar 

  526. Gutenberg, E. (1975), Einführung in die Betriebswirtschaftslehre, Gabler, Wiesbaden.

    Google Scholar 

  527. Gwinner, J. (1987), A General Farkas Lemma and Applications in Duality. XIth Symposium on Operations Research, Methods of Operations Research 57, 25–48.

    MathSciNet  MATH  Google Scholar 

  528. Gwinner, J. and Jeyakumar, V. (1993), A Solvability Theorem and Minimax Fractional Programming, Zeitschrift für Operations Research 37, 1–12.

    MathSciNet  Google Scholar 

  529. Hagopian, J.D. and Frisch, I.T. (1972), Capacitance, Inductance and Resistance Minimization in RLC Networks, IEEE Trans. Circuit Theory CT–19, 383385.

    Google Scholar 

  530. Haimovici, A. and Rimer, S. (1962), On a Problem of Generalized Linear Programming, Bul. Inst. Politehn. Iasi 8 (12), 1–2, 9–14. [Romanian]

    Google Scholar 

  531. Halpern, J. (1972), Ratios in Planning, Budgeting and Bounds on Resource Requirements, Operations Research 20, 974–983.

    MATH  Google Scholar 

  532. Hammer, P.L. and Rudeanu, S. (1968), Boolean Methods in Operations Research and Related Areas, Springer, Berlin – Heidelberg – New York.

    Google Scholar 

  533. Hannan, E.I__ (1977), Effects of Substituting a Linear Goal for a Fractional Goal in the Goal Programming Problem, Management Science 24, 105107.

    Google Scholar 

  534. Hannan, E.L. (1981), On an Interpretation of Fractional Objectives in Goal Programming as Related to Papers by Awerbuch et al. and Hannan, Management Science 27, 847–848.

    MATH  Google Scholar 

  535. Hansen, P., Poggi de Aragäo, M.V. and Ribeiro, C. (1991), Hyperbolic 0–1 Programming and Query Optimization in Information Retrieval, Mathematical Programming 52 (Ser. B), 255–263.

    Google Scholar 

  536. Hanson, M.A. (1981), On Sufficiency of the Kuhn–Tucker Conditions, Journal of Mathematical Analysis and Applications 80 (2), 545–550.

    MathSciNet  MATH  Google Scholar 

  537. Hanson, M.A. (1989), Continuous–Time Programming, Journal of Information and Optimization Sciences 10 (1), 129–140.

    MathSciNet  MATH  Google Scholar 

  538. Hanssman, F. (1968), Probability of Survival as an Investment Criterion, Management Science, Theory 15 (1), 33–48.

    Google Scholar 

  539. Hartmann, K. (1973), Einige Aspekte der Ganzzahligen Linearen Quotientenoptimierung, Wiss. Z. Tech. Hochschule Chem. Launa–Merseburg 15, 413418.

    Google Scholar 

  540. Hartmann, K. (1975), Gemischt Ganzzahlige Lineare Quotientenoptimierung nach dem Schnittvverfahren von Gomory, Mathematische Operationsforschung und Statistik 6, 845–854.

    MATH  Google Scholar 

  541. Hartmann, K. (1975), Rein ganzzahlige lineare Quotientenoptimierung nach dem Schnittebenverfahren von Gomory, Mathematische Operationenforschung und Statistik 6, 33–53.

    MATH  Google Scholar 

  542. Hartwig, H. (1975), Ein simplexartiger Lösungsalgorithmus für pseudolineare Optimierungsprobleme, Studia Scientarum Mathematicarum Hungarica 10, 213–236.

    MathSciNet  Google Scholar 

  543. Harvath, I. (1974), Linear Fractional Programming with Additional Constraints, Revista de Analiza Numerica si Teoria Aproximatiei 3, 71–77. [Romanian]

    Google Scholar 

  544. Harvath, I. (1981), Asupra Programarii Fractionare Lineare cu Restrictii Suplimentaro, Informatica Pentru Conducere, Orizont ‘81, Relizari si Aplicatii, Cluj–Napoca, 101–102.

    Google Scholar 

  545. Harvey, C.M. (1981), Stochastic Programming Models for Decreasing Risk Aversion, J. Oper. Res. Soc. 32 (10), 885–889.

    MathSciNet  MATH  Google Scholar 

  546. Hashizume, S., Fukushima, M., Katoh, N. and Ibaraki, T. (1987), Approximation Algorithms for Combinatorial Fractional Programming Problems, Mathematical Programming 37 (3), 255–267.

    MathSciNet  Google Scholar 

  547. Hearn, D. and Randolph, W.D. (1973), Dual Approaches to Quadratically Constrained Quadratic Programming, Technical Report, Department of Industrial and Systems Engineering, University of Florida, Gainesville.

    Google Scholar 

  548. Heinen, E. (1970), Betriebliche Kennzahlen, Eine organisationstheoretische und kybernetische Analyse, in Lindhardt, H., Penzkofer, P. und Scherpf, P., (eds.), Dienstleistungen in Theorie und Praxis, Stuttgart, 227–236.

    Google Scholar 

  549. Heinen, E. (1971), Grundlagen betriebswirtschaftlicher Entscheidungen, Das Zielsystem der Unternehmung, 2. Aufl., Gabler, Wiesbaden.

    Google Scholar 

  550. Helbig, S. (1990), Optimality Criteria in Disjunctive Optimization and some Applications, Methods of Operations Research 62, 67–78.

    MathSciNet  Google Scholar 

  551. Hillier, F.S. and Lieberman, G.J. (1990), Introduction to Operations Research, 5th Edition, McGraw–Hill, New York.

    Google Scholar 

  552. Hirche, J. (1975), Zur Extremwertannahme und Dualität bei Optimierungsproblemen mit linearem und gebrochen linearem Zielfunktionsanteil, Zeitschrift für Angewandte Mathematik und Mechanik 55,184–185.

    MathSciNet  MATH  Google Scholar 

  553. Hirche, J. (1977), Nichtkonvexe Optimierungsprobleme mit zusammengesetzten Zielfunktionen, Dissertation B, Martin–LutherUniversität, Halle.

    Google Scholar 

  554. Hirche, J. (1978), Berichtigung: Über eine Klasse Nichtkonvexer Optimierungs–probleme, Zeitschrift für Angewandte Mathematik und Mechanik 58 (8), 367.

    MathSciNet  Google Scholar 

  555. Hirche, J. (1979), Vektorminimumprobleme mit verallgemeinert konvexen Zielfunktionen, Bericht des 24. Internationalen wissenschaftlichen Kolloquiums der Technischen Hochschule Ilmenau, Vortragsreihe Bl , 13—16.

    Google Scholar 

  556. Hirche, J. (1980), Optimierungsprobleme mit zusammengesetzten Zielfunktionen und Vektoroptimierung, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 26, 123–134.

    MathSciNet  MATH  Google Scholar 

  557. Hirche, J. (1981), A Note on Minimizing a Polynomial of a Linear Fractional Function, Academie de la Republique Populaire de Roumane. Revue Roumaine de Mathematiques Pures et Appliquees 26 (9), 1193–1195.

    MathSciNet  Google Scholar 

  558. Hirche, J. (1981), Zur Lösung von Optimierungsproblemen mit Monoton–Linear Zusammengesetzten Zielfunktionen, Beiträge zur Num. Math. 9, 87–94.

    MATH  Google Scholar 

  559. Hirche, J. (1983), Verallgemeinerte Konvexität bei Summen und Produkten Linearer und Gebrochen–Linearer Funktionen, Wiss. Z. Univ. Halle 32, 9199.

    MathSciNet  Google Scholar 

  560. Hirche, J. (1984), On Programming Problems with a Linear plus Linear–Fractional Objective Function, Cahiers du Centre d’Etudes de Recherche Operationelle 26 (1–2), 59–64.

    MathSciNet  MATH  Google Scholar 

  561. Hirche, J. (1985), Some Remarks on Generalized Convexity of Sums and Products, Zeitschrift für Angewandte Mathematik und Mechanik 65 (1), 62–63.

    MathSciNet  MATH  Google Scholar 

  562. Hirche, J. and Tan, H.K. (1977), Über eine Klasse nichtkonvexer Optimierungsprobleme, Zeitschrift für Angewandte Mathematik und Mechanik 57, 247–253.

    MATH  Google Scholar 

  563. Hirche, J., Köhler, J. and Stieblitz, V. (1975), Ein effektives Lösungsverfahren für das hyperbolische Transportproblem, Beiträge zur Analysis 7, 151156.

    Google Scholar 

  564. Ho, J.K. (1986), A Parametric Subproblem for Dual Methods in Decomposition, Math. Oper. Res. 11, 611 650.

    Google Scholar 

  565. Hodgson, T.J. and Lowe, T.J. (1982), Production Lot Sizing with Material Handling Cost Considerations, AILE Transactions 14, 44–51.

    Google Scholar 

  566. Hordijk, A. (1974), Dynamic Programming and Marcov Potential Theory, Mathematical Centre Tracts 51, Amsterdam.

    Google Scholar 

  567. Horibe, Y. (1974), On the Optimum Ratio of Word Length in Communication, IEEE Trans. Inform. Theory IT–20, 756–758.

    Google Scholar 

  568. Horst, R. (1984), On the Convexification of Nonlinear Programming Problems: An Applications Oriented Survey, European Journal of Operations Research 15, 382–392.

    MathSciNet  MATH  Google Scholar 

  569. Hoskins, J.A. and Blom, R. (1984), Optimal Allocation of Warehouse Personnel: A Case Study Using Fractional Programming, FOCUS (U.K.) 3 (2), 13–21.

    Google Scholar 

  570. Ibaraki, T. (1980), Recent Advances in Mathematical Programming. V. Fractional Programming, Systems and Control (Shisutemu to Seigyo) 24 (12), 787–797. [Japanese]

    Google Scholar 

  571. Ibaraki, T. (1981), Solving Mathematical Programming Problems with Fractional Objective Functions, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 441–472.

    Google Scholar 

  572. Ibaraki, T. (1983), Parametric Approaches to Fractional Programs, Mathematical Programming 26 (3), 345–362.

    MathSciNet  MATH  Google Scholar 

  573. Ibaraki, T., Ischii, H., Iwase, J., Hasegawa, T. and Mine, H. (1976), Algorithms for Quadratic Fractional Programming Problems, Journal of the Operations Research Society of Japan 19, 174–191.

    MathSciNet  MATH  Google Scholar 

  574. Ichimori, T., Ishii, H. and Nishida, T. (1981), Algorithm for One Job Machine Job Sequencing with Precedence Constraints, Journal of the Operations Research Society of Japan 24, 159–168.

    MathSciNet  Google Scholar 

  575. Lida, K. (1989), Optimal Stopping of a Contact Investigation in Two–Stage Search, Mathematica Japonica 34 (2), 169–190.

    MathSciNet  Google Scholar 

  576. Intriligator, M.D. (1971), Mathematical Optimization and Economic Theory, Prentice–Hall, Englewood Cliffs, N.J.

    Google Scholar 

  577. Isbell, J.R. and Marlow, W.H (1956), Attrition Games, Naval Research Logistics Oiunrterly 3, 71–94.

    MathSciNet  Google Scholar 

  578. Ishii, H. and Nishida, T. (1984), Stochastic Linear Knapsack Problem: Probability Maximization Model, Mathematica Japonica 29 (2), 273–281.

    MathSciNet  MATH  Google Scholar 

  579. Ishii, H., Ibaraki, T. and Mine, H. (1976), A Primal Cutting Plane Algorithm for Integer Fractional Programming Problems, Journal of the Operations Research Society of Japan 19, 228–244.

    MathSciNet  MATH  Google Scholar 

  580. Ishii, H., Ibaraki, T. and Mine, H. (1977), Fractional Knapsack Problems, Mathematical Programming 13, 255–271.

    MathSciNet  MATH  Google Scholar 

  581. Ishii, H., Nishida, T. and Daino, A. (1979), Fractional Set Covering Problems, Technology Reports of the Osaka University 29, 319–326.

    MathSciNet  Google Scholar 

  582. Ivanov, E.H. and Nehse, R. (1983), Relations between Generalized Concepts of Convexity and Conjugacy, Mathematische Operationsforschung and Statistik, Serie Optimization 13 (1), 1–9.

    MathSciNet  Google Scholar 

  583. Jacobsen, S. (1967), Comparison of the Primal, Dual and Primal–Dual Decomposition Algorithms, Notes on Operations Research 6, Report ORC 67–17, Operations Research Center, University of California, Berkeley.

    Google Scholar 

  584. Jagannathan, R. (1966), On Some Properties of Programming Problems in Parametric Form Pertaining to Fractional Programming, Management Science 12, 609–615.

    MathSciNet  MATH  Google Scholar 

  585. Jagannathan, R. (1973), Duality for Nonlinear Fractional Programs, Zeitschrift für Operations Research 17, Series A, 1–3.

    Google Scholar 

  586. Jagannathan, R. (1985), An Algorithm for a Class of Nonconvex Programmingg Problems with Nonlinear Fractional Objectives, Management Science 31 (7), 847–851.

    MathSciNet  MATH  Google Scholar 

  587. Jagannathan, R. and Schaible, S. (1983), Duality in Generalized Fractional Programming via Farkas’ Lemma, Journal of Optimization Theory and Applications 41 (3), 417–424.

    MathSciNet  MATH  Google Scholar 

  588. Jagannathan, R. and Schaible, S. (1984), An Application of Farkas’ Lemma to a Nonconvex Minimization Problem, in Walter, W., (ed.), General Inequalities IV, 4th Int. Conf. on General Inequalities, Oberwolfach/Germany 1983, ISNM 71, 365–367.

    MathSciNet  Google Scholar 

  589. Jain, O.P. (1979), Duality for Fractional Functional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 21 (1), 81–86.

    MATH  Google Scholar 

  590. Jeyakumar, V. (1985), First and Second Order Fractional Programming Duality, Opsearch 22 (1), 24–41.

    MathSciNet  MATH  Google Scholar 

  591. Jeyakumar, V. and Mond, B. (1992), On Generalized Convex Mathematical Programming, Australian Mathematical Society Journal, Series B Applied Mathematics 34 (1), 43–53.

    MathSciNet  MATH  Google Scholar 

  592. Joksch, H , (1964), Programming with Fractional Linear Objective Functions, Naval Research Logistics Quarterly 11, 197–204.

    MathSciNet  MATH  Google Scholar 

  593. Jüttler, H. (1967), Die Lineare’Quotientenoptimierung als Hilfsmittel für die Entscheidungsfindung, Rechentechnik – Datenverarbeitung 11.

    Google Scholar 

  594. Jüttier, H. (1969), Untersuchungen zu Fragen der Operationsforschung und ihrer Anwendungsmöglichkeiten auf ökonomische Problemstellungen unter besonderer Berücksichtigung der Spieltheorie, Dissertation, Wirtschafts–wissenschaftliche Fakultät der Humoldt–Universität, Berlin, 144–181.

    Google Scholar 

  595. Kabe, D.G. (1980), Direct Solutions to the m–Median and Fractional Transportation Problems, Ind. Math. 30, 1–27.

    MathSciNet  MATH  Google Scholar 

  596. Kabe, D.G. (1980), On a Certain Linear Fractional Programming Problem, Indian Journal of Pure and Applied Mathematics 11, 1411–1413.

    MathSciNet  MATH  Google Scholar 

  597. Kabe, D.G. (1984), Direct Solutions to some Linear Programming Problems, Ind. Math. 34 (1), 1–20.

    MathSciNet  MATH  Google Scholar 

  598. Kac’janjuk, S.A. (1969), A Certain Problem in Infinite Linear Fractional Programming, ‘Zurnal Vycislitel not Matematiki i Matematiceskoi Fiziki 9, 413–417. [Russian]

    Google Scholar 

  599. Kacnel’son, L.Z. and Neizvestnyi, M.M. (1976), Isoextremal Cebysev Fractions with a Denominator of Second Degree, Latvian Mathematical Yearbook 17, 24–29. [Russian]

    Google Scholar 

  600. Kallberg, J.G. and Ziemba, W.T. (1981), Generalized Concave Functions in Stochastic Programming and Portfolio Theory, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 719–767.

    Google Scholar 

  601. Kaltinska, R. (1981), An Algorithm for the Solution of the Hyperbolic Transportation Problem, Seminarbericht, Humboldt Universität Berlin, Sektion Mathematik 39, 104–113. [Russian]

    Google Scholar 

  602. Kanchan, P.K. (1976), Linear Fractional Functional Programming, Acta Ciencia Indica 2, 401–405.

    MathSciNet  MATH  Google Scholar 

  603. Kanchan, P.K. (1977), Upper Bounds in Linear and Piecewise Linear Programming, Acta Ciencia Indica 3, 357–360.

    MATH  Google Scholar 

  604. Kanchan, P.K., Holland, A.S.B. and Sahney, B.N. (1981), Transportation Techniques in Linear–Plus–Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 23, 153–157.

    MathSciNet  MATH  Google Scholar 

  605. Kang, R.S. and Chong, Y.C. (1989), On the Minimization of the Sum of Two Linear Fractional Functions, Cho son Min ju ui In min Kong hwa kuk Kwa hak won. T’ong bo. Academy of Science of the People’s Republic of Korea. Bulletin 4, 2–4. [Korean]

    Google Scholar 

  606. Karp, R.M. (1977), A Characterization of the Minimum Cycle Mean in a Digraph, Memorandum No. UCB/ERL 147, Electronic Research Laboratory, College of Engineering, University of California, Berkeley.

    Google Scholar 

  607. Kas’yanyuk, S.A. and Kucher, B.M. (1967), Monotonic Programming, Dupovidi Akademii Nauk URSR (USSR) A, 18–21. [Ukrainian]

    Google Scholar 

  608. Kaska, J. (1969), Duality in Linear Fractional Programs, EconomickoMatematicky Obzor 5, 442–453. [Czech]

    Google Scholar 

  609. Kaska, J. and Pisek, M. (1964), Linearni Lomene Programovani a Jeho uplate Neni v Planovani Stavebni vyroby, Pozemni Stavby 2.

    Google Scholar 

  610. Kaska, J. and Pisek, M. (1965), Linearni Lomene Programovani, Statistika a Demografie V, 191–207.

    Google Scholar 

  611. Kaska, J. and Pisek, M. (1966), Quadratic–Linear Fractional Programming, Economicko–Matematicky Obzor 2, 169–173. [Czech]

    Google Scholar 

  612. Kaska, J. and Pisek, M. (1967), Convex–Concave Fractional Programming, Economicko–Matematicky Obzor 3, 457–464. [Czech]

    Google Scholar 

  613. Kasyanyuk, S.A. (1969), A Certain Problem in Infinite Linear Fractional Programming, Z. Vycisl. Mat. i Mat. Fiz. 9, 413–417. [Russian]

    Google Scholar 

  614. Kataoka, S. (1963), A Stochastic Programming Model, Econometrica 11, 1839.

    MathSciNet  Google Scholar 

  615. Kataoka, S. (1967), Stochastic Programming Maximum Probability Model, Hitotsubashi Journal of Arts and Science 8, 51–59.

    MathSciNet  Google Scholar 

  616. Kaufmann, E.H. and Taylor, G.D. (1981), Uniform Approximation by Rational Functions Restricted Denominators, Journal of Approximation Theory 32, 9–26.

    MathSciNet  Google Scholar 

  617. Kaul, R.N. and Bhatia, D. (1974), Generalized Linear Fractional Programming, Ekonomicko–Matematicky Obzor 10, 322–330.

    Google Scholar 

  618. Kaul, R.N. and Chadha, S.S. (1971), Duality in Nonlinear Fractional Programming Problems, Ekonomicko–Matematicky Obzor 7, 141–148.

    Google Scholar 

  619. Kaul, R.N. and Datta, N. (1981), On the Solution of Separable Programming Problem with a Fractional Objective Function, Cahiers du Centre d’ Etudes de Recherche Operationelle 23, 159–169.

    MathSciNet  MATH  Google Scholar 

  620. Kaul, R.N. and Gupta, B. (1980), Efficiency and Linear Vector Maximum Value Problem, Zeitschrift für Angewandte Mathematik und Mechanik 60, 112–113.

    MathSciNet  MATH  Google Scholar 

  621. Kaul, R.N. and Gupta, B. (1981), Multi–Objective Programming in Complex Space, Zeitschrift für Angewandte Mathematik und Mechanik 61 (11), 599–601.

    MathSciNet  MATH  Google Scholar 

  622. Kaul, R.N. and Lata, M. (1974), A Method of Decomposition for Linear Fractional Programming, Opsearch 11, 183–192.

    MathSciNet  Google Scholar 

  623. Kaul, R.N. and Lyall, V. (1989), A Note on Nonlinear Fractional Vector Maximization, Opsearch 26 (2), 108–121.

    MathSciNet  MATH  Google Scholar 

  624. Kaul, R.N., Kaur, S. and Lyall, V. (1986), Duality in Inexact Fractional Programming with Set–Inclusive Costraints, Journal of Optimization Theory and Applications 50 (2), 279–288.

    MathSciNet  MATH  Google Scholar 

  625. Kaul, R.N., Lyall, V. and Kaur, S. (1988), Semilocal Pseudolinearity and’ Efficiency, European J. of Operational Research 36, 402–4.10.

    Google Scholar 

  626. Kaur, S. (1981), Inexact Fractional Programming with Set Inclusive Constraints, Cahiers du Centre d’Etudes de Recherche Operationelle 23, 171–181.

    MathSciNet  MATH  Google Scholar 

  627. Kaur, S. (1982), Subgradient Duality in Fractional Programming, Indian Journal of Pure and Applied Mathematics 13 (3), 287–298.

    MathSciNet  MATH  Google Scholar 

  628. Kaur, S. and Bhatia, D. (1983), Duality Theory for Generalized Fractional Programs, Indian Journal of Pure and Applied Mathematics 14 (2), 257264.

    MathSciNet  Google Scholar 

  629. Kawohl, B. (1985), Rearrangements and Convexity of Level Sets in Partial Differential Equations, Lecture Notes in Mathematics 1150, Springer Verlag, Heidelberg.

    Google Scholar 

  630. Kawohl, B. (1986), Geometrical Properties of Level Sets of Solutions to Elliptic Problems, Proc. Symp. Pure Math. 45, 25–36.

    MathSciNet  Google Scholar 

  631. Kern, W. (1960), Rentabilitätsanalyse, Zeitschrift für handelswissenschaftliche Forschung 12, 17–40.

    Google Scholar 

  632. Kern, W. (1971), Kennzahlensysteme als Niederschlag interdependenter Unternehmungsplanung, Zeitschrift für betriebswirtschaftliche Forschung 23, 701–718.

    Google Scholar 

  633. Khalitov, N.T. (1988), A Linear–Fractional Programming Problem in Singular Cases, J. Soy. Math. 40, (6) 725–727; Translation from Issled. Pritel. Mat. 1, 1973, 38–40. [Russian].

    Google Scholar 

  634. Khan, S.U. and Bari, A. (1977), A Procedure for Integer Solutions to some Allocation Problems, Pure and Applied Mathematical Sciences 5, 25–32.

    MathSciNet  MATH  Google Scholar 

  635. Khan, Z.A. ( 1990), Converse Duality in Nonlinear Fractional Programming, Asia Pacific Journal of Operational Research 7 (1), 9–15.

    MathSciNet  MATH  Google Scholar 

  636. Khristov, G., Karamiteva, Z. and Stoyanov, T.E. (1985), A Numerical Method and Program for Solving a Linear–Fractional Integer Optimization Problem, Mathematics and Mathematical Education, Blgar. Akad. Nauk, Sofia, 566–570. [Bulgarian]

    Google Scholar 

  637. Kirsch, W. (1968), Gewinn und Rentabilität, Gabler, Wiesbaden.

    Google Scholar 

  638. Klafszky, E., Mayer, J. and Terlaky, T. (1989), Linearly Constrained Estimation by Mathematical Programming, European Journal of Operational Research 42 (3), 254–267.

    MathSciNet  MATH  Google Scholar 

  639. Klein, M. (1962), Inspection – Maintenance – Replacement Schedule Under Marcovian Deterioration, Management Science 9, 25–32.

    Google Scholar 

  640. Kleinmann, P. (1978), Quantitative Sensitivitätsanalyse bei Parametrischen Optimierungsaufgaben, Seminarberichte, Humboldt Universität Berlin, 9. Sektion Mathematik, 105 pp.

    Google Scholar 

  641. Klevachev, V.I. (1968), Solving the Problem of Linear Fractional Programming, Kibernetika 4, 27–31.

    Google Scholar 

  642. Kloock, J. (1974), Kurzfristige Produktionsplanungsmodelle auf der Basis von Entscheidungsfeldern mit alternativer Fremd–und Eigenfertigung (mit variablen Produktionstiefen), Zeitschrift für betriebswirtschaftliche Forschung 26, 671–682.

    Google Scholar 

  643. Köhler, J. (1981), An Algorithm for the Solution of Integer Hyperbolic Programming Problems, Mathematische Optimierungstheorie und Anwendungen, Internationale Tagung, Eisenach 1981, 89–92.

    Google Scholar 

  644. Köhler, J. and Hirche, J. (1975), Mehrfache Zerlegung hyperbolischer Optimierungsaufgaben, Beiträge zur Analysis 7, 143–149.

    Google Scholar 

  645. Komlosi, S., Rapcsak, T. and Schaible, S. (eds.) (1994), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, Berlin–Heidelberg–New York, to appear.

    Google Scholar 

  646. Konno, H. and Inori, M. (1989), Bond Portfolio Optimization by Bilinear Fractional Programming, Journal of the Operations Research Society of Japan 32 (2), 143–158.

    MathSciNet  MATH  Google Scholar 

  647. Konno, H. and Kuno, T. (1990), Generalized Linear Multiplicative and Fractional Programming. Computational Methods in Global Optimization, Annals of Operations Research 25 (1–4), 147–161.

    MathSciNet  MATH  Google Scholar 

  648. Konno, H. and Yajima, Y. (1992), Minimizing and Maximizing the Product of Linear Fractional Functions, Collection: Recent Advances in Global Optimization, 259–273.

    Google Scholar 

  649. Konno, H., Yajima, Y. and Matsui, T. (1991), Parametric Simplex Algorithms for Solving a Special Class of Nonconvex Minimization Problems, J. of Global Optimization 1, 65–81.

    MathSciNet  Google Scholar 

  650. Kombluth, J.S.H. (1973), A Survey of Goal Programming, Omega 1, 193–205.

    Google Scholar 

  651. Kombluth, J.S.H. (1979), Indifference Regions and Marginal Utility Weights in Multiple Objective Linear Fractional Programming, Working Paper 7902–3, Dept. of Decision Sciences, The Wharton School, University of Pennsylvania.

    Google Scholar 

  652. Kombluth, J.S.H. (1981), Multiple Objective Linear Fractional Programming Algorithms. Some Computational Experience, Lecture Notes in Economics and Mathematical Systems 190, 173–198.

    Google Scholar 

  653. Kornbluth, J.S.H. (1982), Max–Min Programming with Linear Fractional Functions; Algorithms and Examples. Essays and Surveys on Multiple Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems 209, Springer, Berlin–New York, 204–213.

    Google Scholar 

  654. Kornbluth, J.S.H. (1983), Ratio Goals in Manpower Planning Models, INFOR—Canadian J. Oper. Res. Inform. Process. 21 (2), 151–154.

    MATH  Google Scholar 

  655. Kornbluth, J.S.H. (1986), On the Use of Multiple Objective Linear Programming Algorithms to Solve Problems with Fractional Objectives, European Journal of Operational Research 23 (1), 78–81.

    MathSciNet  MATH  Google Scholar 

  656. Kornbluth, J.S.H. and Salkin, G.R. (1972), A Note on the Economic Interpretation of the Dual Variables in Linear Fractional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 52, 175–178.

    MathSciNet  MATH  Google Scholar 

  657. Kornbluth, J.S.H. and Salkin, G.R. (1974), The Optimal Dual Solution in Linear Fractional Decomposition Problems, Operations Research 22, 183189.

    MathSciNet  Google Scholar 

  658. Kornbluth, J.S.H. and Salkin, G.R. (1975), A Note on Returns to Scale in Linear Fractional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 55, 757–758.

    MathSciNet  MATH  Google Scholar 

  659. Kornbluth, J.S.H. and Steuer, R.E. (1980), On Computing the Set of all Weakly Efficient Vertices in Multiple Objective Linear Fractional Programming, in Fandel, G., and Gal, T., (eds.), Multiple Criteria Decision Making – Theory and Application, Lecture Notes in Economics and Mathematical Systems 177, 189–202.

    MathSciNet  Google Scholar 

  660. Kornbluth, J.S.H. and Steuer, R.E. (1981), Goal Programming with Linear Fractional Criteria, European Journal of Operational Research 8, 58–65.

    MathSciNet  MATH  Google Scholar 

  661. Kornbluth, J.S.H. and Steuer, R.E. (1981), Multiple Objective Linear Fractional Programming, Management Science 27, 1024–1039.

    MATH  Google Scholar 

  662. Körth, H. (1967), Zur Quotientenoptimierung, Berichte des XII. Internationalen wissenschaftlichen Kolloquiums, Technische Hochschule Ilmenau, 95–99.

    Google Scholar 

  663. Körth, H. (1969), Ein Zerlegungsprinzip für die hyperbolische Optimierung, Wissenschaftliche Zeitschrift der Humboldt–Universität zu Berlin, Ges. – Sprachw. R. XVIII, 827–829.

    Google Scholar 

  664. Körth, H. (1969), Untersuchungen zur nichtlinearen Optimierung ökonomischer Erscheinungen und Prozesse unter besonderer Berücksichtigung der Quotientenprogrammierung sowie der Lösung ökonomisch–mathematischer Modelle bei Existenz mehrerer Zielfunktionen, Habilitationsschrift, Humboldt–Universität, Berlin, Sektion Wirtschaftswissenschaft.

    Google Scholar 

  665. Körth, H. (1970), Transportoptimierung mit hyperbolischer Zielfunktion, Wissenschaftliche Zeitschrift der Humboldt–Universität zu Berlin, Ges. – Sprachw. R. XIX, 737–740.

    Google Scholar 

  666. Körth, H. (1971), Hyperbolische Transportoptimierung mit Beschränkung der Variablen, Wissenschaftliche Zeitschrift der Humboldt–Universität zu Berlin, Ges. – Sprachw. R. XX, 521–524.

    Google Scholar 

  667. Körth, H. (1979), Verallgemeinerte hyperbolische Optimierungsaufgabe, Berichte des 24. Internationalen wissenschaftlichen Kolloquiums, Technische Hochschule Ilmenau, 4, 41–43.

    Google Scholar 

  668. Kovacs, A. and Stahl, J. (1973), Decomposition Procedure in Case of Maximizing the Index of Enterprise Interest, Szigma 6, 105–114. [Hungarian]

    Google Scholar 

  669. Kovacs, A. and Stahl, J. (1976), On Large Scale Linear Fractional Programs, Lecture Notes in Computer Science 41, 353–361.

    Google Scholar 

  670. Kreko, B. (1974), Optimierung, Nichtlineare Modelle, Deutscher Verlag der Wissenschaften, Berlin, and Akadémiai Kiadó, Budapest.

    Google Scholar 

  671. Kreutzberger, O. (1978), Bemerkungen zur Quotienten–und Produktoptimierung mit Anwendung beim Risikoproblem der stochastischen Optimierung, Wissenschaftliche Zeitschrift der MartinLuther–Universität Halle – Wittenberg, Mathematisch–Naturwissenschaftliche Reihe 27, 75–79.

    Google Scholar 

  672. Krupitskij, A.E. (1983), Minimization of the Sum of Two Linear–Fractional Functions on a Convex Polyhedral Set, Vestnik Lenigradskogo Universiteta Matematika, Mekhanika, Astronomiya 3, 15–20. [Russian]

    Google Scholar 

  673. Krystyna, Z. (1969/70), On the Optimum Rational Function Connected with the ADI–Method, Zastors. Mat. 11, 337–352.

    Google Scholar 

  674. Kucher, B.N. (1967), On One Algorithm for Solving a Problem of Monotone Programming, Dopovidi Akad. Nauk. Ukrain. RSR Ser. A 10, 869–872. [Russian]

    Google Scholar 

  675. Kydland, F. (1969), Simulation of Linear Operators, Institute of Shipping Research, Norwegian School of Economics and Business Administration, Bergen; translated and reprinted from Sosialoekonomen 23.

    Google Scholar 

  676. Kydland, F. (1972), Duality in Fractional Programming, Naval Research Logistics Quarterly 19, 691–697.

    MathSciNet  MATH  Google Scholar 

  677. Lal, S.N., Mukherjee, R.N. and Singh, A.K. (1990), Sufficiency of Exact Penalty Minimization and Fractional Programming, Opsearch 27 (3), 165170.

    MathSciNet  Google Scholar 

  678. Lange, E.G. and Artjuhin, A.V. (1974), Some Problems of Linear–Fractional Parametric Programming, in Mathematical Methods for the Solution of Mathematical–Economic Problems, Izdat, “Ilim”, Frunze, 5–19. [Russian]

    Google Scholar 

  679. Lasdon, L.S. (1970), Optimization Theory for Large Systems, MacMillan, London.

    Google Scholar 

  680. Lata, M. (1975), Strong Pseudoconvex Programming in Banach Space, Indian Journal of Pure and Applied Mathematics 6, 45–48.

    MathSciNet  Google Scholar 

  681. Lata, M. and Mittal, B.S. (1975), An Operator Theory for a Class of Linear Fractional Programming Problems, I, Zeitschrift für Angewandte Mathematik und Mechanik 55, 133–140.

    MATH  Google Scholar 

  682. Lata, M. and Mittal, B.S. (1976), A Decomposition Method for Interval Linear Fractional Programming Problems, Zeitschrift für Angewandte Mathematik und Mechanik 56, 153–159.

    MathSciNet  MATH  Google Scholar 

  683. Lata, M. and Mittal, B.S. (1976), An Operator Theory for a Class of Linear Fractional Programming Problems, II, Zeitschrift für Angewandte Mathematik und Mechanik 56, 75–88.

    MathSciNet  MATH  Google Scholar 

  684. Lawler, E.M. (1972), Optimal Cycles in Graphs and the Minimal Cost–to–Time Ratio Problem, Technical Report ERL–M343, Department of Electrical Engineering, University of California, Berkeley.

    Google Scholar 

  685. Lawler, E.M. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York.

    Google Scholar 

  686. Lazarev, I.A. (1975), Determination of the Extremum in a Nonregular Network Problem with Fixed Costs Involving Penalties, Izvestija Academii Nauk SSSR, Tekhnicheskaya Kibernetika 2, 36–46. [Russian]

    Google Scholar 

  687. Lee, S.M. and Clayton, E.R. (1972), A Goal Programming Model for Academic Resource Allocation, Management Science 18, B395–B408.

    MATH  Google Scholar 

  688. Lee, Y.H. and Shin, K.G. (1987), Optimal Reconfiguration Strategy for a Degradable Multimodule Computing System, Journal of the Association for Computing Machinery 34 (2), 326–348.

    MathSciNet  MATH  Google Scholar 

  689. Leleno, J. (1977), Remarks on the Algorithm of B. Martos for the Solution of Hyperbolic Programming Problems, Przeglad Stalystyczny 24, 399–408. [Polish]

    Google Scholar 

  690. Lemke, C.E. and Powers, T.J. (1961), A Dual Decomposition Principal, RPI Math. Report 48, Rensselaer Polytechnic Institute, Troy, N.Y.

    Google Scholar 

  691. Lin, C.Y. (1981), Comparison of Duality Models in Nonlinear Fractional Programming, Numerical Mathematics. A Journal of Chinese Universities. Gaodeng Xuexiao Jisuan Shxue Xuebao 3 (3), 270–272. [Chinese]

    Google Scholar 

  692. Lin, C.Y. (1982), Duality Theory for Multi–Objective Fractional Programming, Numerical Mathematics. A Journal of Chinese Universities. Gaodeng Xuexiao Jisuan Shxue Xuebao 4 (4), 289–299. [Chinese]

    Google Scholar 

  693. Lin, C.Y. (1983), The Fundamental Theorem of Multiobjective Fractional Programming, Acta Mathematicae Applicatae Sinica. Yingyong Shuxue Xuebao 6 (2), 247–250. [Chinese]

    Google Scholar 

  694. Lintner, J. (1965), The Valuation of Risky Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets, Review of Economics and Statistics 18, 13–37.

    Google Scholar 

  695. Liu, S.Y. (1990), Symmetric Duality of Fractional Programming, Xi’an Jiaotong Daxue Xuebao. Journal of Xi’an Jiaotong University 24 (6), 135138. [Chinese]

    Google Scholar 

  696. Lommis, L.H. (1946), On a Theorem of Von Neumann, Proc. Nat. Acad. Sci. (USA) 32, 213–215.

    Google Scholar 

  697. Lücke, W. (1969), Produktions–und Kostentheorie, Physica–Verlag, Würzburg–Wien.

    Google Scholar 

  698. Luhandjula, M.K. (1984), Fuzzy Approaches for Multiple Objective Linear Fractional Optimization, Fuzzy Sets and Systems 13 (1), 11–23.

    MathSciNet  MATH  Google Scholar 

  699. Lupsa, L. (1978), Asupra Alurii Unor Functii Hiperbolice, Studia Univ. BabesBolyai, Math 2, 66–72.

    MathSciNet  Google Scholar 

  700. Lupsa, L. (1978), Remarques Concernant le Rapport entre les Problemes de Programmation Quadratique Indefinie et les Problemes de Programmation Hyperbolique, Studia Universitatis Babes – Bolyai. Mathematica 23, 5054.

    Google Scholar 

  701. Lyall, V. and Kaur–Suneja, S. (1987), Decomposition in Generalized Fractional Programming and its Optimal Dual Solution, Indian Journal of Pure and Applied Mathematics 18 (11), 973–978.

    MathSciNet  MATH  Google Scholar 

  702. Lysenko, A.I, Dabagjian, A.V. and Gorelyi, A.V. (1977), Analytic Solution of a Nonlinear Programming Problem, Avtomat. Sistemy Upravlenijayi Pribory Avtomat 42 (3), 53–62. [Russian]

    Google Scholar 

  703. Mahajan, D.G. and Vartak, M.N. (1977), Generalization of Some Duality Theorems in Nonlinear Programming, Mathematical Programming 12, 293–317.

    MathSciNet  MATH  Google Scholar 

  704. Major, D.C. (1969), Benefit–Cost Ratios for Projects In Multiple Objective Investment Programming, Water Resources Research 6 (5), 1174–1178.

    Google Scholar 

  705. Makhmudov, R.A. (1988), On an Algorithm for Solving a Covering Problem with Linear Fractional Functional, Izv. Akad. Nauk Az. SSR, Ser. Fiz.Tekh. Mat. Nauk 3, 128–130. [Russian]

    Google Scholar 

  706. Manas, M. (1968), On Transformations of Quasi–Convex Programming Problems, Ekonomicko–Matematicky Obzor 4, 93–99.

    Google Scholar 

  707. Mangasarian, O.L. (1969), Nonlinear Fractional Programming, Journal of the Operations Research Society of Japan 12, 1–10.

    MathSciNet  MATH  Google Scholar 

  708. Mangasarian, O.L. (1969), Nonlinear Programming, McGraw–Hill, New York.

    Google Scholar 

  709. Mangasarian, O.L. (1970), Convexity, Pseudo–Convexity and Quasi–Convexity of Composite Functions, Cahiers du Centre d’Etudes de Recherche Operationelle 12, 114–122.

    MathSciNet  MATH  Google Scholar 

  710. Manjurov, D.M. (1968), Investigation of a Linear–Fractional Programming Problem when Certain Parameters are Varied, Izvestija Akademii Nauk Azerbaidzanskoi SSR Serija Fiziko–Techniceskin i Matematiceskih Nauk 4, 89–95. [Russian]

    Google Scholar 

  711. Manjurov, D.M. (1973), A Certain Generalized Problem of Linear–Fractional Programming, Numerical Mathematics, Izdat, “Elm”, Baku, 88–103. [Russian]

    Google Scholar 

  712. Manjurov, D.M. (1975), Block Methods for Fractional Linear Programming, Questions of Mathematical Cybernetics and Applied Mathematis 1, Izdat. “Elm”, Baku, 51–71. [Russian]

    Google Scholar 

  713. Mao, J.C.T. (1970), Essentials of Portfolio Diversification Strategy, Journal of Finance 25, 1109–1121.

    Google Scholar 

  714. Marchi, A. (1990), Sulla Relazione tra un Problema Bicriteria ed un Problema Frazionario, Report No. 33, Department of Statistics and Applied Mathematics, University of Pisa/Italy. Also Atti del XV Convego A.MA.S.E.S., Grado 1991, 381–392.

    Google Scholar 

  715. Marchi, A. (1994), On the Relationship Between Bicriteria Problems and Nonlinear Programming Problems. Komlosi, S., Rapcsak, T. and Schaible, S. (eds.), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, Berlin–Heidelberg–New York, to appear.

    Google Scholar 

  716. Marchi, E. (1976), Equilibrium Points of Rational n–Person Games, J. Math Anal. Appl. 54, 1–4.

    MathSciNet  MATH  Google Scholar 

  717. Mareschal, B. (1988), Weight Stability Intervals in Multicriteria Decision Aid, European Journal of Operational Research 33 (1), 54–64.

    MathSciNet  Google Scholar 

  718. Markowitz, H.M., Schaible, S. and Ziemba, W.T. (1992), An Algorithm for Portfolio Selection in a Lognormal Market, The International Review of Financial Analysis 1, 109–113.

    MATH  Google Scholar 

  719. Martein, L. (1985), Maximum of the Sum of a Linear Function and a Linear Fractional Function, Rivista di Matematica per le Scienze Economiche e Sociali 8 (1), 13–20. [Italian]

    Google Scholar 

  720. Martein, L. (1988), Applicazioni della Programmazione Frazionaria nel Campo Economico–Finanziario, Report No. 14, Dipartimento di Statistica e Matematica Applicata all’ Economia, Università di Pisa/Italy.

    Google Scholar 

  721. Martein, L. (1988), On Generating the Set of all Eficient Points of a Bicriteria Linear Fractional Problem, Report No. 13, Dipartimento di Statistica e Matematica Applicata all’ Economia, Università di Pisa.

    Google Scholar 

  722. Martein, L. (1990), On the Bicriteria Maximization Problem, Cambini, A. et al. (eds.), Generalized Convexity and Fractional Programming with Economic Applications, Proceedings, Pisa 1988, Springer Verlag, Berlin–New York, 75–84.

    Google Scholar 

  723. Martein, L. and Pellegrini, L. (1977), Su un’estensione di una Particolare Classe di Problemi di Programmazione Frazionaria, Paper No. A–48, Department of Operations Research, University of Pisa, Italy.

    Google Scholar 

  724. Martein, L. and Pellegrini, L. (1977), Un Algoritmo per la Determinazione del Massimo di una Particolare Funzione Razionale Fratta Soggetta a Vincoli Lineari, Paper No. A–45, Dept. of Operations Research, University of Pisa, Italy.

    Google Scholar 

  725. Martein, L. and Pellegrini, L. (1979), On an Extension of a Particular Class of Fractional Progamming Problems, Proceedings of the First AMASES Meeting, 213–228. [Italian]

    Google Scholar 

  726. Martein, L. and Schaible, S. (1989), On Solving a Linear Program with One Quadratic Constraint, Rivista di Matematica per le Scienze Economiche e Sociali 10 (1–2), 75–90.

    MathSciNet  Google Scholar 

  727. Martein, L. and Sodini, C. (1982), Un Algoritmo per un Problema di Programmazione Frazionaria non Lineare e non Convessa, Publication No. 93, Serie A, Dipartimento di Ricerca Operativa e Scienze Statistiche, Università di Pisa/Italy.

    Google Scholar 

  728. Martin, W.R. III (1978), An Augmented Formulation of the Transportation Problem with Application to Resource Allocation and Production Systems, Command and Information Systems, General Electric Company, Sunnyvale, California.

    Google Scholar 

  729. Martinez–Legaz, J.E. (1981), Un Concepto Generalizado de Conjugacion, Applicacion a las Functiones Quasiconvexas, Doctoral Thesis, Universidad de Barcelona.

    Google Scholar 

  730. Martinez–Legaz, J.E. (1983), Exact Quasiconvex Conjugation, Zeitschrift für Operations Research 27, 257–266.

    Google Scholar 

  731. Martinez–Legaz, J.E. (1985), Some New Results on Exact Quasiconvex Duality. Proceedings of IXth Symposium on Operations Research, Methods of Operations Research 49, 47–62.

    Google Scholar 

  732. Martins, E.Q.V. (1984), An Algorithm to Determine a Path with Minimal Cost/Capacity Ratio, Discrete Appl. Math. 8, 189–194.

    MATH  Google Scholar 

  733. Martos, B. (1964), Hyperbolic Programming, Naval Research Logistics Quarterly 11, 135–155; originally published in Math. Institute of Hungarian Academy of Sciences 5, 1960, 383–406. [Hungarian]

    Google Scholar 

  734. Martos, B. (1965), The Direct Power of Adjecent Vertex Programming Methods, Management Science 12, 241–252.

    MathSciNet  MATH  Google Scholar 

  735. Martos, B. (1968), Errata, Management Science 14, 255–256.

    Google Scholar 

  736. Martos, B. (1975), Nonlinear Programming, Theory and Method, North–Holland, Amsterdam.

    Google Scholar 

  737. Marusciac, I. (1973), Metode de Rezolvare a Problemelor de Programare Neliniara, Editura Dacia, Cluj, 90–99.

    Google Scholar 

  738. Marusciac, I. (1974), Asupra Unei Programari Hiperbolice, Stud. Cerc. Mat. 26 (3), 419–430.

    MathSciNet  MATH  Google Scholar 

  739. Matriasin, N.P. and Makeeva, V.K. (1974), Mathematical Programming. [Russian]

    Google Scholar 

  740. Mazzoleni, P. (1973), Stationary Values of the Ratio of Quadratic Polynomials, Technical Report No. 45, The Hatfield Polytechnic.

    Google Scholar 

  741. Mazzoleni, P. (1974), The Dual for a Particular Fractional Program, Technical Report No. 59, Numerical Optimization Centre, The Hatfield Polytechnic.

    Google Scholar 

  742. Mazzoleni, P. (1975), Some Experience on a Moving–Truncation Method Applied to a Nonlinear Programming Problem with a Fractional Objective Function, in: Dixon, L.C.W. (ed.), Towards Global Optimization, North–Holland, Amsterdam, 350–360.

    Google Scholar 

  743. Mazzoleni, P. (1975), Teoria Della Dualita per Una Classe di Problemi con Funzione Obietivo Fratta, Boll. Un. Mat. Ital. IV (11), 571–577.

    Google Scholar 

  744. Mazzoleni, P. (ed.). (1992), Generalized Concavity, Proceedings, Pisa, April 1992, Tecnoprint S.N.C., Bologna.

    Google Scholar 

  745. Megiddo, N. (1979), Combinatorial Optimization with Rational Objective Functions, Mathematics of Operations Research 4, 414–424.

    MathSciNet  MATH  Google Scholar 

  746. Megiddo, N. (1981), Applying Parallel Computation Algorithms in the Design of Serial Algorithms, Proc. of 22nd IEEE Symposium on Foundation of Computer Science, 399–408.

    Google Scholar 

  747. Meister, B. and Oettli, W. (1967), On the Capacity of a Discrete, Constant Channel, Information and Control 11, 341–351.

    MATH  Google Scholar 

  748. Meister, B. and Oettli, W. (1973), Two Classes of Algorithms for Concave Optimization and the Calculation of the Capacity of Discrete Memoryless Channels, Elektron. Informationsverarbeit. Kybernst. 9, 189–195.

    MathSciNet  MATH  Google Scholar 

  749. Mensch, G. (1972), The (0,1) Indefinite Programming Problem, Technical Report, International Institute of Management, Berlin.

    Google Scholar 

  750. Mesko, I. (1993), Optimizations of Investments in the Multiphase Production Process, Proceedings of International Conference on Design to Manufacture in Modern Industry, Bled/Slovenia, 258–262.

    Google Scholar 

  751. Mészâros, C. and Rapcsâk, T. (1993), On Sensitivity Analysis for a Class of Decision Systems, Working Paper 93–7, Laboratory of Operations Research and Decision Systems, Hungarian Academy of Sciences, Budapest.

    Google Scholar 

  752. Meyer, C. (1976), Kennzahlen und Kennzahlensysteme, Poeschel, Stuttgart.

    Google Scholar 

  753. Mine, H., Fukushima, M. and Ryang, Y.J. (1978), Parametric Nonlinear Programming for General Cases and its Application to some Problems, Memoirs of the Faculty of Engineering, Kyoto University 40 (3), 198–211.

    MathSciNet  Google Scholar 

  754. Miscenko, I.I. (1980), A Possible Method of Optimization on Infinite Matrices of Limiting Conditions, Kievskii Gosudarstvennyi Universitet. Issledovanie Operatsii i ASU 15, 76–80,135. [Russian]

    Google Scholar 

  755. Misra, S. and Das, C. (1981), The Sum of a Linear and Linear Fractional Function and a Three Dimensional Transportation Problem, Opsearch 18, 139–157.

    MathSciNet  MATH  Google Scholar 

  756. Mjelde, K.M. (1978), Allocation of Resources According to a Fractional Objective, European Journal of Operational Research 2, 116–124.

    MathSciNet  MATH  Google Scholar 

  757. Mjelde, K.M. (1978), Convex–Concave Fractional Programming with Each Variable Occuring in a Single Constraint, BIT, Nordisk Tidskrift for Informationsbehandling 18, 202–210.

    MathSciNet  MATH  Google Scholar 

  758. Mjelde, K.M. (1978), Sufficiency of Kuhn–Tucker Optimality Conditions for a Fractional Programming Problem, BIT, Nordisk Tidskrift for Informationsbehandling 18, 454–456.

    MathSciNet  MATH  Google Scholar 

  759. Mjelde, K.M. (1979), Allocation Problems Involving the Replenishment of Resources, Operations Research Verfahren 35, 313–314.

    MATH  Google Scholar 

  760. Mjelde, K.M. (1979), Convex–Concave Fractional Programming – Evaluation of Solutions and Optimality Conditions, BIT, Nordisk Tidskrift for Informationsbehanding 19, 270.

    MathSciNet  MATH  Google Scholar 

  761. Mjelde, K.M. (1979), Location of a Discrete Resource and its Allocation According to a Fractional Objective, European Journal of Operational Research 4, 49–53.

    MathSciNet  MATH  Google Scholar 

  762. Mjelde, K.M. (1981), Improvement of a Method of the Evaluation of Allocations of Resources to Activities, European Journal of Operational Research 8 (1), 86–87.

    MathSciNet  MATH  Google Scholar 

  763. Mjelde, K.M. (1981), Properties of Optimal Allocations of Resources According to a Fractional Objective, Journal of the Operational Research Society 32, 405–408.

    MathSciNet  MATH  Google Scholar 

  764. Mjelde, K.M. (1982), Cost–Effective Allocations of Bounded and Binary Resources in Polynomial Time, European Journal of Operational Research 11 (1), 176–180.

    MathSciNet  MATH  Google Scholar 

  765. Mjelde, K.M. (1983), Componentwise Fractional Programming with Application to Resource Allocation, Modeling, Identification and Control. A Norwegian Research Bulletin 4 (2), 117–123.

    MathSciNet  Google Scholar 

  766. Mjelde, K.M. (1983), Fractional Resource Allocation with S–shaped Return Functions, Journal of Operational Research Society 34, 627–632.

    MathSciNet  MATH  Google Scholar 

  767. Mjelde, K.M. (1983), Methods of the Allocation of Limited Resources, J. Wiley and Sons, Chichester.

    Google Scholar 

  768. Mjelde, K.M. (1986), An Incremental and Parametrical Algorithm for Convex–Concave Fractional Programming with a Single Constraint, European Journal of Operational Research 23 (3), 391–395.

    MathSciNet  Google Scholar 

  769. Mohnar, Z. and Mohnar, V.T. (1976), Solution of a Hyperbolic Zero–One Programming Problem by the Branch and Bound Method, EkonomickoMatematicky Obzor 12, 428–437. [Czech]

    Google Scholar 

  770. Mond, B. (1972), Fractional Programming, Optimization, Proc. Sem., Austral. Nat. Univ., Canberra, Univ. Queensland Press, St. Lucia, 172–181.

    Google Scholar 

  771. Mond, B. (1978), A Class of Nondifferentiable Fractional Programming Problems, Zeitschrift für Angewandte Mathematik und Mechanik 58, 337341.

    MathSciNet  Google Scholar 

  772. Mond, B. (1981), On Algorithmic Equivalence in Linear Fractional Programming, Mathematics of Computation 37, 185–187.

    MathSciNet  MATH  Google Scholar 

  773. Mond, B. and Craven, B.D. (1973), A Note on Mathematical Programming with Fractional Objective Functions, Naval Research Logistics Quarterly 20, 577–581.

    MathSciNet  MATH  Google Scholar 

  774. Mond, B. and Craven, B.D. (1975), Nonlinear Fractional Programming, Bulletin of the Australian Mathematical Society 12, 391–397.

    MathSciNet  MATH  Google Scholar 

  775. Mond, B. and Craven, B.D. (1975), On Fractional Programming and Equivalance, Naval Research Logistics Quarterly 22, 405–410.

    MathSciNet  MATH  Google Scholar 

  776. Mond, B. and Craven, B.D. (1979), A Duality Theorem for a Nondifferentiable Nonlinear Fractional Programming Problem, Bulletin of the Australian Mathematical Society 20, 397–406.

    MathSciNet  MATH  Google Scholar 

  777. Mond, B. and Schechter, M. (1978), Duality for a Homogeneous Fractional Programming Problem, Journal of Optimization Theory and Applications 25,349–359.

    MathSciNet  MATH  Google Scholar 

  778. Mond, B. and Schechter, M. (1980), Duality in Homogeneous Fractional Programming, Journal of Information and Optimization Sciences 1, 271280.

    MathSciNet  Google Scholar 

  779. Mond, B. and Weir, T. (1981), Generalized Concavity and Duality, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 263–279.

    Google Scholar 

  780. Mond, B. and Weir, T. (1982), Duality for Fractional Programming with Generalized Convexity Conditions, Journal of Information and Optimization Sciences 3 (2), 105–124.

    MathSciNet  MATH  Google Scholar 

  781. Montanov, V. (1971), Optimization Problems with a Linear Fractional Functional, Ekonom. i Mat. Metody 7, 586–592. [Russian]

    Google Scholar 

  782. Morioka, T., Ohnishi, M. and Ibaraki, T. (1987), Optimal Inspection and Replacement Problem of Markovian Deterioration System and its Computational Algorithms, Reliability Theory and Applications, World Science Publishing, Singapore, 245–254.

    Google Scholar 

  783. Morita, H., Ishii, H. and Nishida, T. (1989), Stochastic Linear Knapsack Programming Problem and its Application to a Portfolio Selection Problem, European Journal of Operational Research 40 (3), 329–336.

    MathSciNet  MATH  Google Scholar 

  784. Morris, A.J. (1978), Generalization of Dual Structural Optimization Problems in Terms of Fractional Programming, Quarterly of Applied Mathematics 36, 115–119.

    MathSciNet  MATH  Google Scholar 

  785. Mukherjee, R.N. (1991), Generalized Convex Duality for Multiobjective Fractional Programs, J. Math. Anal. Appl. 162 (2), 309–316.

    MathSciNet  MATH  Google Scholar 

  786. Munteanu, E. and Rado, F. (1960), Calcul Sarjelor Celor Mai Economice la Cuptoarele de Topit Fonta, Studii si Cercetari Matematice, Cluj, Fasciola AnexaXI, 149–158.

    Google Scholar 

  787. Nabeya, S. (1965), On Linear Fractional Programming, Hitotsubashi Journal of Arts and Sciences 5, 58–64.

    MathSciNet  Google Scholar 

  788. Nakonechnyi, A.N. (1985), Optimization of the Checking and Replacement Times of Systems, Dokl. Akad. Nauk. Ukrain. SSR Ser. A 7, 64–67. [Russian]

    Google Scholar 

  789. Narihisa, H. (1978), An Algorithm for Solving the Stochastic Programming Problem, Memoirs of the Defense Academy 18, 151–160.

    MathSciNet  MATH  Google Scholar 

  790. Nath, B., Rahawendra and Mukherjee, R.N. (1988), Necessary Conditions for Nondifferentiable Fractional Multi–Objective Programming, International Journal of Management and Systems 4 (3), 153–159.

    MathSciNet  Google Scholar 

  791. Nauss, R.M. (1988), On the Use of Internal Rate of Return in Linear and Integer Programming, Operations Research Letters 7 (6), 258–289.

    MathSciNet  Google Scholar 

  792. Nesterov, J.E. and Nemirovsky, A.S. (1991), An Interior–Point Method for Generalized Linear–Fractional Programming, Research Report, Central Economical and Mathematical Institute, USSR Acad. Sci., Moscow/Russia.

    Google Scholar 

  793. Neumann, K. and Morlock, M. (1993), Operations Research, Carl Hanser Verlag, München–Wien.

    Google Scholar 

  794. Nguyen, N.T. (1977), The Generalized Beale Method for Pseudo–Convex Functions, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 21, 67–81. [Russian]

    Google Scholar 

  795. Nikitin, A.I. and Nuriev, U.G. (1982), A Heuristic Algorithm for the Solution of a Problem of Fractional–Linear Boolean Programming, Izvestiya Akademii Nauk Azerbaidzhanskoi SSR. Seriya Fiziko Tekhnicheskikh i Matimaticheskikh Nauk 3 (5), 112–117. [Russian]

    Google Scholar 

  796. Noble, B. (1969), Applied Linear Algebra, Prentice–Hall, Englewood Cliffs, NJ.

    Google Scholar 

  797. Nykowski, I. (1966), Problem Pogodzenia Kilku Kryteriow w Jednym Programie Liniowym, Preglad Statystyczny 13 (4), 367–375.

    Google Scholar 

  798. Nykowski, I. and Zolkiewski, Z. (1981), A Linear Model with a Linear Fractional Objective Function, and Multi–Objective Programming, Polska Akademia Nauk.. Komitet Statystyki i Ekonometrii. Przeglad Statystyczny 28 (3–4), 181–196. [Polish]

    Google Scholar 

  799. Nykowski, I. and Zolkiewski, Z. (1983), On Some Connections Between Bicriteria and Fractional Programming Problems. Essays and Surveys on Multiple Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems 209, Springer, Berlin–New York, 300–309.

    Google Scholar 

  800. Nykowski, I. and Zolkiewski, Z. (1985), A Compromise Procedure for the Multiple Objective Linear Fractional Programming Problem, European Journal of Operational Research 19 (1), 91–97.

    MathSciNet  MATH  Google Scholar 

  801. Ohlson, J.A. and Ziemba, W.T. (1976), Portfolio Selection in a Lognormal Market when the Investor has a Power Utility Function, Journal of Financial and Quantitative Analysis 11, 57–71.

    Google Scholar 

  802. Ohnishi, M. (1992), Policy Iteration and Newton–Raphson Methods for Markov Decision Processes under Average Cost Criterion, Computers and Mathematics with Applications 24 (1–2), 147–155.

    MathSciNet  MATH  Google Scholar 

  803. Okabe, A. (1982), Spatial Distributions Maximizing or Minimizing Geary’s Contiguity Ratio, J. Fac. Engrg. Univ. Tokio Ser. B. 36 (3), 525–528.

    MathSciNet  Google Scholar 

  804. Ondran, M. (1982), Optimization with Rational Objective Functions, Bull. Direction Etudes Rech. Ser. C. Math. Inform. 1, 49–54.

    Google Scholar 

  805. Ottaviani, M. (1989), Alcuni Risultati su Problemi di Ottimo sotto Vincoli Lineari, in Mazzoleni, P., (ed.), Atti del XIII Convegno A.M.A.S.E.S., Verona 1989, Pitagora Editrice, Bologna, 649–659.

    Google Scholar 

  806. Ottaviani, M. and Pacelli, G. (1993), Fractional Programming and Characterization of some Vertices of the Feasible Region, J. of Optimization Theory and Applications 79, 333–344.

    MathSciNet  MATH  Google Scholar 

  807. Pacelli, G. (1989), Ottimo di Una Funzione Frazionaria Lineare su Una Sfera di Uno Spazio Affine, in Mazzoleni, P., (ed.), Atti del XIII Convegno A.MA.S.E.S., Verona 1989, Pitagora Editrice, Bologna, 661–676.

    Google Scholar 

  808. Pack, L. (1962), Maximierung der Rentabilität als preispolitisches Ziel, in Koch, H., (ed.), Zur Theorie der Unternehmung, Festschrift fiir E. Gutenberg, Gabler, Wiesbaden, 73–135.

    Google Scholar 

  809. Pack, L. (1965), Rationalprinzip, Gewinnprinzip and Rentabilität, Zeitschrift far Betriebswir tscha t 35, 525–551.

    Google Scholar 

  810. Pang, J.S. (1980), A Parametric Linear Complementarity Technique for Optimal Portfolio Selection with a Risk–Free Asset, Operations Research 28, 927–941.

    MathSciNet  MATH  Google Scholar 

  811. Pardalos, P.M. (1986), An Algorithm for a Class of Nonlinear Fractional Problems Using Ranking of the Vertices, BIT (Nordisk Tidskrift for Informations–behandling) 26 (3), 392–395.

    Google Scholar 

  812. Pardalos, P.M. and Phillips, A.T. (1991), Global Optimization of Fractional Programs, J. of Global Optimization 1, 173–182.

    MathSciNet  MATH  Google Scholar 

  813. Parkash, O., Saxena, P.C. and Patkar, V. (1979), Duality in a Class of Nonlinear Fractional Programming Problems, National Academy Science Letters 2, 267–268.

    MATH  Google Scholar 

  814. Parkash, O., Saxena, P.C. and Patkar, V. (1984), Nondifferentiable Fractional Programming in Complex Space, Zeitschrift für Angewandte Mathematik und Mechanik 64(1), 59–62.

    MathSciNet  MATH  Google Scholar 

  815. Passy, U. (1979), Fractional Programming Using Pseudo Duality, Operations Research Verfahren 31, 481–493.

    MATH  Google Scholar 

  816. Passy, U. (1981), Pseudo Duality and Non–Convex Programming, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 239–261.

    Google Scholar 

  817. Passy, U. (1981), Pseudo Duality in Mathematical Programs with Quotients and Products, Journal of Optimization Theory and Applications 33, 349–374.

    MathSciNet  MATH  Google Scholar 

  818. Passy, U. and Keslassy, A. (1979), Pseudo Duality and Duality for Explicitly Quasiconvex Functions, Mimeograph Series No. 249, Faculty of Industrial Engineering and Management, Technion, Haifa.

    Google Scholar 

  819. Passy, U. and Keslassy, A. (1983), Duality for a Class of Quasiconvex Programs, Journal of Optimization Theory and Applications 40 (4), 515536.

    MathSciNet  Google Scholar 

  820. Passy, U. and Prisman, E.Z. (1985), A Convex–Like Duality Scheme for Quasi–Convex Programs, Mathematical Programming 32 (3), 278–300.

    MathSciNet  MATH  Google Scholar 

  821. Patkar, V. and Stancu–Minasian, I.M. (1981), Aproaches for Solving a Class of Nondifferentiable Nonlinear Fractional Programming Problems, National Academy of Science Letters 4 (12), 477–480.

    MATH  Google Scholar 

  822. Patkar, V. and Stancu–Minasian, I.M. (1982), On Disjunctive Linear Fractional Programming, Economic Computation and Economic Cybernetics Studies and Research 16 (2), 87–96.

    MathSciNet  Google Scholar 

  823. Patkar, V. and Stancu–Minasian, I.M. (1985), Duality in Disjunctive Linear Fractional Programming, European Journal of Operational Research 21 (1), 101–105.

    MathSciNet  MATH  Google Scholar 

  824. Patkar, V. and Stancu–Minasian, I.M. (1985), Parametric Algorithm for a Class of Disjunctive Linear Fractional Programs, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 29 (3), 279–284.

    MathSciNet  Google Scholar 

  825. Patkar, V. and Stancu–Minasian, I.M. (1990), Recent Results in Disjunctive Linear Fractional Programming. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 99–105.

    Google Scholar 

  826. Patkar, V. and Stancu–Minasian, I.M. (1991), A Disjunctive Linear Fractional Max–Min Problem, Portugal. Math. 48 (1), 67–73.

    MathSciNet  MATH  Google Scholar 

  827. Patkar, V., Saxena, P.C. and Parkash, O. (1979), Linear Fractional Functional Programming in Complex Space, Zeitschrift für Angewandte Mathematik and Mechanik 59, 276–278.

    MathSciNet  MATH  Google Scholar 

  828. Patkar, V., Saxena, P.C. and Parkash, O. (1979), Linear Piecewise Linear Programs with Variable Coefficients, Pure Appl. Math. Sci. 10 (1–2), 51-56.

    MathSciNet  MATH  Google Scholar 

  829. Patkar, V., Saxena, P.C. and Parkash, O. (1979), On a Class of Quadratic Fractional Programming Problems, National Academy Science Letters 2, 29–30.

    MATH  Google Scholar 

  830. Patkar, V., Saxena, P.C. and Parkash, O. (1980), On a Discrete Non–Linear Fractional Programming Problem, National Academy of Science Letters 3 (7), 204–205.

    MATH  Google Scholar 

  831. Patkar, V., Saxena, P.C. and Parkash, O. (1981), Dual Program for a Convex Fractional Function, Economic Computation and Economic Cybernetics Studies and Research 15 (1), 77–80.

    MathSciNet  Google Scholar 

  832. Peteanu, V. and Tigan, S. (1983), Asupra unor Probleme de Max–Min in grafe, Lucrarile celui de al III–lea Seminar de Teoria grafurilor, Brasov, 46–53.

    Google Scholar 

  833. Peteanu, V. and Tigan, S. (1984), Interval Goal Programming with Linear Fractional Criteria, Preprint Babes–Bolyai University of Cluj–Napoca, 122.

    Google Scholar 

  834. Peteanu, V. and Tigan, S. (1984), On Some Discrete Fractional Max–Min Problems. Application to Max–Min Problems in Graphs, L’Analyse Numérique et la Théorie de !Approximation 13 (2), 167–173.

    Google Scholar 

  835. Peteanu, V. and Tigan, S. (1986), The Multiobjective Linear–Fractional Programming and Interval Goal Programming, Itinerant Seminar on Functional Equations, Approximation and Convexity; Iasi 26 Oct., Univ. “Al. I. Cuza”, Facultatea de Matematica, 40–45.

    Google Scholar 

  836. Picard, J.C. and Queyranne, M. (1979), A Network Flow Solution to some No near 0 1 Programming Problems, with Applications to Graph Theory, Networks 12 (2), 141–159.

    MathSciNet  Google Scholar 

  837. Plavka, J. (1992), The 0(n3) Algorithm for a Special Case of the Maximum Cost–to–Time Ratio Cycle Problem and its Coherence with an Eigenproblem of a Matrix, Zeitschrift für Operations Reseach 36,417— 422.

    MathSciNet  MATH  Google Scholar 

  838. Podkaminer, L. (1970), Maksymalizacja Ilorazu Dwu Form Liniowych Przy Liniowych Warunkach Ograniczjacych, Przeglad Statyst 17, 93–103. [Polish]

    Google Scholar 

  839. Podkaminer, L. (1971), Dual Prices and Other Parameters of the Optimal Solution with a Criterion Function in the Form of a Quotient, Przeglad Statyst 18, 333–338. [Polish]

    Google Scholar 

  840. Pogodin, V.P. (1974), Study of a Certain Parametric Linear–Fractional Programming Problem, Mathematical Methods in Economics Research, Izdat. “Nauka”, Moscow, 44–50. [Russian]

    Google Scholar 

  841. Pollack, E.G., Novaes, A. and Frankel, E.G. (1965), Optimization and Integration of Shipping Ventures (A Parametric Linear Programming Algorithm), Ship Building and Marine Eng. Monthly, 267–281.

    Google Scholar 

  842. Prabha, S. (1982), Parametrizing a Column Vector in a Linear Fractional Programming Problem, Journal of Information and Optimization Sciences 3 (3), 290–304.

    MathSciNet  MATH  Google Scholar 

  843. Puri, M.C. (1973), Enumerative Technique for Extreme Point Linear Fractional Programming Problems, SCIMA Journal of Management Science and Applied Cybernetics 2, 1–8.

    MATH  Google Scholar 

  844. Puri, M.C. (1974), Extreme Point Linear Fractional Functional Programming, Zeitschrift far Operations Research 18, 131–139.

    MATH  Google Scholar 

  845. Puri, M.C. (1975), Strong Cut Cutting Plane Method for Extreme Point Linear Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 17, 65–69.

    MATH  Google Scholar 

  846. Puri, M.C. and Swamp, K. (1974), Extreme Point Linear Fractional Functional Programming, Zeitschrift für Operations Research 18, 131–139.

    MATH  Google Scholar 

  847. Puri, M.C. and Swamp, K. (1975), Strong–Cut Cutting Plane Method for Extreme Point Linear Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 17, 65–69.

    MATH  Google Scholar 

  848. Radzik, T. (1992), Algorithms for some Linear and Fractional Combinatorial Optimization Problems, PhD. Thesis, Department of Computer Science, Stanford University, Stanford.

    Google Scholar 

  849. Radzik, T. (1992), Newton’s Method for Fractional Combinatorial Optimization, Proceedings of the 33rd IEEE Annual Symposium on Foundations of Computer Science, 659–669.

    Google Scholar 

  850. Radzik, T. (1993), Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization, in Pardalos, P.M., (ed.), Complexity in Numerical Optimization, World Scientific Publishing, 351–386.

    Google Scholar 

  851. Ramos, P.C.F. (1981/82), Generalized Fractional Programming, PhD. Thesis, Florida State University.

    Google Scholar 

  852. Rang, S.Y. and Li, J.U. (1987), A Solution Method of the Generalized Parametric Fractional Linear Programming Problem, Cho son Min ju ju ui In min Kong hwa kuk Kwa hak won. T’ong bo. Academy of Science of the People’s Republic of Korea. Bulletin 2, 4–6. [Korean]

    Google Scholar 

  853. Rani, O. and Kaul, R.N. (1973), Duality Theorems for a Class of Nonconvex Programming Problems, Journal of Optimization Theory and Applications 11, 305–308.

    MathSciNet  MATH  Google Scholar 

  854. Rani, O. and Shivpuri, S. (1977), An Algorithm for Linear Fractional Functionals Programming Problems, Zeitschrift für Angewandte Mathematik und Mechanik 57, 75–80.

    MathSciNet  MATH  Google Scholar 

  855. Rao, M.R. (1971), Cluster Analysis and Mathematical Programming, Journal of the American Statistical Association 66 (335), 622–626.

    MATH  Google Scholar 

  856. Rapcsâk, T. (1991), On Pseudolinear Functions, European J. of Operational Research 50 (3), 353–360.

    MATH  Google Scholar 

  857. Reichmann, T. and Lachnit, L. (1976), Planung, Steuerung, und Kontrolle mit Hilfe von Kennzahlen, Zeitschrift für betriebswirtschaftliche Forschung 28, 705–723.

    Google Scholar 

  858. Reinhardt, H.E. (1966), A Maximization Problem Suggested by Baker vs. Can, American Mathematics Monthly 73, 1069–1073.

    MathSciNet  MATH  Google Scholar 

  859. Reiss, S.P. (1979), Rational Search, In formation Processing Letters 8, 89–90.

    MathSciNet  MATH  Google Scholar 

  860. Rhode, P. (1978), Verfahren zur ganzzahligen linearen Quotientenprogrammierung, Diplomarbeit, Köln.

    Google Scholar 

  861. Rios, S. and Giron, F.J. (1975), The Portfolio Selection Problem when the Returns Have Stable Distributions, Trabajos de Estadistica e Investigacion Operativa 26, 301–318. [Spanish]

    Google Scholar 

  862. Ritter, K. (1967), A Parametric Method for Solving Certain Nonconcave Maximization Problems, Journal of Computer and System Science 1, 4454.

    Google Scholar 

  863. Robillard, P. (1971), (0,1) Hyperbolic Programming Problems, Naval Research Logistics Quarterly 18, 47–57.

    MathSciNet  MATH  Google Scholar 

  864. Robinson, S.M. (1971), Numerical Solution of the Irreductible Von Neumann Economic Model, Technical Summary Report No. 1142, Mathematics University of Wisconsin, Madison.

    Google Scholar 

  865. Robinson, S.M. (1972), A Linearization Technique for Solving the Irreductible Von Neumann Economic Model, Technical Summary Report No. 1290, Mathematics Research Center, University of Wisconsin, Madison.

    Google Scholar 

  866. Robinson, S.M. (1972), Computational Solution of Ratio Games by Iterative Linear Programming, Proceedings of the 17th Conference of Army Mathematicians, U.S. Army Research Office Report No. 72–1, Durham, NC.

    Google Scholar 

  867. Rothblum, U.G. (1985), Ratios of Affine Functions, Mathematical Programming 32 (3), 357–365.

    MathSciNet  MATH  Google Scholar 

  868. Rubalskii, G.B. (1990), Integer Minimization of Fractional–Separable Functions, Akademiya Nauk SSSR. Zhurnal Vychislitelnoi Matematiki i Matimaticheskoi Fiziki 30 (10), 1454–1466. [Russian]

    Google Scholar 

  869. Rubinstein, G.S. (1970), Duality in Mathematical Programming and Some Problems of Convex Analysis, Mathematical Surveys 25, 171–200. [Russian]

    Google Scholar 

  870. Ruiz, J.A. (1975), Modelo Matematico para la Planificacion Calendaria Optima de los Talleres de Homos Martin, Investigation Operational (Cuba), 14, 619.

    Google Scholar 

  871. Rutledge, R.W. (1967), A Simplex Method for Zero–One Mixed Integer Linear Programs, Journal of Mathematical Analysis and Applications 18, 377390.

    MathSciNet  Google Scholar 

  872. Ryang, S.Y. (1987), A Solution Method of the Linear Fractional Functional Program with a Parameter Objective Function, Academy of Science of the People’s Democratic Republic of Korea. Research Center for Physics and Mathematics. Su hak 2, 20–24. [Korean]

    Google Scholar 

  873. Rybashov, M.V. and Dudnikov, E.E. (1965), Parametric Method of Solving Fractional Programming Problems by Analogue Computers, Doklady Akademii Nauk SSSR 161, 1289–1290. [Russian]

    Google Scholar 

  874. Rybin, S.V. (1985), Analysis of a Conical Programming Problem, Vestn. Lenigr. Univ. No. 15, Mat. Mekh. Astron 3, 105–107. [Russian]

    Google Scholar 

  875. Saipe, A.L. (1975), Solving a (0,1) Hyperbolic Program by Branch and Bound, Naval Research Logistics Quarterly 22, 497–515.

    MATH  Google Scholar 

  876. Sakaguchi, M. (1975), A Maximization for Markov Chains Related to Traffic Flow Problems, Rep. Statist. Appl. Res. Un. Japan, Sci. Engrs. 22 (3), 2023.

    Google Scholar 

  877. Sakawa, M. and Yano, H. (1985), Interactive Decision Making for Multiobjective Linear Fractional Programming Problems with Fuzzy Parameters, Cybernetics and Systems 16 (4), 377–394.

    MathSciNet  MATH  Google Scholar 

  878. Sakawa, M. and Yano, H. (1988), An Interactive Fuzzy Satisficing Method for Multiobjective Linear Fractional Programming Problems, Fuzzy Sets and Systems 28 (2), 129–144.

    MathSciNet  MATH  Google Scholar 

  879. Sakawa, M. and Yumine, T. (1983), Interactive Fuzzy Decision–Making for Multiobjective Linear Fractional Programming Problems, Large Scale Systems. Theory and Applications 5 (2), 105–113.

    MathSciNet  MATH  Google Scholar 

  880. Sakawa, M. and Yumine, T. (1983), Interactive Fuzzy Decision–Making for Multiobjective Linear Fractional Programming Problems, Systems and Control (Shisutemu to Seigyo) 27 (2), 138–146. [Japanese]

    Google Scholar 

  881. Sakawa, M., Yano, H. and Takahashi, J. (1989), Pareto Optimality for Multiobjective Linear Fractional Programming Problems with Fuzzy Parameters, The Transactions of the Institute of Electronics, Information and Communication Engineers (Japan) J72–A (6), 931–937; Information Sciences 63 (1–2), 33–53. (1992).

    MathSciNet  MATH  Google Scholar 

  882. Sakawa, M., Yano, H. and Yumine, T. (1986), An Interactive Fuzzy Satisfying Method for Multiobjective Linear Fractional Programming Problems, Trans. Inst. Electron. & Commun. Eng. Jpn. Part A (Japan) J69A (1), 3241. [Japanese]

    Google Scholar 

  883. Samyrkanov, S. (1973), Solution of a Fractional Quadratic Programming Problem, Izdat. “Ilim”, Frunze, 55–65. [Russian]

    Google Scholar 

  884. Sannomiya, N., Nishikawa, Y. and Inazu, M. (1979), A Method for Solving Multi–Objective Programming Problems with Linear Fractional Functions, Syst. & Control 23 (1), 61–62. [Japanese]

    Google Scholar 

  885. Saxena, P.C. (1978), Duality Theorem for Fractional Functional Programming in Complex Space, Portugaliae Mathematica 37, 87–92.

    MathSciNet  MATH  Google Scholar 

  886. Saxena, P.C. and Aggarwal, S.P. (1980), Parametric Linear Fractional Functional Programming, Economic Computation and Economic Cybernetics Studies and Research 14, 87–97.

    MathSciNet  Google Scholar 

  887. Saxena, P.C. and Parkash, O. (1980), On a Discrete Non–Linear Fractional Programming Problem, National Academy Science Letters – India 3, 204205.

    Google Scholar 

  888. Saxena, P.C. and Patkar, V. (1978), Linear Fractional Programming in Complex Space, Portugaliae Mathematica 37, 73–80.

    MathSciNet  MATH  Google Scholar 

  889. Saxena, P.C. and Patkar, V. (1978), Non–Linear Non–Differentiable Fractional Programming in Complex Space, Cahiers du Centre d’Etudes de Recherche Operationelle 20, 183–193.

    MathSciNet  MATH  Google Scholar 

  890. Saxena, P.C., Patkar, V. and Parkash, O. (1979), A Note on an Algorithm for Integer Solution to Linear and Piecewise Linear Programs, Pure and Applied Mathematical Sciences 9, 31–36.

    MathSciNet  MATH  Google Scholar 

  891. Saxena, P.C., Patkar, V. and Parkash, O. (1979), A Note on Duality for a Pseudoconvex Functional Programming Problem, National Academy of Science Letters 2 (6), 231–232.

    MathSciNet  MATH  Google Scholar 

  892. Saxena, P.C., Patkar, V. and Parkash, O. (1979), Linear Fractional Functional Programming in Complex Space, Zeitschrift für Angewandte Mathematik und Mechanik 59, 276–278.

    MathSciNet  MATH  Google Scholar 

  893. Scaruppe, L. (1967), Die Quotientenoptimierung, Diplomarbeit, Humboldt–Universität, Berlin, Mathematisches Institut.

    Google Scholar 

  894. Schaible, S. (1971), Beiträge zur quasi–konvexen Programmierung, Doctoral Dissertation, Universität Köln, Mathematisches Institut.

    Google Scholar 

  895. Schaible, S. (1972), Quasi–Convex Optimization in General Real Linear Spaces, Zeitschrift für Operations Research 16, 205–213.

    MathSciNet  MATH  Google Scholar 

  896. Schaible, S. (1973), Fractional Programming: Transformations, Duality and Algorithmic Aspects, Technical Report 73–9, Department of Operations Research, Stanford University, Stanford.

    Google Scholar 

  897. Schaible, S. (1973), Quasiconcave, Strictly Quasiconcave and Pseudoconcave Functions, Operations Research Verfahren 17, 308–316.

    MathSciNet  Google Scholar 

  898. Schaible, S. (1973), Transformationen nichtlinearer Quotientenprogramme in konvexe Programme, in Jacob, H. et al. (eds.), Proceedings in Operations Research 2, 351–361.

    Google Scholar 

  899. Schaible, S. (1974), Maximization of Quasiconcave Quotients and Products of Finitely Many Functionals, Cahiers du Centre d’Etudes de Recherche Operationelle 16, 45–53.

    MathSciNet  MATH  Google Scholar 

  900. Schaible, S. (1974), Nonlinear Fractional Programming, Operations Research Verfahren 19, 109–115.

    MathSciNet  Google Scholar 

  901. Schaible, S. (1974), Parameter–Free Convex Equivalent and Dual Programs of Fractional Programming Problems, Zeitschrift für Operations Research 18, 187–196.

    MathSciNet  MATH  Google Scholar 

  902. Schaible, S. (1975), A Note on ‘Quadratic Fractional Functionals Programming’ by S.P. Aggarwal, Cahiers du Centre d’Etudes de Recherche Operationelle 17, 95–96.

    MATH  Google Scholar 

  903. Schaible, S. (1975), Marginalwerte in der Quotientenprogrammierung, Zeitschrift für Betriebswirtschaft 45, 649–658.

    Google Scholar 

  904. Schaible, S. (1976), Duality in Fractional Programming: A Unified Approach, Operations Research 24, 452–461.

    MathSciNet  MATH  Google Scholar 

  905. Schaible, S. (1976), Fractional Programming: I, Duality, Management Science 22, 858–867.

    MathSciNet  MATH  Google Scholar 

  906. Schaible, S. (1976), Fractional Programming: II, On Dinkelbach’s Algorithm, Management Science 22, 868–873.

    MathSciNet  MATH  Google Scholar 

  907. Schaible, S. (1976), Minimization of Ratios, Journal of Optimization Theory and Applications 19, 347–352.

    MathSciNet  MATH  Google Scholar 

  908. Schaible, S. (1977), A Note on the Sum of a Linear and Linear–Fractional Function, Naval Research Logistics Quarterly 24, 691–693.

    MATH  Google Scholar 

  909. Schaible, S. (1977), Duality in Ratio Optimization, Operations Research Verfahren 25, 131–132.

    Google Scholar 

  910. Schaible, S. (1977), Recent Results in Fractional Programming, Operations Research Verfahren 23, 271–272.

    MathSciNet  Google Scholar 

  911. Schaible, S. (1978), Analyse und Anwendungen von Quotientenprogrammen, Ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung, Mathematical Systems in Economics 42, Hain–Verlag, Meisenheim.

    Google Scholar 

  912. Schaible, S. (1981), A Survey of Fractional Programming, in Schaible, S. and Ziemba, W.T., (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 417–440.

    Google Scholar 

  913. Schaible, S. (1981), Fractional Programming – State of the Art, in Brans, J.P., (ed.), Operational Research ‘81, North–Holland, Amsterdam, 479–493.

    Google Scholar 

  914. Schaible, S. (1981), Fractional Programming: Applications and Algorithms, European Journal of Operational Research 7, 111–120.

    MathSciNet  MATH  Google Scholar 

  915. Schaible, S. (1982), Bibliography in Fractional Programming, Zeitschrift für Operations Research. Serie A 26 (7), 211–241.

    MathSciNet  MATH  Google Scholar 

  916. Schaible, S. (1983), Bicriteria Quasiconcave Programs, Cahiers du Centre d’Etudes de Recherche Operationelle 25 (1–2), 93–101.

    MathSciNet  MATH  Google Scholar 

  917. Schaible, S. (1983), Fractional Programming, Zeitschrift für Operations Research. Serie A 27 (1), 39–54.

    MathSciNet  MATH  Google Scholar 

  918. Schaible, S. (1984), Simultaneous Optimization of Absolute and Relative Terms, Zeitschrift für Angewandte Mathematik und Mechanik 64 (8), 363364.

    MathSciNet  Google Scholar 

  919. Schaible, S. (1985), Fractional Programming with Several Ratios. IXth Symposium on Operations Research, Methods of Operations Research 49, 77–83.

    MathSciNet  MATH  Google Scholar 

  920. Schaible, S. (1985), Neuere Entwicklungen in der Quotienten–Programmierung, in Kreikebaum, H., Liesegang, G., Schaible, S. and Wildemann, H., (eds.), Industriebetriebslehre in Wissenschaft und Praxis, Festschrift für Th. Ellinger, Duncker–Humblot Verlag, Berlin, 285–312.

    Google Scholar 

  921. Schaible, S. (1988), Multi–Ratio Fractional Programming—A Survey. Optimization, Parallel Processing and Applications, Lecture Notes in Economics and Mathematical Systems 304, Springer, Berlin, 57–66.

    Google Scholar 

  922. Schaible, S. (1989), Fractional Programming—Some Recent Developments, Journal of Information and Optimization Sciences 10 (1), 1–14.

    MathSciNet  MATH  Google Scholar 

  923. Schaible, S. (1989), Multiratio Fractional Programming—Analysis and Applications, (invited lecture), in Mazzoleni, P., (ed.), Atti del XIII Convegno A.MA.S.E.S., Verona 1989, Pitagora Editrice, Bologna, 47–86.

    Google Scholar 

  924. Schaible, S. (1990), Introduction to Generalized Convexity. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 2–13.

    Google Scholar 

  925. Schaible, S. (1992), Some Recent Results in Fractional Programming, in Mazzoleni, P., (ed.), Generalized Concavity, Proceedings, Pisa, April 1992, Tecnoprint S.N.C., Bologna, 7–14.

    Google Scholar 

  926. Schaible, S. (1994), Fractional Programming, in Gass, S.I. and Harris, C.M., (eds.), Encyclopedia of Operations Research and Management Science, Kluwer Academic Publishers, to appear.

    Google Scholar 

  927. Schaible, S. and Ibaraki, T. (1983), Fractional Programming, (Invited Review), European Journal of Operational Research 12 (4), 325–338.

    MathSciNet  MATH  Google Scholar 

  928. Schaible, S. and Lowe, T. (1983), A Note on a Material Control Problem, HE Transactions 15, 177–179.

    Google Scholar 

  929. Schaible, S. and Ziemba, W.T. (1982), On the Concavity of the Sum of Lognormals is Lognormal Approximation in Portfolio Theory, Working Paper No. 317, University of California, Los Angeles.

    Google Scholar 

  930. Schaible, S. and Ziemba, W.T. (1985), Generalized Concavity of a Function in Portfolio Theory, Zeitschrift für Operations Research 29, 161–186.

    MathSciNet  MATH  Google Scholar 

  931. Schaible, S. and Ziemba, W.T., (eds.) (1981), Generalized Concavity in Optimization and Economics, Academic Press, New York.

    Google Scholar 

  932. Schechter, M. (1989), An Extension of the Channes–Cooper Method in Linear Fractional Programming, Journal of Information and Optimization Sciences 10 (1), 97–104.

    MathSciNet  MATH  Google Scholar 

  933. Schroeder, R.G. (1970), Linear Programming Solutions to Ratio Games, Operations Research 18, 300–305.

    MathSciNet  MATH  Google Scholar 

  934. Schroeder, R.G. (1974), Resource Planning in University Management by Goal Programming, Operations Research 22, 700–710.

    MathSciNet  MATH  Google Scholar 

  935. Scott, C.H. and Jefferson, T.R. (1980), Fractional Programming Duality via Geometric Programming Duality, Journal of Australian Mathematical Society, Series B 21, 398–401.

    MathSciNet  MATH  Google Scholar 

  936. Scott, C.H. and Jefferson, T.R. (1981), Conjugate Duality for Fractional Programs, Journal of Mathematical Analysis and Applications 84 (2), 381389.

    MathSciNet  Google Scholar 

  937. Scott, C.H. and Jefferson, T.R. (1987), Nonstandard Posynomial Geometric Programs, International Journal of Systems Science 18 (8), 1467–1474.

    MathSciNet  MATH  Google Scholar 

  938. Scott, C.H. and Jefferson, T.R. (1989), Conjugate Duality in Generalized Fractional Programming, Journal of Optimization Theory and Applications 60 (3), 475–483.

    MathSciNet  MATH  Google Scholar 

  939. Seelbach, H. (1968), Rentabilitätsmaximierung bei Variablem Eigenkapital, Zeitschrift für Betriebswirtschaft 38, 237–256.

    Google Scholar 

  940. Sen, R. and Chatterjee, S. (1983), Page Cuts for Mixed Integer Interval Linear Fractional Programming, 1983 Proceedings of the International Conference on Systems, Man and Cybernetics 2, Bombay and New Delhi/India, 29 Dec. 1983–7 Jan. 1984, (New York, USA: IEEE 1983), 813–816.

    Google Scholar 

  941. Sen, R. and Chatterjee, S. (1984), On an Algorithm for Solving Absolute Value Linear Fractional Programming with Integer Interval Linear Constraints, Proceedings of the 1984 IEEE International Conference on Systems, Man and Cybernetics, Halifax/Canada, 10–12 Oct. 1984, (New York, USA: IEEE 1984), 158–162.

    Google Scholar 

  942. Sengupta, J.K. (1972), Stochastic Programming, Methods and Applications, North–Holland, Amsterdam,

    Google Scholar 

  943. Seshan, C.R. (1980), An Algorithm for Ranking the Extreme Points for a Linear Fractional Objective Function, Journal of the Indian Institute of Science, Section B – Physical and Chemical Series 62, 119–121.

    Google Scholar 

  944. Seshan, C.R. (1980), On Duality in Linear Fractional Programming, Proceedings of the Indian Academy of Sciences, Mathematical Sciences 89, 35–42.

    MathSciNet  MATH  Google Scholar 

  945. Seshan, C.R. and Achary, K.K. (1980), A Branch and Bound Algorithm for a Transportation Type Problem with Piecewise Linear Convex Objective Function, Zeitschrift für Angewandte Mathematik und Mechanik 60, 303–307.

    MathSciNet  MATH  Google Scholar 

  946. Seshan, C.R. and Tikekar, V.G. (1980), Algorithms for Integer Fractional Programming, Journal of the Indian Institute of Science, Section B – Physical and Chemical Series 62, 9–16.

    Google Scholar 

  947. Sgurev, V.S. (1990), A Maximum Network Flow and a Capacity in Networks with Nonlinear Constraints, Problemi na Tekhnicheskata Kibernetika i Robotikata (Problems of Engineering Cybernetics and Robotics) 31, 1823.

    Google Scholar 

  948. Shapley, L.S. (1953), Stochastic Games, Proceedings of the National Academy of Sciences 39, 1095–1100.

    MathSciNet  MATH  Google Scholar 

  949. Sharma, I.C. (1967), Feasible Direction Approach to Fractional Programming Problems, Opsearch 4, 61–72.

    MATH  Google Scholar 

  950. Sharma, I.C. (1973), Transportation Technique in Non–Linear Fractional Prng ammina, Trnhnins de Estadistica y de Investigacion Operativa 24, 131–139.

    MATH  Google Scholar 

  951. Sharma, I.C. and Swarup, K. (1972), On Duality in Linear Fractional Functionals Programming, Zeitschrift für Operations Research 16, 91100.

    MathSciNet  Google Scholar 

  952. Sharma, J.K. (1978), Extensions and Special Cases of Transportation Problem: A Survey, Indian Journal of Pure and Applied Mathematics 9, 928–940.

    MathSciNet  MATH  Google Scholar 

  953. Sharma, J.K. (1978), Programming with Fractional Non–Linear Objective Function and Transportation Technique, Revue Roumaine de Mathematiques Pures et Appliquees 23, 1227–1234.

    MATH  Google Scholar 

  954. Sharma, J.K. and Swarup, K. (1977), Transportation Fractional Programming with Respect to Time, Ricerca Operativa 7, 458–459.

    Google Scholar 

  955. Sharma, J.K., Gupta, A.K. and Gupta, M.P. (1980), Extension of Simplex Technique for Solving Fractional Programming Problem, Indian Journal of Pure and Applied Mathematics 11, 961–968.

    MathSciNet  MATH  Google Scholar 

  956. Shepilov, M.A. (1980), Methods for Solving Fractional Mathematical Programming Problems, Kibernetica 16, 93–98, [Russian], translated in Cybernetics (USA) 16, 104–111.

    Google Scholar 

  957. Shi, Y.G. (1986), A Minimization Problem in the Mean Norm Using Generalized Rational Functions, Math. Numer. Sin (China) 8 (2), 205208.

    Google Scholar 

  958. Shivpuri, S. and Chadha, S.S. (1978), Multiparametric Linear Fractional Functionals Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 20, 103–108.

    MathSciNet  MATH  Google Scholar 

  959. Shor, N.Z. and Solomon, D.I. (1989), Dekompozitsionnye Metody v DrobnoLineinom Programmirovanii. (Decomposition Methods in Linear Fractional Programming), ‘Shitiintsa’, Kishinev. [Russian]

    Google Scholar 

  960. Shukla, D.P. and Kanchan, P.K. (1978), Sum of Linear and Linear Fractional Programming, Acta Ciencia Indica 4, 199–201.

    MathSciNet  MATH  Google Scholar 

  961. Shvartsman, A.P. (1965), An Algorithm of Fractional Linear Programming, Ekonomicheskie i Matematicheskie Metody (USSR) 1, 558–566. [Russian]

    Google Scholar 

  962. Sideri, E.A. (1989), A Cutting Plane Algorithm for Min–Max Fractional Programming, Journal of Information and Optimization Sciences 10 (1), 177–192.

    MathSciNet  MATH  Google Scholar 

  963. Sideri, E.A. (1990), A Modified Kelley’s Cutting Plane Algorithm for some Special Nonconvex Problems. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 121–142.

    Google Scholar 

  964. Sideri, E.A. (1992), A New Local Characterization of Pseudoconvex Functions and their Nonsmooth Extensions, Giannessi, F. (ed.), Nonsmooth Optimization Methods and Applications, Gordon and Breach Science Publishers, Amsterdam, 409–420.

    Google Scholar 

  965. Singh, C. (1981), Optimality Conditions in Fractional Programming, Journal of Optimization Theory and Applications 33, 287–294.

    MathSciNet  MATH  Google Scholar 

  966. Singh, C. (1982), Convex Programming with Set–Inclusive Constraints and its Applications to Generalized Linear and Fractional Programming, Journal of Optimization Theory and Applications 38 (1), 33–42.

    MathSciNet  MATH  Google Scholar 

  967. Singh, C. (1984), Optimality Conditions for Fractional Min–Max Programming, Journal of Mathematical Analysis and Applications 100 (2), 409–415.

    MathSciNet  MATH  Google Scholar 

  968. Singh, C. (1986), A Class of Multiple–Criteria Fractional Programming Problems, Journal of Mathematical Analysis and Applications 115 (1), 202–213.

    MathSciNet  MATH  Google Scholar 

  969. Singh, C. (1986), Nondifferentiable Fractional programming with Hanson–Mond Classes of Functions, Journal of Optimization Theory and Applications 49 (3), 431–447.

    MathSciNet  MATH  Google Scholar 

  970. Singh, C. (1988), Generalized Fractional Programming with Hanson–Mond Classes of Functions, Journal of Information and Optimization Sciences 9 (2), 219–230.

    MathSciNet  MATH  Google Scholar 

  971. Singh, C. and Dass, B.K., (eds.) (1989), Continuous–Time, Fractional and Multiobjective Programming. Proceedings of a Conference at St. Lawrence University, Canton, NY, 1986, Journal of Information and Optimization Sciences 10 (1).

    Google Scholar 

  972. Singh, C. and Hanson, M.A. (1986), Saddlepoint Theory for Nondifferentiable Multiobjective Fractional Programming, Journal of Information and Optimization Sciences 7 (1), 41–48.

    MathSciNet  MATH  Google Scholar 

  973. Singh, C. and Hanson, M.A. (1991), Multiobjective Fractional Programming Duality Theory, Naval Research Logistics 38, 925–933.

    MathSciNet  MATH  Google Scholar 

  974. Singh, C. and Rueda, N. (1990), Generalized Fractional Programming: Optimality and Duality Theory, Journal of Optimization Theory and Applications 66 (1), 149–159.

    MathSciNet  MATH  Google Scholar 

  975. Singh, C., Suneja, S.K. and Reuda, N.G. (1992), Pre–Invexity in Multiobjective Fractional Programming, Journal of Information and Optimization Sciences 13 (2), 293–302.

    MathSciNet  MATH  Google Scholar 

  976. Sinha, S.M. and Aylawadi, D.R. (1983), Optimality Conditions for a Class of Nondifferential Fractional Programming Problem, Indian Journal of Pure and Applied Mathematics 14 (2), 167–174.

    MathSciNet  MATH  Google Scholar 

  977. Sinha, S.M. and Wadhwa, V. (1970), Programming with a Special Class of Nonlinear Functionals, Unternehmensforschung 14, 215–219.

    MathSciNet  MATH  Google Scholar 

  978. Slowinski, R. (1986), A Multicriteria Fuzzy Linear Programming Method for Water Supply System Development Planning, Fuzzy Sets and Systems 19, 217–237.

    MathSciNet  MATH  Google Scholar 

  979. Slowinski, R. (1987), An Interactive Method for Multiobjective Linear Programming with Fuzzy Parameters and its Application to Water Supply Planning, Optimization Models Using Fuzzy Sets and Possibility Theory, Theory Decis. Libr., Ser B 4, 396–414.

    Google Scholar 

  980. Slusarczyk, C. (1981), Modification of the Bitran–Novaes Method for Solving Problems with a Fractionally Linear Objective Function in the Case of an Unbounded Set of Feasible Solutions, Polska Akademia Nauk.. Komitet Statystyki i Ekonometrii. Przeglad Statystyczny 28 (1–2), 63–73. [Polish]

    Google Scholar 

  981. Slusarczyk, C. (1986), On a Certain Property of Linear–Fractional Function and its Application, Przeglad Statyst. 33 (4), 403–413. [Polish]

    Google Scholar 

  982. Smith, J.D. (1972), A Mathematical Investigation into the Optimum Ratio of Plough and Conveyor Speeds in Multi–Plough Bidirectional Cutting, Int. J. Rock Mech. and Min. Sci. (G.B.) 9 (6), 767–781.

    Google Scholar 

  983. Smyrev, V.I. (1968), A Method of Solution of the ‘von Neumann’ model, Optimal. Planirovanie. 11, 76–87. [Russian]

    Google Scholar 

  984. Smyrev, V.I. (1976), A Procedure of Newtonian Type for the Determination of Expansion Rates in the ‘von Neuman’ model, Optimizatsija. 18, 36–47. [Russian]

    Google Scholar 

  985. Smyreva, N.V. (1974), An Algorithm for a Parametric Linear–Fractional Programming Problem, Optimizacija 14, 83–102. [Russian]

    Google Scholar 

  986. Sniedovich, M. (1986), C–Programming and the Minimization of Pseudolinear and Separable Functions, Operations Research Letters 5, 185–189.

    MathSciNet  MATH  Google Scholar 

  987. Sniedovich, M. (1987), A New Look at Fractional Programming, Journal of Optimization Theory and Applications 54 (1), 113–120.

    MathSciNet  MATH  Google Scholar 

  988. Sniedovich, M. (1987), On Fractional Programming Problems in Engineering Optimization, Engineering Optimization (U.K.) 12 (3), 247–250.

    Google Scholar 

  989. Sniedovich, M. (1988), Fractional Programming Revisited, European Journal of Operational Research 33 (3), 334–431.

    MathSciNet  MATH  Google Scholar 

  990. Sniedovich, M. (1989), Analysis of a Class of Fractional Programming Problems, Mathematical Progamming 43 (3), 329–347.

    MathSciNet  MATH  Google Scholar 

  991. Sniedovich, M. and Vazirinejad, S. (1990), A Solution Strategy for a Class of Nonlinear Knapsack Problems, American Journal of Mathematical and Management Sciences 10 (1–2), 51–71.

    MathSciNet  MATH  Google Scholar 

  992. Sobel, M.J. (1985), Maximal Mean/Standard Deviation Ratio in an Undiscounted MDP, Operations Research Letter 4, 157–159.

    MathSciNet  MATH  Google Scholar 

  993. Sodini, C. (1990), Equivalence and Parametric Analysis in Linear Fractional Programming. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 143–154.

    Google Scholar 

  994. Solomon, D.I. (1979), Generalized Linear Fractional Programming Problems, Matematiceskie Issledovaniya 52, 206–215. [Russian]

    Google Scholar 

  995. Solomon, D.I. (1979), On a Certain Procedure to Transform Mathematical Programming Problems Having Connected Constraints and Variables, Matematiceskie Issledovaniya 52, 199–205. [Russian]

    Google Scholar 

  996. Solomon, D.I. (1979), On a Method in Linear–Fractional Programming with a Block–Diagonal Matrix, Izv. Akad, Nauk. Mold, SSR, Ser Fiz. – Tekh. Mat. Nauk 3, 68–70. [Russian]

    Google Scholar 

  997. Solomon, D.I. (1983), A Problem of Integer Fractional–Linear Programming, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 72, 122–131. [Russian]

    Google Scholar 

  998. Solomon, D.I. (1983), Application of the Method of Generalized Gradient Descent in the Solution of Problems of Fractional–Linear programming, Izvestiya Akademii Nauk Moldayskoi SSR. Seriya Fiziko Tekhnicheskikh i Matematicheskikh Nauk 1, 7–13. [Russian]

    Google Scholar 

  999. Solomon, D.I. (1984), Generalization of the Linear and Fractional–Linear Transportation Problem, Izvestiya Akademii Nauk Moldayskoi SSR. Seriya Fiziko Tekhnicheskikh i Matematicheskikh Nauk 1, 13–18. [Russian]

    Google Scholar 

  1000. Solomon, D.I. (1985), The Principle of Decomposition by Variables with Application of the Method of Generalized Gradient Descent in the Solution of Fractional–Linear Programming Problems, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 82, 121–134, 156. [Russian]

    Google Scholar 

  1001. Solomon, D.I. (1986), An Iterative Algorithm for the Solution of the Generalized Fractional–Linear Programming Problem, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 87, 161–164, 184. [Russian]

    Google Scholar 

  1002. Solomon, D.I. (1987), A Parametric Method for Solving Problems of Fractional Linear Programming, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 96, 124–134, 172. [Russian]

    Google Scholar 

  1003. Solomon, D.I. (1988), Decomposition Algorithms for Solving Generalized Linear–Fractional Programming Problems, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 100, 133–141, 153. [Russian]

    Google Scholar 

  1004. Solomon, D.I. (1988), Decomposition Methods in Linear–Fractional Programming, Akademya Nauk Moldayskoi SSR. Institut Matimaticki s Vychislitelnym Tsentrom Matematicheskie Issledovaniya 100, 115–132, 152. [Russian]

    Google Scholar 

  1005. Soyster, A.L. and Lev, B. (1978), An Interpretation of Fractional Objectives in Goal Programming as Related to Papers by Awerbuch et. al., and Hannan, Management Science 24, 1546–1549.

    MATH  Google Scholar 

  1006. Sriram, M. and Stevens, W.F. (1973), An Example of the Application of Nonlinear Programming to Chemical–Process Optimization, Operations Research 21, 296–304.

    MathSciNet  MATH  Google Scholar 

  1007. Stahl, J. (1964), K& újebb Eljârâs Hiperbolikus Programazâsi Feladatok Megoldí sâra, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 9, Series B, fasc. 4, 743–754.

    MathSciNet  Google Scholar 

  1008. Stahl, J. (1982), On the Decomposition of Fractional Programming Problem, Szigma 15, 289–292.

    MATH  Google Scholar 

  1009. Stancu–Minasian, I.M. (1974), A Three–Dimensional Transportation Problem with a Special Structured Objective Function, Bulletin Mathematique 18, 385–397.

    Google Scholar 

  1010. Stancu–Minasian, I.M. (1976), Asupra Problemei cu Risc Minim Multiplu I: Cazul a Doua Functii Obiectiv, Stud. Cerc. Mat. 28 (5), 617–623.

    Google Scholar 

  1011. Stancu–Minasian, I.M. (1976), Asupra Problemei de Risc Minim Multiplu II: Cazul a r (r>2) Functii Obiectiv, Stud. Cerc. Mat. 28 (6), 723–734.

    Google Scholar 

  1012. Stancu–Minasian, I.M. (1976), Asupra Problemei lui Kataoka, Studii si Cercetari Matematice 28, 95–111.

    Google Scholar 

  1013. Stancu–Minasian, I.M. (1976), Criterii Multiple in Programarea Stochastica, Teza de Doctorate, Centrul de Statistica Matematica, Bucuresti.

    Google Scholar 

  1014. Stancu–Minasian, I.M. (1977), On Stochastic Programming with Multiple Objective Functions, Proceedings of the 5th Conference on Probability Theory, Brasov, 429–436.

    Google Scholar 

  1015. Stancu–Minasian, I.M. (1978), On a Class of Non–Linear Fractional Programming Problems, Revue Roumaine de Mathematiques Pures et Appliquees 23, 285–290.

    Google Scholar 

  1016. Stancu–Minasian, I.M. (1978), On the Transportation Problem with Multiple Objective Functions, Bull. Math. Soc. Sci. Math., R.S.R., u. Ser. 22 (70), 315–328.

    Google Scholar 

  1017. Stancu–Minasian, I.M. (1979), On the Multiple Minimum Risk Problem, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 23 (4), 427–437.

    Google Scholar 

  1018. Stancu–Minasian, I.M. (1980), Applications of Fractional Programming, Economic Computation and Economic Cybernetics Studies and Research 14, 69–86.

    Google Scholar 

  1019. Stancu–Minasian, I.M. (1980), Programarea Stocastica cu mai multe Functii Obiectiv. (Stochastic Programming with Multiple Objective Functions), Editura Academiei Republucii Socialiste Romania, Bucharest, 259pp. [Romanian]

    Google Scholar 

  1020. Stancu–Minasian, I.M. (1981), A Survey of Methods used for Solving the Linear Fractional Programming Problems with Several Objective Functions. Fifth Symposium on Operations Research, Operations Research Verfahren 40, 159–162.

    Google Scholar 

  1021. Stancu–Minasian, I.M. (1981), A Survey of Methods used for Solving the Problems of Fractional Programming. The Linear Case. I, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 25 (3), 313–319.

    Google Scholar 

  1022. Stancu–Minasian, I.M. (1981), A Survey of Methods used for Solving the Problems of Fractional Programming. The Linear Case. II, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, Nouvelle Serie 25 (4), 415–430.

    Google Scholar 

  1023. Stancu–Minasian, I.M. (1981), Asupra Unei Probleme de Programare Fractionara, Buletin Stiintiftc, Seria Technica–Matematica IV, Institutul de Invatamint Superior Sibiu, 37–42.

    Google Scholar 

  1024. Stancu–Minasian, I.M. (1981), Bibliography of Fractional Programming 1960 – 1976, Pure and Applied Mathematika Sciences 13, 35–69.

    Google Scholar 

  1025. Stancu–Minasian, I.M. (1981), Fractional Programming in Complex Space: The State of the Art, Academie de la Republique Populaire de Roumaine. Revue Roumaine de Mathematiques Pures et Appliquees 26 (3), 481–491.

    MathSciNet  MATH  Google Scholar 

  1026. Stancu–Minasian, I.M. (1983), A Second Bibliography of Fractional Programming, Pure and Applied Mathematika Sciences 17 (1–2), 87–102.

    MathSciNet  MATH  Google Scholar 

  1027. Stancu–Minasian, I.M. (1985), A Third Bibliography of Fractional Programming, Pure and Applied Mathematika Sciences 22 (1–2), 109–122.

    MathSciNet  Google Scholar 

  1028. Stancu–Minasian, I.M. (1985), An Overview of Separable Fractional Programming Problem, L’Analyse Numerique et la Theorie de L’Approximation 14 (1), 91–96.

    MathSciNet  MATH  Google Scholar 

  1029. Stancu–Minasian, I.M. (1992), A Fourth Bibliography of Fractional Programming, Optimization 23, 53–71.

    MathSciNet  MATH  Google Scholar 

  1030. Stancu–Minasian, I.M. and Patkar, V. (1985), A Note on Nonlinear Fractional Max–Min Problem, National Academy of Science Letters 8 (2), 39–41.

    MathSciNet  MATH  Google Scholar 

  1031. Stancu–Minasian, I.M. and Patkar, V. (1986), A Note on Duality Theory for an Indefinite Functional Programming Problem, Universitatis Babes Bolyai. Studia. Mathematica 31 (1), 23–26.

    MathSciNet  MATH  Google Scholar 

  1032. Stancu–Minasian, I.M. and Tigan, S. (1984), The Minimum Risk Approach to Special Problems of Mathematical Programming. The Distribution Function of the Optimal Value, L’Analyse Numerique et la Theorie de L’Approximation 13 (2), 175–187.

    MathSciNet  MATH  Google Scholar 

  1033. Stancu–Minasian, I.M. and Tigan, S. (1985), The Minimum Risk Approach to Max–Min Bilinear Programming, Analele Stiintifice ale Universitatii ‘Al. I. Cuza’ din Iasi. Seria Noua. Sectiunea I a Matematica 31 (2), 205–209.

    MathSciNet  MATH  Google Scholar 

  1034. Stancu–Minasian, I.M. and Tigan, S. (1985), The Minimum Risk Approach to the Bottleneck Transportation Problem, Itinerant Seminar on Functional Equations, Approximation and Convexity, Preprint 85–6, Univ. “BabesBolyai”, Cluj–Napoca/Romania, 203–208.

    Google Scholar 

  1035. Stancu–Minasian, I.M. and Tigan, S. (1985), The Vectorial Minimum–Risk Problem. Proceedings of the Colloquium on Approximation and Optimization, University Cluj–Napoca, 321–328.

    Google Scholar 

  1036. Stancu–Minasian, I.M. and Tigan, S. (1987), Criteriul Riscului Minim in Programarea Stochastica, Lucrarile Sesiunii Stiintifice a Centrului de Calcul al Univertatii Bucuresti, 20–21 Februarie, 392–397.

    Google Scholar 

  1037. Stancu–Minasian, I.M. and Tigan, S. (1987), The Stochastic Linear–Fractional Max–Min Problem, Itinerant Seminar on Functional Equations, Approximation and Convexity, University ‘Babes–Bolyai’, Cluj–Napoca, 275–280.

    Google Scholar 

  1038. Stancu–Minasian, I.M. and Tigan, S. (1988), A Stochastic Approach to some Linear Fractional Goal Programming Problems, Kybernetika 24 (2), 139149.

    MathSciNet  Google Scholar 

  1039. Stancu–Minasian, I.M. and Tigan, S. (1988), Generalized Pseudofractional Max–Min Problems, Itinerant Seminar on Functional Equations, Approximation and Convexity, University ‘Babes–Bolyai’, Cluj–Napoca, 295–302.

    Google Scholar 

  1040. Stancu–Minasian, I.M. and Tigan, S. (1988), Inexact Mathematical Programming, Seminar on Optimization Theory, University ‘BabesBolyai’, Cluj–Napoca, 99–116.

    Google Scholar 

  1041. Stancu–Minasian, I.M. and Tigan, S. (1990), Multiobjective Mathematical Programming with Inexact Data, in Slowinski, R. and Teghem, J. (eds.) Stochastic Versus Fuzzy Approach to Multiobjective Mathematical Programming Under Uncertainty, Kluwer Academic Publishers, 395–418.

    Google Scholar 

  1042. Stancu–Minasian, I.M. and Tigan, S. (1990), On some Fractional Programming Models Occuring in Minimum–Risk Problems. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 295–324.

    Google Scholar 

  1043. Stancu–Minasian, I.M. and Tigan, S. (1994), Fractional Programming Under Uncertainty, in Komlosi, S., Rapcsak, T. and Schaible, S., (eds.), Generalized Convexity, Proceedings Pécs/Hungary, 1992; Lecture Notes in Economics and Mathematical Systems 405, Springer–Verlag, BerlinHeidelberg–New York, to appear.

    Google Scholar 

  1044. Stançu–Minasian, LM., Duca, D.I. and Nishida, T. (1990), Multiple Objective Linear Fractional Optimization in Complex Space, Math. Japonica 35 (1), 195–203.

    MathSciNet  MATH  Google Scholar 

  1045. Steuer, R.E. (1986), Multiple Criteria Optimization. Theory, Computation and Application, John Wiley & Sons Inc., New York, 546 pp.

    Google Scholar 

  1046. Storey, C. (1979), Optimization Using Rational Functions, Operations Research Verfahren 31, 613–617.

    MATH  Google Scholar 

  1047. Storoy, S. (1983), Ranking of Vertices in the Linear Fractional Programming Problem, BIT (Nordisk Tidskrift for Informationsbehandling) 23 (3), 403405.

    MathSciNet  Google Scholar 

  1048. Subrahmanyam, M.B. (1986), A Note on Best Constants in Discrete Inequalities, Aequationes Mathematicae 30 (2–3), 208–211.

    MathSciNet  MATH  Google Scholar 

  1049. Sumanth, D.J. and Carrillo, M.A. ( 1989), Productivity Modeling of Group Machine Loading with Variable Processing Times, IIE Transactions 21 (1), 27–34.

    Google Scholar 

  1050. Suneja, S.K., Bector, C.R. and Singh, C. (1991), Duality in Multiobjective Fractional Programming Involving Strongly and Weakly Invex and Related Functions, Opsearch 28 (3), 153–164.

    MATH  Google Scholar 

  1051. Suneja, S.K., Singh, C. and Kaul, R.N. (1992), Optimality and Duality in Continuous–Time Nonlinear Fractional Programming, Australian Mathematical Society Journal, Series B Applied Mathematics 34 (2), 229244.

    MathSciNet  Google Scholar 

  1052. Suppe, C. (1976), Hyperbolische Optimierungsprobleme mit homogenen Funktionen, Ekonomicko–Mathematicky Obzor 12, 438–443.

    MathSciNet  Google Scholar 

  1053. Swarup, K. (1965), Linear Fractional Functionals Programming, Operations Research 13, 1029–1036.

    MATH  Google Scholar 

  1054. Swarup, K. (1965), Programming with Quadratic Fractional Functionals, Opsearch 2, 23–30.

    MathSciNet  Google Scholar 

  1055. Swamp, K. (1965), Some Aspects of Linear Fractional Functionals Programming, Australian Journal of Statistics 7, 90–104.

    MathSciNet  Google Scholar 

  1056. Swarup, K. (1966), Fractional Programming with Nonlinear Constraints, Zeitschrift fir Angewandte Mathematik and Mechanik 46, 468–469.

    MathSciNet  MATH  Google Scholar 

  1057. Swamp, K. (1966), Transportation Technique in Linear Fractional Programming, Journal of Royal Naval Scientific Service, 256–260.

    Google Scholar 

  1058. [ 1058] Swamp, K. (1967), Computational Technique for Linear Fractional Program, J. Math. Sci. 2 (1), 17–20.

    Google Scholar 

  1059. Swamp, K. (1967), Mathematical Programming, Ph.D. Thesis, Delhi University, Delhi, 67–73.

    Google Scholar 

  1060. Swamp, K. (1967), Some Aspects of Duality in Fractional Programming, Zeitschrift für Angewandte Mathematik and Mechanik 47, 204–205.

    Google Scholar 

  1061. Swamp, K. (1967), Some Properties of Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 9, 82–86.

    Google Scholar 

  1062. Swarup, K. (1968), Duality for Transportation Problems in Fractional Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 10, 46–54.

    MathSciNet  MATH  Google Scholar 

  1063. Swamp, K. (1968), Duality in Fractional Programming, Unternehmensforschung 12, 106–112.

    MathSciNet  Google Scholar 

  1064. Swamp, K. (1968), Fractional Programing, Mathematical Student 36, 58–62.

    Google Scholar 

  1065. Swamp, K. (1968), Note on Linear Fractional Functionals Programming, Metrika 13 (1), 72–77.

    Google Scholar 

  1066. Swamp, K. (1968), On Varying all the Parameters in a Linear Fractional Functionals Programming, Metrika 13, 196–205.

    Google Scholar 

  1067. Swamp, K. (1970), Upper Bound Problem in Linear Fractional Functionals Programming, Metrika 15, 81–85.

    Google Scholar 

  1068. Swamp, K. (1972), Some Aspects of Fractional Programming, Matematichki Vesnik n. Ser. 9 (24), 97–100.

    Google Scholar 

  1069. Swamp, K. (1973), A Primal–Like Algorithm for (0,1) Integer Fractional Programming Problem, Trabajos de Estadistica y de Investigacion Operativa XXIV, 123–136.

    Google Scholar 

  1070. Swamp, K. (1974), On Duality in Nonlinear Fractional Programming Problems, Zeitschrift für Angewandte Mathematik and Mechanik 54, 734.

    Google Scholar 

  1071. Swamp, K. and Bedi, M.K. (1976), Linear Fractional Functionals Programming with Absolute–Value Fractional Functionals, Cahiers du Centre d’Etudes de Recherche Operationelle 18, 367–375.

    Google Scholar 

  1072. Swamp, K. and Sharma, I.C. (1970), Programming with Linear Fractional Functionals in Complex Space, Cahiers du Centre d’Etudes de Recherche Operationelle 12, 103–109.

    Google Scholar 

  1073. Taha, H.A. (1971), Hyperbolic Programming with Bivalent Variables, Technical Report 71–7, Dept of Ind. Eng., University of Arkansas, Fayetteville.

    Google Scholar 

  1074. Taha, H.A. (1975), An Algorithm for Zero–One Fractional Programming, AIIE Transactions 7, 29–34.

    MathSciNet  Google Scholar 

  1075. Tammer, E.–C. (1974), Dualität und Stabilität in der hyperbolischen Optimierung, Dissertation A, Humboldt–Universität, Berlin, Sektion Mathematik.

    Google Scholar 

  1076. Tammer, F,–C, (1974), Dualitätstheorie für hyperbolische und stückweise–lineare konvexe Optimierungsprobleme, Mathematische Operationenforschung und Statistik 5, 93–108.

    Google Scholar 

  1077. Tammer, E.–C. (1977), Parametrische hyperbolische Optimierungsprobleme mit Parametern in der Zielfunktion, Mathematische Operationsforschung und Statistik, Series Optimization 8, 207–225.

    MathSciNet  MATH  Google Scholar 

  1078. Tang, H.W. and Li, G.B. (1986), Karmarkar’s Algorithm and Fractional Linear Programming, Journal of Dalian Institute of Technology. Dalian Gong Xueyuan Xuebao 25, 79–83. [Chinese]

    Google Scholar 

  1079. Teterev, A.G. (1970), A Certain Generalization of Linear and Fractional–Linear Programming, Matekon 6, 246–259; originally in Ekonomika i Matematiceskie Metody 5, 1969, 440–447. [Russian].

    Google Scholar 

  1080. Thanassoulis, E. (1985), An Adaptation of PASEB for the Solution of Multi–Objective Linear Fractional Programming Problems, Journal of the Operational Research Society 36 (2), 155–161.

    MATH  Google Scholar 

  1081. Thang, N.N. (1977), Generalization of Beale’s Method to a Pseudoconvex

    Google Scholar 

  1082. Function, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie 21 (1–2), 67–81. [Russian]

    Google Scholar 

  1083. Tigan, E. (1989), Algorithms to Minimize the Cost Capacity Ratio, Econom. Comput. Econom. Cybernet Stud. Res. 24 (4), 53–58.

    MathSciNet  MATH  Google Scholar 

  1084. Tigan, S. (1971), Sur Quelques Problèmes d’Affectation. Direction Scientifique. Note de Travail No. 157, SEMA, Paris.

    Google Scholar 

  1085. Tigan, S. (1971), Sur une Méthode de Decomposition pour le Problème de Program–mation Monotone, Mathematica (Cluj) 13 (36), 347–354.

    MathSciNet  Google Scholar 

  1086. Tigan, S. (1972), On A Certain Problem of Nonlinear Fractional Programming, Revista de Analiza Numerica si Teoria Approximatiei 1, 215–226. [Romanian]

    Google Scholar 

  1087. Tigan, S. (1972), Sur Quelques Problèmes d’Affectation à Applications Economiques, Elektronische Datenverarbeitung in der Wissenschaft, Wirtschaft und Verwaltung, 107–123.

    Google Scholar 

  1088. Tigan, S. (1973), On a Method for Fractional Optimization Problems. Application to Stochastic Optimization Problems, Proceeding of the Computer Science Conference, Szekesfehervar, Hungary, 351–355.

    Google Scholar 

  1089. Tigan, S. (1975), Sur le Probleme de la Programmation Vectorielle Fractionnaire, Revue d’ Analyse Numerique et de la Theorie de l’ Approximation 4, 99–103.

    MathSciNet  MATH  Google Scholar 

  1090. Tigan, S. (1975), Sur une Methode Pour la Resolution d’un Probleme d’Optimisation Fractionaire par Segments, Revue d’ Analyse Numerique et de la Theorie de l’ Approximation 4, 87–97.

    MathSciNet  MATH  Google Scholar 

  1091. Tigan, S. (1980), On the Max–Min Nonlinear Fractional Problem, L’Analyse Numerique et la Theorie de L’Approximation 9 (2), 283–288.

    MathSciNet  MATH  Google Scholar 

  1092. Tigan, S. (1980), Remarques sur Certains Problems de Programmation PseudoLineaire par Morceaux, Rev. Anal. Numer. Theor. Approximation 9, 129132.

    Google Scholar 

  1093. Tigan, S. (1981), Asupra Unor Method de Rezolvare a Unor Probleme Particulare de Programmare Fractionara, Informatica Pentru Conducere Orizont ‘81, Realizari si Aplicatii, Cluj, Napoca, 92–93.

    Google Scholar 

  1094. Tigan, S. (1982), Eficienta si Propriu–Eficienta Pentru Programarea Fractionara Vectoriala, Seminarul Itinerant de Ecuatii Functionale, Aproximare si Convexitate, Cluj Napoca.

    Google Scholar 

  1095. Tigan, S. (1982), Problema Fractionara a Arborelui Minim, Buletinul Român de Informatica 1, 9–15.

    Google Scholar 

  1096. Tigan, S. (1982), Sur quelques Problemes de Programmation Pseudo–Fractionnaire. (Some Problems of Pseudofractional Programming), L’Analyse Numerique et la Theorie de L’Approximation 11 (1–2), 167–174.

    Google Scholar 

  1097. Tigan, S. (1983), A Parametrical Method for Max–Min Nonlinear Fractional Problems, Itinerant Seminar on Functional Equations, Approximation and Convexity, University ‘Babes Bolyai’, Cluj–Napoca, 175–184.

    Google Scholar 

  1098. Tigan, S. (1983), On the Linearization Technique for Quasimonotonic Optimization Problems, L’Analyse Numerique et la Theorie de L’Approximation 12 (1), 89–96.

    MathSciNet  MATH  Google Scholar 

  1099. Tigan, S. (1988), Numerical Methods for Solving some Max–Min Pseudofractional Problems, Proceedings of the Second Symposium of Mathematics and its Applications, Academia SR Romania, Timisoara, 93–97.

    Google Scholar 

  1100. Tigan, S. (1988), On Some Procedures for Solving Fractional Max–Min Problems, L’Analyse Numerique et la Theorie de L’Approximation 17 (1), 73–91.

    MathSciNet  MATH  Google Scholar 

  1101. Tigan, S. and Stancu–Minasian, I.M. (1989), Fractional Goal Programming with Inexact Data, Itinerant Seminar on Functional Equations, Approximation and Convexity, University ‘Babes Bolyai’, Cluj–Napoca, 311–318.

    Google Scholar 

  1102. Tigan, S. and Stancu–Minasian, I.M. (1990), An Application of Warburton Procedure to a Max–Min Fractional Programming Problem, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj–Napoca.

    Google Scholar 

  1103. Tigan, S. and Stancu–Minasian, I.M. (1991), On a Bicriterion Max–Min Fractional Problem, L’Analyse Numerique et la Theorie de L’Approximation 20 (1–2), 117–125.

    MathSciNet  MATH  Google Scholar 

  1104. Tobin, J. (1958), Liquidity Preference as Behavior Towards Risk, Review of Economic Studies 26, 65–86.

    MathSciNet  Google Scholar 

  1105. Tran–Quoc–Chien (1985), Nondifferentiable and Quasidifferentiable Duality in Vector Optimization Theory, Kybernetika 21, 298–312.

    Google Scholar 

  1106. Tran–Quoc–Chien (1986), Fenchel–Lagrange Duality in Vector Fractional Programming via Abstract Duality Scheme, Kybernetika 22 (4), 299–319.

    Google Scholar 

  1107. Tung, C.T., Chan, G.H. and Chew, K.L. (1987), Finding a Minimal–Ratio Elementary Path in a Network, Asia–Pac. J. Oper. Res. 4 (2), 151–157.

    MathSciNet  MATH  Google Scholar 

  1108. Tuy, H. (1991), Polyhedral Annexation, Dualization and Dimension Reduction Technique in Global Optimization, J. of Global Optimization 1, 229–244.

    MathSciNet  MATH  Google Scholar 

  1109. Uberti, M. (1986), Misurazione dell’ Onerosità dei Contratti di Leasing, Report No. 38, Istituto di Matematica Finanziaria, Università di Torino/Italy.

    Google Scholar 

  1110. Uberti, M. (1988), Nota su un’ Applicazione Finanziaria della Programmazione Frazionaria, Quaderno dell’ Istituto di Matematica Finanziaria, Università di Torino/Italy.

    Google Scholar 

  1111. Vajda, S. (1975), Problems in Linear and Non–Linear Programming, C. Griffin and Co., London.

    Google Scholar 

  1112. Varma, G.K. (1969), Some Aspects of Parametric Linear Fractional Programming, Journal of the Indian Statistical Association 7, 162–167.

    MathSciNet  Google Scholar 

  1113. Vanna, G.K. (1972), General Parametric Linear Fractional Programming, Metrika 19, 11–17.

    MathSciNet  Google Scholar 

  1114. Varma, G.K. (1972), On Parametric Linear Fractional Functionals Programming, Trabajos Estadistica y de Investigacion Operativa 23, 149157.

    MathSciNet  Google Scholar 

  1115. Vartak, M.N. and Gupta, I. (1987), Duality Theory for Fractional Programming Problems under n–Convexity, Opsearch 24 (3), 163–174.

    MathSciNet  MATH  Google Scholar 

  1116. Verdaguer, R. and Iglesias, L. (1990), A Modified Fractional Simplex Method, Investigacion Operacional 11 (1), 3–10. [Spanish]

    Google Scholar 

  1117. Verma, V. (1990), Constrained Integer Linear Fractional Programming Problem, Optimization 21 (5), 749–757.

    MathSciNet  MATH  Google Scholar 

  1118. Verma, V. and Puri, M.C. (1990), On Wolf s Method for Solving Linear

    Google Scholar 

  1119. Fractional Programming Problem, Opsearch 27 (3), 176–179.

    Google Scholar 

  1120. Verma, V., Bakhshi, H.C. and Puri, M.C. (1990), Ranking in Integer Linear Fractional Programming Problems, Zeitschrift für Operations Research 34 (5), 325–334.

    MathSciNet  MATH  Google Scholar 

  1121. Verma, V., Khanna, S. and Puri, M.C. (1987), ‘Bad–Points’ in Linear Fractional Program: A Comparitive Study, Cahiers du Centre d’Etudes de Recherche Operationelle 29 (1–2), 123–131.

    MathSciNet  MATH  Google Scholar 

  1122. [ 1121] Verma, V., Khanna, S. and Puri, M.C. (1990), On Martos’ and CharnesCooper’s Approach vis–a–vis ‘Singular–Points’, Optimization 20 (4), 415420.

    Google Scholar 

  1123. Verma, V., Puri, M.C. and Arora, S.R. (1989), Some Special Situations in Linear Fractional Programming Problem: An Algorithmic Comparison, Opsearch 26 (2), 96–107.

    MathSciNet  MATH  Google Scholar 

  1124. Vial, J.P. (1989), A Unified Approach to Projective Algorithms for Linear Programming. Optimization, Proc. 5th French–German Conf., Varetz/France 1988, Lecture Notes Math. 1405, 191–220.

    MathSciNet  Google Scholar 

  1125. Vlach, M. (1990), Rubinstein Duality Scheme for Vector Optimization. Generalized Convexity and Fractional Programming with Economic Applications, Lecture Notes in Economics and Mathematical Systems 345, Springer, Berlin, 252–264.

    Google Scholar 

  1126. Vogel, W. (1977), Vektoroptimierung in Produkträumen, Hain–Verlag, Meisenheim.

    Google Scholar 

  1127. Von Neumann, J. (1937), Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, in Menger, K., (ed.), Ergebnisse eines mathematischen Kolloqiums, 8, Leipzig und Wien, 73–83.

    Google Scholar 

  1128. Von Neumann, J. (1945), A Model of General Economic Equilibrium, Review of Economic Studies 13, 1–9.

    Google Scholar 

  1129. Wadhwa, V. (1969), Programming with Separable Fractional Functionals, Journal of Mathematical Sciences 4, 51–60.

    MathSciNet  Google Scholar 

  1130. Wadhwa, V. (1972), Linear Fractional Programs with Variable Coefficients, Cahiers du Centre d’Etudes de Recherche Operationelle 14, 223–232.

    MATH  Google Scholar 

  1131. Wadhwa, V. (1974), Parametric Linear Fractional Programming, SCIMA Journal of Management Science and Applied Cybernetics 3, 21–29.

    MATH  Google Scholar 

  1132. Wagner, H.M. (1975), Principles of Operations Research with Applications to Management Decisions, 2nd ed., Prentice–Hall, Englewood–Cliffs, N.J.

    Google Scholar 

  1133. Wagner, H.M. and Yuan, S.C. (1968), Algorithmic Equivalence in Linear Fractional Programming, Management Science 14, 301–306.

    MathSciNet  MATH  Google Scholar 

  1134. Wang, C.L. (1988), The Principle and Models of Dynamic Programming. II, III, Journal of Mathematical Analysis and Applications 135 (1), 268–283, 284–296.

    Google Scholar 

  1135. Wang, Cl— and Wu,, Y, (1991), Optimal Control Problems with Nonstandard Cost Functions, Congr. Numer. 80, 129–137.

    Google Scholar 

  1136. Warburton, A.R. (1985), Parametric Solution of Bicriterion Linear Fractional Programs, Operations Research 33 (1), 74–84.

    MathSciNet  MATH  Google Scholar 

  1137. Warren, D. and Thomas, J.B. (1985), Signal–to–Noise Ratio and Central Limit Theorem Considerations in non–Gaussian Defection, Proceedings of the 23rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, 2–4 Oct. 1985, Urbana–Champaign, University of Illinois, 35–44.

    Google Scholar 

  1138. Wdowiak, J. (1977), A Discrete Linear Fractional Programming Problem, Przeglad Statystyczny 24, 483–497. [Polish]

    Google Scholar 

  1139. Wdowiak, J. (1978), A Discrete Linear Fractional Programming Problem II, Przeglad Statystyczny 25, 133–140. [Polish]

    Google Scholar 

  1140. Weber, R. (1983), Pseudomonotonic Multiobjective Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 25 (1), 115–128.

    MATH  Google Scholar 

  1141. Weir, T. (1985), A Note on Duality for Fractional Programming Problems, Opsearch 22 (4), 241–247.

    MathSciNet  MATH  Google Scholar 

  1142. Weir, T. (1986), A Dual for a Multiple Objective Fractional Programming Problem, Journal of Information and Optimization Sciences 7 (3), 261269.

    MathSciNet  Google Scholar 

  1143. Weir, T. (1986), A Duality Theorem for a Multiple Objective Fractional Optimization Problem, Bulletin of the Australian Mathematical Society 34 (3), 415–425.

    MathSciNet  MATH  Google Scholar 

  1144. Weir, T. (1986), A Note on Invex Functions and Duality in Generalized Fractional Programming, Report No. 4, Department of Mathematics, Australian Defense Force Academy.

    Google Scholar 

  1145. Weir, T. (1989), Duality for Nondifferentiable Multiple Objective Fractional Programming Problems, Utilitas Mathematica 36, 53–64.

    MathSciNet  MATH  Google Scholar 

  1146. Weir, T. (1989), On Duality in Multiobjective Fractional Programming, Opsearch 26 (3), 151–158.

    MathSciNet  MATH  Google Scholar 

  1147. Weir, T. (1991), Symmetric Dual Multiobjective Fractional Programming, Australian Mathematical Society. Journal. Series A 50 (1), 67–74.

    MathSciNet  MATH  Google Scholar 

  1148. Weir, T. and Mond, B. (1990), Duality for Fractional Programming Without a Constraint Qualification, Utilitas Mathematica 38, 193–197.

    MathSciNet  MATH  Google Scholar 

  1149. Weir, T., Mond, B. and Egudo, R.R. (1992), Duality Without Constraint Qualification for Multiobjective Fractional Programming, Asia Pacific Journal of Operations Research 9 (2), 195–206.

    MathSciNet  MATH  Google Scholar 

  1150. Werner, J. (1988), Duality in Generalized Fractional Programming. Trends in Mathematical Optimization, Internationale Schriftenreihe Numerische Mathematik 84, 341–351.

    Google Scholar 

  1151. Whinston, A. (1964), A Dual Decomposition Algorithm for Quadratic Programming, Cahiers du Centre d’Etudes de Recherche Operationelle 6, 188–201.

    MathSciNet  MATH  Google Scholar 

  1152. Wilde, F. (1968), Bestimmung eines optimalen Produktionsprogramms mit maximaler grundfondsbezogener Rentabilität mit Hilfe der hyperbolischen Optimierung, Thesis, Wirtschaftswissenschaftliche Fakultät der Humboldt–Universität, Berlin.

    Google Scholar 

  1153. Williams, H.P. (1974), Experiments in the Formulation of Integer Programming Problems, Mathematical Programming Studies 2, 180–197.

    Google Scholar 

  1154. [ 1154] Wingo, D.R. (1983), Maximum Likelihood Models for Fitting the Burr–Type XII Distribution to Life Test Data, Biomedical Journal 25, 77–84.

    Google Scholar 

  1155. Wolf, H. (1983), A New Solution Approach to the Linear Fractional Programming Problem, Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Fernuniversität Hagen, Nr. 67.

    Google Scholar 

  1156. Wolf, H. (1983), Die parametrische Analyse eines linearen Quotientenprogramms mit einem Skalarparameter in der rechten Seite, Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Fernuniversität Hagen, Nr. 74.

    Google Scholar 

  1157. Wolf, H. (1985), A Parametric Method for Solving the Linear Fractional Programming Problem, Operations Research 33 (4), 835–841.

    MathSciNet  MATH  Google Scholar 

  1158. Wolf, H. (1986), Parametric Analysis for Fractional Programs, Proceedings of Xth Symposium on Operations Research, Methods of Operations Research 53, 215–222.

    MATH  Google Scholar 

  1159. Wolf, H. (1986), Parametric Analysis in Linear Fractional Programming, Operations Research 34 (6), 930–937.

    MathSciNet  MATH  Google Scholar 

  1160. Wolf, H. (1986), Solving Special Nonlinear Fractional Programming Problems via Parametric Linear Programming, European Journal of Operational Research 23 (3), 396–400.

    MathSciNet  Google Scholar 

  1161. Wolfe, O.B., Hawaleshka, O. and Mohamed, A.M. (1986), User Friendly Micro Computer Program for Solving Fractional and Linear Programming Problems, Proceedings of the 8th Annual Conference on Computers and Industrial Engineering, Orlando, FL, USA, 19–21 March, 1986, Comput. & Ind. Eng. (G.B.) 11 (1–4), 225–231.

    Google Scholar 

  1162. [ 1162] Wolkowicz, H. (1981), Bounds for the Kantorovich Ratio, Technical Report, Dept. of Mathematics, University of Alberta, Edmonton.

    Google Scholar 

  1163. Xiao, D. and Goldfarb, D. (1990), A Path–Following Projective Interior Point Method for Linear Programming, Technical Report, Department of Industrial Engineering and Operations Research, Columbia University.

    Google Scholar 

  1164. Xu, Z.K. (1983), A Method for a Fractional Programming Problem, Journal of Shanghai University of Technology 1, 66–72.

    Google Scholar 

  1165. Xu, Z.K. (1987), The Use of Programming with p+l Parameters to Solve Problems of Generalized Fractional Programming, Chinese Academy of Science. Kexue Tongbao 32 (19), 1444–1446. [Chinese]

    Google Scholar 

  1166. Xu, Z.K. (1988), Saddle–Point Type Optimality Criteria for Generalized Fractional Programming, Journal of Optimization Theory and Applications 57 (1), 189–196.

    MathSciNet  MATH  Google Scholar 

  1167. Xu, Z.K. (1990), On Inexact Fractional Programming, Journal of Systems Science and Mathematical Sciences. Xitong Kexue yu Shuxue 10 (4), 377382.[Chinese]

    Google Scholar 

  1168. Yadav, S.R. and Mukherjee, R.N. (1984), A Generalized Big–M Method for Fractional Programming and some Problems on Parametric Fractional Programming, Istanbul Teknik Universitesi Bulteni. Bulletin of the Technical University of Istanbul 37 (4), 465–475.

    MathSciNet  MATH  Google Scholar 

  1169. Yadav, S.R. and Mukherjee, R.N. (1984), On Parametric Fractional Programming, Istanbul Teknik Universitesi Bulteni. Bulletin of the Technical University of Istanbul 37 (3), 273–282.

    MathSciNet  MATH  Google Scholar 

  1170. Yadav, S.R. and Mukherjee, R.N. (1990), Duality for Fractional Minimax Programming Problems, Australian Mathematical Society. Journal. Series B. Applied Mathematics 31 (4), 484–492.

    MathSciNet  MATH  Google Scholar 

  1171. Yadav, S.R., Prasad, S. and Mukherjee, R.N. (1988), A Dual Differentiable Exact Penalty Function in Fractional Programming, Indian Journal of Pure and Applied Mathematics 19 (6), 513–515.

    MathSciNet  MATH  Google Scholar 

  1172. [ 1172] Yamada, K. (1963), On Linear Fractional Programming, The Hitotsubashi Review, 49. [Japanese]

    Google Scholar 

  1173. Yano, H. and Sakawa, M. (1989), Interactive Fuzzy Decision Making for Generalized Multiobjective Linear Fractional Programming Problems with Fuzzy Parameters, Fuzzy Sets and Systems 32 (3), 245–261.

    MathSciNet  MATH  Google Scholar 

  1174. Yi, Y.W. and Zhang, Y.S. (1989), An Optimal Planning Method for Water Resource Systems, Information and Control. Xinxi yu Kongzhi 18 (5), 5154. [Chinese]

    Google Scholar 

  1175. Ying, M.Q. (1986), Several Theoretical Problems on Multiple Objective Programming (continued), Qufu Shifan Daxue Xuebao. Ziran Kexue Ban. Journal of Qufu Normal University. Natural Sciences Education 12 (4), 24–34. [Chinese]

    Google Scholar 

  1176. Yon, R.S. (1986), A Solution Method of the Fractional n–Index Transportation Problem, SUHAK 3, 1–8. [Korean]

    Google Scholar 

  1177. Yon, R.S. (1907), A Solution Method for Linear Fractional Functional Programming with a Parameter Objective Function, SUHAK 2, 20–24. [Chinese]

    Google Scholar 

  1178. Yon, R.S. (1987), A Solution Method of the Fractional n–Index Transportation Problem with Pass Capacity, SUHAK 1, 21–28. [Korean]

    Google Scholar 

  1179. Zalmai, G.J. (1986), Duality for a Class of Continuous–Time Homogeneous Fractional Programming Problems, Zeitschrift für Operations Research. Serie A 30 (1), 43–48.

    MathSciNet  MATH  Google Scholar 

  1180. Zalmai, G.J. (1986), Optimality Conditions for a Class of Nondifferentiable Minmax Programming Problems, Optimization 17 (4), 453–465.

    MathSciNet  MATH  Google Scholar 

  1181. Zalmai, G.J. (1987), Duality for a Class of Continuous–Time Fractional Programming Problems, Utilitas Mathematica 31209–218.

    Google Scholar 

  1182. Zalmai, G.J. (1988), Optimality Conditions and Subgradient Duality for Minmax Programming Problems with Applications, Utilitas Mathematica 34, 193–222.

    MathSciNet  MATH  Google Scholar 

  1183. Zalmai, G.J. (1989), Optimality Conditions and Duality for Constrained Measurable Subset Selection Problems with Minmax Objective Functions, Optimization 20 (4), 377–395.

    MathSciNet  MATH  Google Scholar 

  1184. Zalmai, G.J. (1990), Duality for Generalized Fractional Programs Involving n–Set Functions, Journal of Mathematical Analysis and Applications 149 (2), 339–350.

    MathSciNet  MATH  Google Scholar 

  1185. Zalmai, G.J. (1990), Optimality Conditions and Duality for a Class of Continuous–Time Generalized Fractional Programming Problems, Journal of Mathematical Analysis and Applications 153 (2), 356–371.

    MathSciNet  MATH  Google Scholar 

  1186. [ 1186] Zemel, E. (1981), On Search over Rationals, Operations Research Letters 1, 34–38.

    MathSciNet  MATH  Google Scholar 

  1187. Zhang, S. (1990), Linear, Matroid and Polymatroid Fractional Optimization, Technical Report, Econometric Institute, Erasmus University, Rotterdam.

    Google Scholar 

  1188. Zhang, S. (1991), Stochastic Queue Location Problems, Doctoral Dissertation, Econometric Institute, Erasmus University, Rotterdam.

    Google Scholar 

  1189. Zheng, Q. (1988), Theory and Methods for Global Optimization—An Integral Approach. Advances in Optimization and Control, Proc. Conf., Optimization Days, Montreal/Canada 1986. Lecture Notes Econ. Math. Syst. 302, 15–37.

    Google Scholar 

  1190. Ziemba, W.T. (1974), Choosing Investment Portfolios when the Returns have a Stable Distribution, in Hammer, P.L. and Zoutendijk, G. (eds.), Mathematical Programming in Theory and Practice, North–Holland, Amsterdam, 443–482.

    Google Scholar 

  1191. Ziemba, W.T. and Vickson, R.G. (eds.), (1975), Stochastic Optimization Models in Finance, Academic Press, New York.

    Google Scholar 

  1192. Ziemba, :V.T., Parkan, C. and Brooks–Hill, R. (1974), Calculation of

    Google Scholar 

  1193. Investment Portfolios with Risk Free Borrowing and Lending, Management Science 21, 209–222.

    Google Scholar 

  1194. Zionts, S. (1968), Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly 15, 449–451.

    MATH  Google Scholar 

  1195. Zólkiewski, Z. (1983), A Multicriteria Linear Programming Model with Linear Fractional Objective Functions, Ph.D. Thesis, The Central School of Planning and Statistics, Warsaw. [Polish]

    Google Scholar 

  1196. Zólkiewski, Z. (1984), Multiobjective Linear Fractional Programming Problem, Przgl. Stat. 31, 359–373. [Polish]

    Google Scholar 

  1197. Zólkiewski, Z. (1984), On Computing L.–Compromise Solutions of the Multiple Objective Linear Fractional Programming (MOLFP) Problem, Ceskoslovenska Akademie Ved. Ekonomicko Matematicky Obzor 20 (2), 197–202.

    Google Scholar 

  1198. Zsigmond, I. (1987), Mixed Integer Linear Fractional Programming by a Branch and Bound Technique, Annales Universitatis Scientiarum Budapestinensis. Sectio Computatorica 7, 117–130.

    MathSciNet  MATH  Google Scholar 

  1199. Zusupbaev, A. (1973), The Production Allocation Problem with a Fractional Linear of Fractional Convex Functional and with Unknown Quantities of Production and Consumption, Some Mathematical Optimization Methods and their Application in the Economy of Kirghizia, ‘Ilim, Frunze, 19–29. [Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schaible, S. (1995). Fractional Programming. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2025-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2025-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5838-1

  • Online ISBN: 978-1-4615-2025-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics