Skip to main content

Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

We will get to acetogens shortly. Before that, I must note that it was never my intent to deliver the introductory chapter for this book. That was Harland’s job, and as editor of this book, I was elated when he agreed to take on that project. I knew full well no one but he was up to that task. “Time passes,” he once noted to me as we were discussing a difficult problem that required an unacceptable amount of time to resolve. Unfortunately, time does pass, and Harland G. Wood passed away in September 1991 and was unable to complete his preparation of this chapter. He was 84.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamse, A. D. (1980). New isolation of Clostridium aceticum (Wieringa). Antonie van Leeuwenhoek 46:523–531.

    PubMed  CAS  Google Scholar 

  • Adamse, A. D., and C. T. M. Velzeboer. 1982. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol. Antonie van Leeuwenhoek 48:305–313.

    PubMed  CAS  Google Scholar 

  • Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Microbiol. 72:154–174.

    CAS  Google Scholar 

  • Andressen, J. R., A. Schaupp, C. Neurauter, A. Brown, and L. G. Ljungdahl. 1973. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114:743–751.

    Google Scholar 

  • Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    CAS  Google Scholar 

  • Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Sys. Bacteriol. 27:355–361.

    CAS  Google Scholar 

  • Bak, F., K. Finster, and F. Rothfuß. 1992. Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157:529–534.

    CAS  Google Scholar 

  • Barker, H. A. 1944. On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc. Nati. Acad. Sci. 30:88–90.

    CAS  Google Scholar 

  • Barker, H. A., and M. D. Kamen. 1945. Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Nati. Acad. Sci. USA 31:219–225.

    CAS  Google Scholar 

  • Beaty, P. S., and L. G. Ljungdahl. 1991. Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide, Abstr. K-131, p. 236, Abstr. Ann. Meet. Am. Soc. Microbiol. 1991.

    Google Scholar 

  • Bomar, M., H. Hippe, and B. Schink. 1991. Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol. Lett. 83:347–350.

    CAS  Google Scholar 

  • Braun, K., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.

    PubMed  CAS  Google Scholar 

  • Braun, K., and G. Gottschalk. 1981. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch. Microbiol. 128:294–298.

    PubMed  CAS  Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.

    PubMed  CAS  Google Scholar 

  • Braun, M., and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl. Bakt. Hyg., I. abt. Orig. C3, pp. 368–376.

    Google Scholar 

  • Braus-Stromeyer, S. A., R. Hermann, A. M. Cook, and T. Leisinger. 1993. Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium. Appl. Environ. Microbiol. 59: 3790–3797.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2 - utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990. Microbiol H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309–314.

    CAS  Google Scholar 

  • Brock, T. D. 1989. Evolutionary relationships of the autotrophic bacteria. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 499–512. Science Tech Publishers, Madison, WI.

    Google Scholar 

  • Brulla, W. J., and M. P. Bryant. 1989. Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source. Appl. Environ. Microbiol. 55:1289–1290.

    PubMed  CAS  Google Scholar 

  • Brumm, P. J. 1988. Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum. Biotechnol. Bioengineer. 32:444–450.

    CAS  Google Scholar 

  • Busche, R. M. (1991). Extractive fermentation of acetic acid: Economic tradeoff between yield of Clostridium and concentration of Acetobacter. Appl. Biochem. Biotechnol. 28/ 29:605–621.

    Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.

    PubMed  CAS  Google Scholar 

  • Cato, E. P., W. L. George, and S. M. Finegold. 1986. Genus Clostridium Prazmowski 1880. In: Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath (ed.), Vol. 2, pp. 1141–1200. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Cato, E. S., and E. Stackebrandt. 1989. Taxonomy and phylogeny. In: Clostridia, N. P. Minton, and D. J. Clarke (eds.), pp. 1–26. Plenum Press, New York.

    Google Scholar 

  • Charakhch’yan, D.-I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1992. Acetogenic bacteria from oil fields of Tataria and western Siberia. Mikrobiologiya 61:306–315.

    Google Scholar 

  • Cheryan, M., and S. Parekh. 1992. Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707. Abstr. Ann. Meet. Am. Soc. Microbiol., p. 315, Abstr. 0-39.

    Google Scholar 

  • Clark, J. E., and L. G. Ljungdahl. 1984. Purification and properties of 5, 10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J. Biol. Chem. 259:10845–10849.

    PubMed  CAS  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.

    CAS  Google Scholar 

  • Cord-Ruwisch, R., and B. Ollivier. 1986. Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch. Microbiol. 144:163–165.

    CAS  Google Scholar 

  • Daniel, S. L., T. Hsu, S. I. Dean, H. L. Drake. 1990. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471.

    PubMed  CAS  Google Scholar 

  • Daniel, S. L., H. L. Drake. 1993. Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:3062–3069.

    PubMed  CAS  Google Scholar 

  • Das, A., J. Hugenholtz, H. van Halbeek, and L. G. Ljungdahl. 1989. Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol. 171:5823–5829.

    PubMed  CAS  Google Scholar 

  • Das, A., L. G. Ljungdahl. 1993. F0 and F1 parts of ATP synthases from Clostridium thermoautotrophicum and Escherichia coli are not functionally compatible. FEBS Lett. 317:17–21.

    PubMed  CAS  Google Scholar 

  • Dehning, I., M. Stieb, B. Schink. 1989. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch. Microbiol. 151:421–426.

    CAS  Google Scholar 

  • DeWeerd, K. A., A. Saxena, D. P. Nagle, Jr., J. M. Suflita. 1988. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl. Environ. Microbiol. 54:1237–1242.

    PubMed  CAS  Google Scholar 

  • Diekert, G., and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.

    PubMed  CAS  Google Scholar 

  • Diekert, G., and M. Ritter. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 151:41–44.

    PubMed  CAS  Google Scholar 

  • Diekert, G., M. Hansch, and R. Conrad. 1984. Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch. Microbiol. 138:224–228.

    CAS  Google Scholar 

  • Diekert, G., E. Schrader, and W. Harder. 1986. Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii. Arch. Microbiol. 144:386–392.

    CAS  Google Scholar 

  • Diekert, G. 1992. The acetogenic bacteria. In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.) The Prokaryotes, 2nd ed., pp. 517–533. Springer-Verlag, New York.

    Google Scholar 

  • Dimroth, P. 1987. Sodium ion transport decarboxlases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51:320–340.

    PubMed  CAS  Google Scholar 

  • Dorn, M., J. R. Andreesen, and G. Gottschalk. (1978). Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol. 133:26–32.

    PubMed  CAS  Google Scholar 

  • Dörner, C., and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156:302–306.

    Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 255:7174–7180.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981a. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: properties of phosphotransacetylase. J. Biol. Chem. 255:7174–7180.

    Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981b. The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme, CO dehydrogenase, Abstr. K42. p. 144. Abstr. Ann. Meet. Am. Soc. Microbiol, 1981.

    Google Scholar 

  • Drake, H. L. 1982. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J. Bacteriol. 150:702–709.

    PubMed  CAS  Google Scholar 

  • Drake, H. L. 1992. Acetogenesis and acetogenic bacteria. In: Encyclopedia of Microbiology, J. Lederberg (ed.), Vol. 1, pp. 1–15. Academic Press, San Diego

    Google Scholar 

  • Drake, H. L. 1993. CO2, reductant, and the autrophic acetyl-CoA pathway: alternative origins and destinations. In: Microbial Growth on C 1 Compounds, C. Murrell, and D. P. Kelly (eds.), pp. 493–507. Intercept Limited, Andover, Engla

    Google Scholar 

  • Drent, W. J., and J. C. Gottschal. 1991. Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers. FEMS Microbiol. Lett. 78:285–292.

    CAS  Google Scholar 

  • Eden, G., and G. Fuchs. 1982. Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch. Microbiol. 133:66–74.

    CAS  Google Scholar 

  • Eden, G., and G. Fuchs. 1983. Autotrophic CO2 fixation in Acetobacterium woodii II. Demonstration of enzymes involved. Arch. Microbiol. 135:68–73.

    CAS  Google Scholar 

  • Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152.

    CAS  Google Scholar 

  • Egli, C., T. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54:2819–2824.

    PubMed  CAS  Google Scholar 

  • El Ghazzawi, E. 1967. Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch. Mikrobiol. 57:1–19.

    CAS  Google Scholar 

  • Emde, R., and B. Schink. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch. Microbiol. 149:142–148.

    CAS  Google Scholar 

  • von Eysmondt, J., Dj. Vasic-Racki, and Ch. Wandrey. 1990. Acetic acid production by Acetogenium kivui in continuous culture-kinetic studies and computer simulations. Appl. Microbiol. Biotechnol. 34:344–349.

    Google Scholar 

  • Ferry, J. G. (1992). Methane from acetate. J. Bacteriol. 174:5489–5495.

    PubMed  CAS  Google Scholar 

  • Fischer, F., R. Lieske, and K. Winzer. 1932. Biologische Gasreaktionen. II. Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245:2–12.

    Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Frazer, A. C., and L. Y. Young. 1985. A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Environ. Microbiol. 49:1345–1347.

    PubMed  CAS  Google Scholar 

  • Freedman, D. L., and J. M. Gosset. 1991. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57:2847–2857.

    PubMed  CAS  Google Scholar 

  • Fuchs, G., U. Schnitker, and R. K. Thauer. 1974. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur. J. Biochem. 49:111–115.

    PubMed  CAS  Google Scholar 

  • Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.

    CAS  Google Scholar 

  • Fuchs, G. 1989. Alternative pathways of autotrophic CO2 fixation. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 365–382, Science Tech, Madison, WI and Springer-Verlag, Ber

    Google Scholar 

  • Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 148:305–313.

    CAS  Google Scholar 

  • Geerligs, G., P. Schönheit, and G. Diekert. 1989. Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg). FEMS Microbiol. Lett. 57: 253–258.

    CAS  Google Scholar 

  • Gorst, C. M., and S. W. Ragsdale. 1991. Characterization of the NiFeCO complex of carbon monoxide dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme A synthesis. J. Biol. Chem. 266:20687–20693.

    PubMed  CAS  Google Scholar 

  • Gößner, A., S. L. Daniel, and H. L. Drake. 1994. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol. 161:126–131.

    Google Scholar 

  • Gottschalk, G. 1989. Bioenergetics of methanogenic and acetogenic bacteria. In H. G. Schlegel and B. Bowien (eds.), Autotrophic Bacteria, pp. 383–396. Science Tech, Madison, WI.

    Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.

    PubMed  CAS  Google Scholar 

  • Grethlein, A. J., R. M. Worden, M. K. Jain, and R. Datta. 1991. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J. Ferment. Bioengineer. 72:58–60.

    CAS  Google Scholar 

  • Grethlein, A. J., and M. K. Jain. 1992. Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. TIBTECH 10:418–423.

    CAS  Google Scholar 

  • Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.

    PubMed  CAS  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986. Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol. Ecol. 38:57–64.

    CAS  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989. Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii. Appl. Microbiol. Biotechnol. 32:186–192.

    CAS  Google Scholar 

  • Heinonen, J. K., and H. L. Drake. 1988. Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum. FEMS Microbiol. Lett. 52: 205–208.

    CAS  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. 171:5473–5478.

    PubMed  CAS  Google Scholar 

  • Heise, R., J. Reidlinger, V. Müller, and G. Gottschalk. 1991. A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii. FEBS Lett. 295:119–122.

    PubMed  CAS  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1992. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur. J. Biochem. 206:553–557.

    PubMed  CAS  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1993. Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Micrbiol. Lett. 112:261–268.

    CAS  Google Scholar 

  • Hermann, M., M.-R. Popoff, and M. Sebald. 1987. Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int. J. Syst. Bacteriol. 37:93–101.

    CAS  Google Scholar 

  • Hsu, T., M. F. Lux, and H. L. Drake. 1990. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.

    PubMed  CAS  Google Scholar 

  • Hu, S.-L., H. L. Drake, and H. G. Wood. 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149:440–448.

    PubMed  CAS  Google Scholar 

  • Hu, S.-I., E. Pezacka, and H. G. Wood. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: purification of the corrinoid protein. J. Biol. Chem. 259:8892–8897.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, J., and L. G. Ljungdahl. 1989. Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J. Bacteriol. 171:2873–2875.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, J., and L. G. Ljungdahl. 1990. Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol. Lett. 69:117–122.

    CAS  Google Scholar 

  • Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, J. R. Norris and D. W. Ribbons (eds.), Vol. 3B, pp. 117–132. Academic Press, New York.

    Google Scholar 

  • Ibba, M., and G. H. Fynn. 1991. Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp. Biotechnol. Lett. 13:671–676.

    CAS  Google Scholar 

  • Inoue, K., S. Kageyama, K. Miki, T. Morinaga, Y. Kamagata, K. Nakamura, and E. Mikami. 1992. Vitamin B12 Production by Acetobacterium sp. and its tetrachloromethane-resistant mutants. J. Ferment. Bioengineer. 73:76–78.

    CAS  Google Scholar 

  • Ivey, D. M., and L. G. Ljungdahl. 1986. Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J. Bacteriol. 165:252–257.

    PubMed  CAS  Google Scholar 

  • Jones, W. J., D. P. Nagle, Jr., and W. B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135–177.

    PubMed  CAS  Google Scholar 

  • Kamen, M. D. 1963. The early history of carbon-14. J. Chem. Educ. 40:234–242.

    CAS  Google Scholar 

  • Kamlage, B., and M. Blaut. 1993. Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175:3043–3050.

    PubMed  CAS  Google Scholar 

  • Kamlage, B., A. Boelter, and M. Blaut. 1993. Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159:189–196.

    CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.

    CAS  Google Scholar 

  • Kellum, R., and H. L. Drake. 1984. Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. J. Bacteriol. 160:466–469.

    PubMed  CAS  Google Scholar 

  • Kellum, R., and H. L. Drake. 1986. Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum. FEMS Microbiol. Lett. 34:41–45.

    CAS  Google Scholar 

  • Kerby, R., and J. G. Zeikus. 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8:27–30.

    CAS  Google Scholar 

  • Klemps, R., S. M. Schoberth, and H. Sahm. 1987. Production of acetic acid by Acetogenium kivui. Appl. Microbiol. Biotechnol. 27:229–234.

    CAS  Google Scholar 

  • Koesnadar, N. Nishio, A. Yamamoto, and S. Nagi. 1991. Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J. Ferment. Bioengineer. 72:11–14.

    Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, and A. N. Nozhevnikova. 1992. Psychrotrophic homoacetogenic bacteria from several environments. Abstr. C136. 7th Int. Symp. C 1-Compounds. 1992.

    Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.

    CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.

    CAS  Google Scholar 

  • Küsel, K., and H. L. Drake. 1994. Acetate synthesis by soil from a Bavarian beech forest. Appl. Environ. Microbiol. 60:1370–1373.

    PubMed  Google Scholar 

  • Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 87:5598–5602.

    PubMed  CAS  Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lee, C.-K., P. Dürre, H. Hippe, and G. Gottschalk. 1987. Screening for plasmids in the genus Clostridium. Arch. Microbiol. 148: 107–114.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., and R. C. Greening. 1988. Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily. Appl. Environ. Microbiol. 54:502–506.

    PubMed  CAS  Google Scholar 

  • Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981. Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch. Microbiol. 129:275–280.

    CAS  Google Scholar 

  • Lentz, K., and H. G. Wood. 1955. Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J. Biol. Chem. 215:645–654.

    PubMed  CAS  Google Scholar 

  • Liu, C.-L., N. Hart, and H. D. Peck, Jr. 1982. Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum. Science 217:363–364.

    PubMed  CAS  Google Scholar 

  • Liu, S., and J. M. Suflita. 1993. H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59:1325–1331.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L., and H. G. Wood. 1965. Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J. Bacteriol. 89:1055–1064.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L., E. Irion, and H. G. Wood. 1966. Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Fed. Proc. 25:1642–1648.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G. and H. G. Wood. 1969. Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol. 23:515–538.

    CAS  Google Scholar 

  • Ljungdahl, L. G., F. Bryant, L. Carreira, T. Saiki, and J. Wiegel. 1981. Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms. In: Trends in the Biology of Fermentations, A. Hollaender (ed.), pp. 397–419. Plenum Press, New Yo

    Google Scholar 

  • Ljungdahl, L. G., L. H. Carreira, R. J. Garrison, N. E. Rabek, and J. Wiegel. 1985. Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate. Biotechnol. Bioengeer. Symp. 15:207–223.

    Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40:415–450.

    CAS  Google Scholar 

  • Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989. Acetogenic and Acid-Producing Clostridia. In: Clostridia, N. P. Minton and D. J. Clarke (eds.), pp. 145–191. Plenum Press, New Yo

    Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47: 961–964.

    PubMed  CAS  Google Scholar 

  • Loubiere, P., E. Gros, V. Paquet, and N. D. Lindley. 1992. Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures. J. Gen. Microbiol. 138:979–985.

    CAS  Google Scholar 

  • Lovell, C. R., A. Przybyla, and L. G. Ljungdahl. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29:5687–5694.

    PubMed  CAS  Google Scholar 

  • Lowe, A., M. K. Jain, and J. G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509.

    PubMed  CAS  Google Scholar 

  • Lundie, Jr., L. L. and H. L. Drake. 1984. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703.

    PubMed  CAS  Google Scholar 

  • Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990. Biotransformation of aromatic aldehydes by acetogenic bacteria. F EMS Microbiol. Lett. 67:73–78.

    CAS  Google Scholar 

  • Lux, M. F., and H. L. Drake. 1992. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol. Lett. 95:49–56.

    CAS  Google Scholar 

  • Lynd, L. H., and J. G. Zeikus. 1983. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J. Bacteriol. 153:1415–1423.

    PubMed  CAS  Google Scholar 

  • Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983. Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr. Microbiol. 8:337–340.

    CAS  Google Scholar 

  • Martin, D. R., A. Misra, and H. L. Drake. 1985. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl. Environ. Microbiol. 49:1412–141

    PubMed  CAS  Google Scholar 

  • Matthies, C., A. Freiberger, and H. L. Drake. 1993. Fumarate dissimilation and difierential reductant flow by Clostridiwn formicoaceticum and Clostridium aceticum. Arch. Microbiol. 160:273–278.

    CAS  Google Scholar 

  • Mayer, F., J. I. Elliott, D. Sherod, and L. G. Ljungdahl. 1982. Formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Eur. J. Biochem. 124:397–404.

    PubMed  CAS  Google Scholar 

  • Meyer, O. 1988. Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria. In: Biotechnology Focus 1, M. Schlingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner (eds.), pp. 3–31. Hanser Publishers, Munich, Vien

    Google Scholar 

  • Meyer, O., K. Frunzke, and G. Mörsdorf. 1993. Biochemistry of the aerobic utilization of carbon monoxide. In: Microbial Growth on C 1 Compounds, J. C. Murrell, and D. P. Kelly (eds.), pp. 433–459. Intercept Ltd., Andover, Engla

    Google Scholar 

  • Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.

    Google Scholar 

  • Moench, T. T., and J. G. Zeikus. 1983. An improved preparation method for a titanium (III) media reductant. J. Microbiol. Methods 1:199–202.

    CAS  Google Scholar 

  • Moore, W., and E. Cato. 1965. Synonymy of Eubacterium limosum and Butyribacterium rettgeri. Int. Bull. Bacteriol. Nomen. Taxon. 15:69–80.

    Google Scholar 

  • Morton, T. A., C-F. Chou, and L. G. Ljungdahl. 1992. Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum. In: Genetics and Molecular Biology of Anaerobic Bacteria, M. Sebald (ed.), pp. 389–406. Springer-Verlag, New York.

    Google Scholar 

  • Mountfort, D. O. 1992. Ecophysiological significance of anaerobes in the gastrointestinal tracts of marine fish. Abstr. C1-4-4, p. 91. Sixth Internat. Symp. on Microbial Ecology (ISME-6) 1992.

    Google Scholar 

  • Nagaranthal, K. R., and D. P. Nagle, Jr. 1992. Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine, Abstr. 1-23, p. 240. Ann. Meet. Am. Soc. Microbiol. 1992.

    Google Scholar 

  • O’Brien, W. E., J. M. Brewer, and L. G. Ljungdahl. 1973. Purification and characterization of thermostable 5, 10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 248:403–408.

    PubMed  Google Scholar 

  • Ohwaki, K., and R. E. Hungate. 1977. Hydrogen utilization by clostridia in sewage sludge. Appl. Environ. Microbiol. 33:1270–1274.

    PubMed  CAS  Google Scholar 

  • Ollivier, B. M., R. A. Man, T. J. Ferguson, D. R. Boone, J. L. Garcia, and R. Robinson. 1985. Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35:425–428.

    CAS  Google Scholar 

  • Ollivier, B., R. Cordruwisch, A. Lombardo, and J.-L. Garcia. 1985. Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol. 142:307–310.

    CAS  Google Scholar 

  • Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol. Lett. 94:69–74.

    CAS  Google Scholar 

  • Parekh, S. R., and M. Cheryan. 1991. Production of acetate by mutant strains of Clostridium thermoaceticum. Appl. Microbiol. Biotechnol. 36:384–387.

    CAS  Google Scholar 

  • Park, E. Y., J. E. Clark, D. V. DerVartanian, and L. G. Ljungdahl. 1991. 5, 10-Methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In: Chemistry and Biochemistry of Flavoenzymes, F. Müller (ed.), Vol. 1, pp. 389–400. CRC Press, Boca Raton

    Google Scholar 

  • Patel, B. K. C., C. Monk, H. Littleworth, H. W. Morgan, and R. M. Daniel. 1987. Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123–126.

    CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984a. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc. Nad. Acad. Sci. USA 81: 6261–6265.

    CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984b. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch. Microbiol. 137:63–69.

    PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1986. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J. Biol. Chem. 261:1609–1615.

    PubMed  CAS  Google Scholar 

  • Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1964. Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann. N.Y. Acad. Sci. 112:804–806.

    PubMed  CAS  Google Scholar 

  • Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1966. The conversion of carbon dioxide to acetate: I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. J. Biol. Chem. 241:4209–4216.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein. J. Biol. Chem. 258:2364–2369.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., H. G. Wood, and W. E. Antholine. 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc. Nati. Acad. Sci. USA 82:6811–6814.

    CAS  Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.

    PubMed  CAS  Google Scholar 

  • Reeve, J. N. 1992. Molecular biology of methanogens. Annu. Rev. Microbiol. 46:165-191.

    Google Scholar 

  • Roberts, D. L., J. E. James-Hagstrom, D. K. Garvin, C. M. Gorst, J. A. Runquist, J. R. Baur, F. C. Haase, and S. W. Ragsdale. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc. Nati. Acad. Sci. USA 86:32–36.

    CAS  Google Scholar 

  • Sakami, W. 1962. Anaerobic gradient elution chromatography. Anal. Biochem. 3:358–360.

    Google Scholar 

  • Samain, E., G. Albangnac, H. C. Dubourguier, and J-P. Touzel. 1982. Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen. FEMS Microbiol. Lett. 15:69–74.

    CAS  Google Scholar 

  • Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.

    PubMed  CAS  Google Scholar 

  • Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie, Jr., and H. L. Drake. 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol. 53:1902–1906.

    PubMed  CAS  Google Scholar 

  • Schaupp, A. and L. G. Ljungdahl. 1974. Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch. Microbiol. 100:121–129.

    PubMed  CAS  Google Scholar 

  • Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle. Arch. Microbiol. 145:162–172.

    CAS  Google Scholar 

  • Schink, B. 1984. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch. Microbiol. 137:250–255.

    CAS  Google Scholar 

  • Schink, B., and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.), pp. 1925–1936. Springer-Verlag, New York.

    Google Scholar 

  • Schopf, J. W., J. M. Hayes, and M. R. Walter. 1983. Evolution of the earth’s earliest ecosystems: recent progress and unsolved problems. In: Earth’s Earliest Biosphere, J. W. Schöpf (ed.), pp. 361–384. Princeton University Press, Princeton

    Google Scholar 

  • Schramm, E., and B. Schink. 1991. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79.

    PubMed  CAS  Google Scholar 

  • Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248:6255–6261.

    PubMed  CAS  Google Scholar 

  • Schuppert, B., and B. Schink. 1990. Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch. Microbiol. 153:200–204.

    CAS  Google Scholar 

  • Schwartz, R. D., and F. A. Keller, Jr. 1982. Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Appl. Environ. Microbiol. 43:117–123.

    PubMed  CAS  Google Scholar 

  • Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.

    PubMed  CAS  Google Scholar 

  • Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbiol Ecology, M. J. Klug, and C. A. Reddy (eds), pp. 468–477. American Society of Microbiology, Washington, D

    Google Scholar 

  • Sembiring, T., and J. Winter. 1989. Anaerobic degradation of o-phenylphenol by mixed and pure cultures. Appl. Microbiol. Biotech. 31:89–92.

    CAS  Google Scholar 

  • Sembiring, T., and J. Winter. 1990. Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl. Microbiol. Biotechnol. 33:233–238.

    CAS  Google Scholar 

  • Sharak-Genthner, B.R., C. L. Davies, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.

    Google Scholar 

  • Shin, W., and P. A. Lindahl. 1992a. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31:12870–12875.

    PubMed  CAS  Google Scholar 

  • Shin, W., and P. A. Lindahl. 1992b. Discovery of a labile nickel ion required for Co/ acetyl-CoA exchange activity in the NiFe complex of carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 114:9718–9719.

    CAS  Google Scholar 

  • Shin, W., and P. A. Lindahl. 1993. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification. Biochim. Biophys. Acta 1161:317–322.

    PubMed  CAS  Google Scholar 

  • Shin, W., P. R. Stafford, and P. A. Lindahl. 1992. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31:6003–6011.

    PubMed  CAS  Google Scholar 

  • Shin, W., M. E. Anderson, and P. A. Lindahl. 1993. Heterogenous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 115:5522–5526.

    CAS  Google Scholar 

  • Sleat, R., R. A. Man, and R. Robinson. 1985. Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int. J. Syst. Bacteriol. 35:10–15.

    Google Scholar 

  • Smith, M. R., and R. A. Man. 1981. 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6:321–326.

    CAS  Google Scholar 

  • Stupperich, E., and R. Konle. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata. Appl. Environ. Microbiol. 59:3110–3116.

    PubMed  CAS  Google Scholar 

  • Sugaya, K., D. Tusé, and J. L. Jones. 1986. Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations. Biotechnol. Bioengineer. 28:678–683.

    CAS  Google Scholar 

  • Tanaka, K., and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187.

    CAS  Google Scholar 

  • Tanner, R. S., E. Stakebrandt, G. E. Fox, and C. R. Woese. 1981. A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr. Microbiol. 5:35–38.

    Google Scholar 

  • Tanner, R. S., and D. Yang. 1990. Clostridium Ijungdahlii PETC sp. nov., a new, acetogenic, gram-positive, anaerobic bacterium. Abstr. R-21, p. 249. Abstr. Ann. Meet. Am. Soc. Microbiol., 1990.

    Google Scholar 

  • Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K. 1988. Citric acid cycle, 50 years on: modification and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176:497–508.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., G. Fuchs, B. Käufer, and U. Schnitker. 1974. Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur. J. Biochem. 45:343–349.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.

    PubMed  CAS  Google Scholar 

  • Traunecker, J., A. Preuß, and G. Diekert. 1991. Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421.

    CAS  Google Scholar 

  • Tschech, A., and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167.

    CAS  Google Scholar 

  • Varma, A. K., and H. D. Peck, Jr. 1983. Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria. FEMS Microbiol. Lett. 16:281–285.

    CAS  Google Scholar 

  • Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54:561–565.

    PubMed  CAS  Google Scholar 

  • Wang, G., and D. I. C. Wang. 1983. Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Appl. Biochem. Biotechnol. 8:491–503.

    PubMed  CAS  Google Scholar 

  • Wang, G., and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294–29

    PubMed  CAS  Google Scholar 

  • Whitman, W. B. 1985. Methanogenic bacteria. In: C. R. Woese and R. S. Wolfe (eds.) The Bacteria, Vol. VIII, pp. 3–84. Academic Press, San Diego, CA.

    Google Scholar 

  • Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. In: A. Balows, H. G. Triiper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.). The Prokaryotes, 2nd ed., pp. 719–767, Springer-Verlag, New York.

    Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260.

    CAS  Google Scholar 

  • Wiegel, J., L. H. Carreira, R. J. Garrison, N. E. Robek, and L. G. Ljungdahl. 1990. Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria. In: Calcium Magnesium Acetate, D. L. Wise, Y. Levendis, and M. Metghalchi (eds.), pp. 359–416. Elsevier, Amsterdam.

    Google Scholar 

  • Wieringa, K. T. (1936). Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek 3:263–273.

    Google Scholar 

  • Wieringa, K. T. 1939-1940. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek J. Microbiol. Seriol 6:251–262.

    Google Scholar 

  • Wieringa, K. T. 1941. Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen. Brennstoff-Chemie 22:161–164.

    CAS  Google Scholar 

  • Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.

    PubMed  CAS  Google Scholar 

  • Wohlfahrt, G., and G. Diekert. 1991. Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch. Microbiol. 155:378–381.

    Google Scholar 

  • Wood, H. G., and C. H. Werkman. 1936. Mechanism of glucose dissimilation by the propionic acid bacteria. Biochem. J. 30:618–623.

    PubMed  CAS  Google Scholar 

  • Wood, G. H., and C. H. Werkman. 1938. The utilization of CO2 by the propionic acid bacteria. Biochem. J. 32:1262–1271.

    PubMed  CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941a. Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J. Biol. Chem. 139:365–376.

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941b. The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria. J. Biol. Chem. 139:377–381.

    CAS  Google Scholar 

  • Wood, H. G. 1952a. A study of carbon dioxide fixation by mass determination on the types of C13-acetate. J. Biol. Chem. 194:905–931.

    PubMed  CAS  Google Scholar 

  • Wood, H. G. 1952b. Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J. Biol. Chem. 199:579–583.

    PubMed  CAS  Google Scholar 

  • Wood, H. G. 1972. My life and carbon dioxide fixation. In: The Molecular Basis of Biological Transport, Miami Winter Symposium Vol. 3, J. F. Woessner, Jr., and F. Huijing (eds.), pp. 1–54. Academic Press, New York.

    Google Scholar 

  • Wood, H. G. 1976. Trailing the propionic acid bacteria. In: Reflections on Biochemistry, A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro (eds.), pp. 105–115. Permagon Press, Oxfo

    Google Scholar 

  • Wood, H. G. 1982. The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria. In: Of Oxygen, Fuels, and Living Matter, Part 2, G. Semenza (ed.), pp. 173–250, John Wiley and Sons, New York.

    Google Scholar 

  • Wood, H. G. 1985. Then and now. Annu. Rev. Biochem. 54:1–41.

    PubMed  CAS  Google Scholar 

  • Wood, H. G. 1989. Past and present of CO2 utilization. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 33–52. Science Tech. Madison and Springer-Verlag, Berlin.

    Google Scholar 

  • Wood, H. G. 1991. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5:156–163.

    PubMed  CAS  Google Scholar 

  • Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, J. M. Shively, and L. L. Barton (eds.), pp. 201–250. Academic Press, San Diego, CA.

    Google Scholar 

  • Worden, R. M., A. J. Grethlein, J. G. Zeikus, and R. Datta. 1989. Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl. Biochem. Biotechnol. 20/21:687–698.

    Google Scholar 

  • Wu, Z., S. L. Daniel, and H. L. Drake. 1988. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J. Bacteriol. 170:5747–5750.

    PubMed  CAS  Google Scholar 

  • Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258:1826–1832.

    PubMed  CAS  Google Scholar 

  • Yang, H., and H. L. Drake. 1990. Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81–86.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and K. Wuhrmann. 1976. Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124:1–11.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., L. H. Lynd, T. E. Thompson, J. A. Krzycki, P. J. Weimer, and P. W. Hegge. 1980. Isolation and characterization of a new methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3:381–386.

    CAS  Google Scholar 

  • Zeikus, J. G. 1983. Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv. Microbial. Physiol. 24:215–299.

    CAS  Google Scholar 

  • Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173.

    PubMed  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Drake, H.L. (1994). Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics