Skip to main content

Red Blood Cell Transit Time in Man: Theoretical Effects of Capillary Density

  • Chapter
Oxygen Transport to Tissue XVI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 361))

Abstract

The pioneering development of the knee-extensor exercise model opened a new dimension in the study of human muscle physiology allowing the measurement of blood flow (Q), oxygen uptake (VO2), and work rate in an isolated muscle (Andersen et al., 1985). Original studies using this exercise paradigm reported reduced O2 extractions presumably as a consequence of the greater maximal muscle Q (Andersen & Saltin, 1985). Although this human in situ model has elevated the maximum recorded muscle Q in man from the previously recorded values of 60-100 ml• 100g • min-1 (Mellander, 1981) to values of 250-300 m1-100g • min-1, it was still not apparent that this was maximal human muscle Q (Rowell, 1988). A recent experiment was performed to determine if human muscle Q could be elevated above these previously reported values during knee-extensor exercise by recruiting athletic subjects and utilizing a rapidly incremented protocol (Richardson et al., 1993). In this study quadriceps muscle Q(x ± SE, 385 ± 26 ml • min-1100g), VO2max (60.2 ± 5.8 ml • min-l• 100g-1), and work rate (4.3 ± 0.3 W • 100g-1) were by far the highest yet recorded. Despite these being the highest recorded muscle blood flows in man, O2 extraction at Vo2max did not appear to be compromised to any greater extent than in conventional cycle exercise (Richardson et al., 1993). Extraction at any given Vo2 is determined largely by convective O2delivery, capillary surface area available for O2 uptake, and the resultant time available for O2 release (Honig et al., 1991). It is the objective of this paper to focus on the third of these factors which. equates to red blood cell (RBC) transit time during these high human muscle Q (Richardson et al., 1993). Previously, it has been demonstrated theoretically that transit time and its variability are major determinants of O2 extraction from red cells at exercise (Gayeski et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen, P. Capillary density in skeletal muscle in man. Acta Phvsio. Scand. 95: 203–205,1975.

    Article  CAS  Google Scholar 

  2. Andersen, P., and J. Henricksson. Capillary supply of the quadriceps femoris muscle in man: Adaptive response to exercise. J. Phvsiol. 270: 677–690,1977.

    CAS  Google Scholar 

  3. Andersen, P., and B. Saltin. Maximal perfusion of skeletal muscle in man. J. Phvsiol. 366: 233–249,1985.

    CAS  Google Scholar 

  4. Andersen, P., R. P. Adams, G. Sjogaard, A. Thorbe, and B. Saltin. Dynamic knee extension as a model for study of isolated exercising muscle in humans. J. Appl. Phvsiol. 59: 1647–1653,1985.

    CAS  Google Scholar 

  5. Bangsbo, J., P. D. Gollnick, T. E. Graham, C. Juel, B. Kiens, M. Mizuno, and B. Saltin. Anaerobic energy-production and 02 deficit-debt relationship during exhaustive exercise in humans. J. Physiol. 422: 539–559,1990.

    PubMed  CAS  Google Scholar 

  6. Brodal, P., F. Ingjer, and L. Hermansen. Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. Am. J. Physiol. 232: H705–H712,1977.

    PubMed  CAS  Google Scholar 

  7. Coyle, E. F., A. R. Coggan, M. K. Hopper, and T. J. Walter. Determinants of endurance in well-trained cyclists. J. Appl. Phvsiol. 64: 2622–2630,1988.

    CAS  Google Scholar 

  8. Cutts, A. The range of lengths in the muscles of the human lower limb. J. Anat. 160: 79–88,1988.

    PubMed  CAS  Google Scholar 

  9. Gayeski, T. E. J., W. J. Federspiel, and C. R. Homg. A graphical analysis of the influence of red cell transit time, carrier free layer thickness, and intracellular P02 on blood tissue O2 transport. Adv. Exp. Med. Biol. 222: 25–35,1988.

    Article  PubMed  CAS  Google Scholar 

  10. Hermansen, L., and M. Watchtlova. Capillary density of skeletal muscle in well-trained and untrained men. J. Appl. Physiol. 30: 860–863,1971.

    PubMed  CAS  Google Scholar 

  11. Honig, C. R., C. L. Ordoroff, and J. L. Frierson. Active and passive capillary, control in red muscle at rest and in exercise. Am. J. Physiol. 243: H196–H206,1982.

    PubMed  CAS  Google Scholar 

  12. Honig, C. R., T. E. J. Gayeski, and K. Groebe. Myoglobin and Oxygen Gradients. In: The Lung: Scientific Founditions, 1st ed., edited by R. G. Crystal, and West, J. B. New York: Raven Press, Vol. 2, 1991, p. 1489–1496.

    Google Scholar 

  13. Ivy, J. L., R. T. Withers, P. J. Van Handel, D. H. Elger, and D. L. Costill. Muscle respiratory capacity and fiber type as determinants of lactate threshold. J. Appl. Physiol. 48: 523–527,1980.

    CAS  Google Scholar 

  14. Jones, P. R. M., and J. Pearson. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults. J. Physiol. 294: 63P,1969.

    Google Scholar 

  15. Klitzman, B., and B. R. Duling. Microvascular hematocrit and red cell flow in resting and conrtacting striated muscle. Am. J. Physiol. 237: H481–H490,1979.

    PubMed  CAS  Google Scholar 

  16. Knight, D. R., D. C. Poole, W. Schaffartzik, H. J. Guy, R. Prediletto, M. C. Hogan, and P. D. Wagner. Relationship between body and leg V02 during maximal cycle ergometry. J. Appl. Physiol. 73: 1114–1121,1992.

    PubMed  CAS  Google Scholar 

  17. Knight, D. R., W. Schaffartzik, D. C. Poole, M. C. Hogan, D. E. Bebout, AND P. D. Wagner. Hyperoxia increases leg maximal oxygen uptake. J. Appl. Phvsiol. 75: 2586–2594,1993.

    CAS  Google Scholar 

  18. Mai, J. V., V. R. Edgerton, and R. J. Barnard. Capillarity of red, white and intermediate muscle fibers in trained and untrained guinea-pigs. Experientia 26: 1222–1223,1970.

    Article  PubMed  CAS  Google Scholar 

  19. Mathieu-Costello, O. Capillary tortuosity and degree of contraction or extension of skeletal muscles. Microvasc. Res. 33: 98–117,1987.

    Article  PubMed  CAS  Google Scholar 

  20. Mathieu-Costello, O., C. G. Ellis, R. F. Potter, I. C. Macdonald, and A. C. Groom. Muscle capillary-to-fiber ratio: morphometry. Am. J. Phvsiol. 261: H1617–H1625,1991.

    CAS  Google Scholar 

  21. Mellander, S. Differentiation of fiber composition, circulation, and metabolism in limb muscles of dog, cat, and man. In: Mechanisms of vasodilation, 1st ed., edited by P. M. Vanhoutte, and Leusen, I. New York: Raven, 1981, p. 243–254.

    Google Scholar 

  22. Poole, D. C., G. A. Gaesser, M. C. Hogan, D. R. Knight, AND P. D. Wagner. Pulmonary and leg V02 during submaximal exercise: implications for muscular efficiency. J. Appl. Phvsiol. 72: 805–810,1992.

    CAS  Google Scholar 

  23. Richardson, R. S., S. C. Johnson, and M. S. Walker. Heart rate V02 relationship changes following intense training. Sports Med., Training, and Rehab. 3: 105–111,1992.

    Article  Google Scholar 

  24. Richardson, R. S., D. C. Poole, D. R. Knight, S. S. Kurdak, M. C. Hogan, B. Grassi, E. C. Johnson, K. Kendrick, B. K. Erickson, and P. D. Wagner. High muscle blood flow in man: Is maximal 02 extraction compromised? J. Appl. Phvsiol. 75: 1911–1916,1993.

    CAS  Google Scholar 

  25. Rowell, L. B. Muscle blood flow how high can it go? Med. Sci. Sports. Exerc. 20: S97- S103,1988.

    Article  PubMed  CAS  Google Scholar 

  26. Rowell, L. B., B. Saltin, B. Kiens, and N. J. Christensen. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am. J. Phvsiol. 251: H1038- H1044,1986.

    Article  Google Scholar 

  27. Saltin, B., C. G. Blomqvist, J. H. Mitchell, R. C. Jr. Johnson, K. Wildenthal, and C. B. Chapman. Responses to exercise after bed rest and training. Circulation 38: 1–78,1968.

    Article  Google Scholar 

  28. Saltin, B., B. Kiens, G. Savard, and P. K. Pedersen. Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise. Acta Phvsio. Scand. 128(Suppl. 556): 21–32,1986.

    Google Scholar 

  29. Whipp, B. J., AND K. Wasserman. Oxygen uptake kinetics for various intensities of constant-load work. J. Appl. Phvsiol. 33: 351–356,1972.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richardson, R.S., Poole, D.C., Knight, D.R., Wagner, P.D. (1994). Red Blood Cell Transit Time in Man: Theoretical Effects of Capillary Density. In: Hogan, M.C., Mathieu-Costello, O., Poole, D.C., Wagner, P.D. (eds) Oxygen Transport to Tissue XVI. Advances in Experimental Medicine and Biology, vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1875-4_91

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1875-4_91

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5763-6

  • Online ISBN: 978-1-4615-1875-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics