Skip to main content

Rational Design of Stable Lyophilized Protein Formulations: Theory and Practice

  • Chapter
Rational Design of Stable Protein Formulations

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 13))

Abstract

For ease of preparation and cost containment by the manufacturer, and ease of handling by the end user, an aqueous therapeutic protein formulation usually is preferred. However, with many proteins it is not possible—especially considering the time constraints for product development—to develop sufficiently stable aqueous formulations. Unacceptable denaturation and aggregation can be induced readily by the numerous stresses to which a protein in aqueous solution is sensitive; e.g., heating, agitation, freezing, pH changes, and exposure to interfaces or dénaturants (Arakawa et al., 1993; Cleland et al., 1993; Brange, 2000; Bummer and Koppenol, 2000). Furthermore, even under conditions that thermodynamically greatly favor the native state of proteins, aggregation can arise during months of storage in aqueous solution (e.g., Gu et al., 1991; Arakawa et al., 1993; Chen et al., 1994; Chen et al., 1994; Chang et al., 1996a). In addition, several chemical degradation pathways (e.g., hydrolysis and deamidation) are mediated by water. In aqueous formulations, the rates of these and other (e.g., oxidation) chemical degradation reactions can be unacceptably rapid on the time scale of storage (e.g., 18–24 months) for pharmaceutical products (Manning et al., 1989; Cleland et al., 1993; Goolcharran et al., 2000; Bummer and Koppenol, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahern, T.J., and Manning, M.C., 1992. Stability of Protein Pharmaceuticals: Part. A. Chemical and Physical Pathways of Protein Degradation, Plenum Press, New York.

    Google Scholar 

  • Allison, S.D., Dong, A., and Carpenter, J.F., 1996. Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying and rehydration. Biophys. J. 71:2022.

    Article  PubMed  CAS  Google Scholar 

  • Allison, S.D., Randolph, T.W., Davis, A., Middleton, K., and Carpenter, J.P., 1998. Effects of drying methods and additives on structure and function of actin: Mechanisms of dehydration-induced damage and its inhibition. Arch. Biochem. Biophys. 358:171.

    Article  PubMed  CAS  Google Scholar 

  • Allison, S.D., Randolph, T.W., Chang, B.S., and Carpenter, J.F., 1999. Hydrogen bonding between sugar and protein is responsible for inhibiting dehydration-induced protein unfolding. Arch. Biochem. Biophys. 365:289.

    Article  PubMed  CAS  Google Scholar 

  • Allison, S.D., Manning, M.C., Randolph, T.W., Middleton, K., Davis, A., and Carpenter, J.F., 2000. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran. J. Pharm. Sci. 89:199.

    Article  PubMed  CAS  Google Scholar 

  • Anchordoguy, T.J., and Carpenter, J.F., 1996. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch. Biochem. Biophys. 332:231.

    Article  Google Scholar 

  • Anchordoquy, T.J., Izutsu, K.I., Randolph, T.W., and Carpenter, 2001. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch. Biochem. Biophys. (In Press).

    Google Scholar 

  • Angell, C.A., 1995. Formation of glasses from liquids and biopolymers. Science 267:1924.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa, T., Prestrelski, S., Kinney, W., and Carpenter, J.F., 1993. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Delivery Rev. 10:1.

    Article  CAS  Google Scholar 

  • Bell, J.A., 1999. X-ray crystal structures of a severely desiccated protein. Prot. Sci. 8:2033.

    Article  CAS  Google Scholar 

  • Bummer, P.M., and Koppenol, S., 2000. Chemical and physical considerations in protein and peptide stability, in: Protein Formulation and Delivery, E.J. McNally, ed., Marcel Dekker, New York.

    Google Scholar 

  • Brange, J., 2000. Physical stability of proteins, in: Pharmaceutical Formulation Development of Peptides and Proteins, S. Frokjaer and L. Hovgaard, eds., Taylor and Francis, London.

    Google Scholar 

  • Cappola, M.L., 2000. Freeze-drying concepts: The basics, in: Protein Formulation and Delivery, E.J. McNally, ed., Marcel Dekker, New York.

    Google Scholar 

  • Carpenter, J.F., and Chang, B.S., 1996. Lyophilization of protein pharmaceuticals, in: Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation, K.E. Avis and V.L. Wu, eds., Interpharm Press, Buffalo Grove, IL.

    Google Scholar 

  • Carpenter, J.F., Izutsu, K., and Randolph, T.W., 1999. Freezing- and drying-induced structural changes in proteins and their inhibition by stabilizing additives. Pharmaceutical Freeze-Drying, L. Rey and J.C. May, eds., Marcel Dekker, New York.

    Google Scholar 

  • Carpenter, J.F., Pikal, M.J., Chang, B.S., and Randolph, T.W., 1997. Rational design of stable lyophilized protein formulations: Some practical advice. Pharm. Res. 14:969–975

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., Prestrelski, S., and Arakawa, T., 1993. Separation of freezing- and drying-induced denaturation of lyophilized proteins by stress-specific stabilization: I. Enzyme activity and calorimetrie studies. Arch. Biochem. Biophys. 303:456.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., Prestrelski, S.J., and Dong, A., 1998. Application of infrared spectroscopy to development of stable lyophilized protein formulations. Eur. J. Pharm. Biopharm. 45:231.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., and Crowe, J.H., 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., and Crowe, 1989. Infrared spectroscopic studies on the interaction of carbohydrates with dried proteins. Biochemistry 28:3916.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., and Randall, C.S., 1992. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29:632.

    Article  CAS  Google Scholar 

  • Chang, B.S., and Fisher, N.L., 1995. Development of an efficient single-step freeze-drying cycle for protein formulations. Pharm. Res. 12:831.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., Beauvais, R.M., Arakawa, T., Narhi, L.O., Dong, A., Aparisio, D.I., and Carpenter, J.F., 1996a. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. Biophys. J. 71:3399.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., Beauvais, R.M., and Carpenter, J.F., 1996b. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: Glass transition and protein conformation. Arch. Biochem. Biophys. 331:249.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., Kendrick, B.S., and Carpenter, J.F., 1996c. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J. Pharm. Sci. 85:1325.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., Kendrick, B.S., Carpenter, J.F. 1996c. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J. Pharm. Sci. 85:1325.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B-L., Arakawa, T., Hsu, L., Narhi, L., Tressel, T.J., and Chen, S.L., 1994. Strategies to suppress aggregation of recombinant keratinocyte growth factor during liquid formulation development. J. Pharm. Sci. 83:1657.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Costantino, H.R., Liu, J., Hsu, C.C., and Shire, S.J., 1999. Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized states. J. Pharm. Sci. 88:477.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J.L., Powell, M.F., and Shire, S.J., 1993. The development of stable protein formulations—A close look at protein aggregation, deamidation and oxidation. Crit. Rev. Ther. Drug 11:60.

    Google Scholar 

  • Cleland, J.L., Lam, X., Kendrick, B.S., Yang, J., Yang, T-Z., Overcashier, D., Brooks, D., Hsu, C., and Carpenter, J.F., 2001. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J. Pharm. Sci. 90:310.

    Article  PubMed  CAS  Google Scholar 

  • Carrasquillo, K.G., Sanchez, C., Griebenow, K., 2000. Relationship between conformational stability and lyophilization-induced structural changes in chymotrypsin. Biotechnol. Appi. Biochem. 31:41.

    Article  CAS  Google Scholar 

  • Costantino, H.R., Curley, J.G., Wu, S., and Hsu, C.C., 1997. Water sorption behavior of lyophilized protein-sugar systems and implications for solid-state interactions. Int. J. Pharm. 166:211.

    Article  Google Scholar 

  • Costantino, H.R., Griebenow, K., Mishra, P., Langer, R., and Klibanov, A.M., 1995. Fourier-transform infrared spectroscopic investigation of protein stability in the lyophilized form. Biochim. Biophys. Acta 1253:69.

    Article  PubMed  Google Scholar 

  • Costantino, H.R., Carrasquillo, K.G., Cordero, R.A., Mumenthaler, M., Hsu, C.C., and Griebenow, K., 1998. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J. Pharm. Sci. 87:1412.

    Article  PubMed  CAS  Google Scholar 

  • Craig, D.Q., Royall, P.G., 1998. The use of modulated temperature DSC for the study of pharmaceutical systems: potential uses and limitations. Pharm. Res. 15:1152.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Carpenter, J.F., and Crowe, L.M., 1998. The role of vitrification in anhydro-biosis. Annu. Rev. Physiol. 60:73.

    Article  PubMed  CAS  Google Scholar 

  • DeGrazio, F., Flynn, K., 1992. Lyophilization closures for protein based drugs. J. Parenter. Sci. Technol. 46:54.

    PubMed  CAS  Google Scholar 

  • Dong, A., Prestrelski, S.J., Allison, S.D., and Carpenter, J.F., 1995. Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J. Pharm. Sci. 84:415.

    Article  PubMed  CAS  Google Scholar 

  • Duddu, S.P., and Dal Monte, P.R., 1997. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm. Res. 14:591.

    Article  PubMed  CAS  Google Scholar 

  • Duddu, S.P., Zhang, G., Dal Monte, P.R., 1997. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14:596.

    Article  PubMed  CAS  Google Scholar 

  • Farhat, I.A., Orset, S., Moreau, P., Blanchard, J.M.V., 1998. FTIR study of hydration phenomena in protein-sugar systems. J. Coll. Interface Sci. 207:200.

    Article  CAS  Google Scholar 

  • Franks, F., 1990. Freeze-drying: From empiricism to predictability. Cryo-Letters 11:93.

    Google Scholar 

  • Franks, F., Hatley, R.H.M., and Mathias, S.P., 1991. Material science and the production of shelf stable biologicals. BioPharm 4(9):38.

    CAS  Google Scholar 

  • Gatlin, L.A., and Nail, S.L., 1994. Protein purification process engineering. Freeze-drying: A practical overview. Bioprocess Technol. 18:317.

    PubMed  CAS  Google Scholar 

  • Goolcharran, C., Khossravi, M., and Borchardt, R.T., 2000. Chemical pathways of protein and peptide degradation, in: Pharmaceutical Formulation Development of Peptides and Proteins, S. Frokjaer and L. Hovgaard, eds., Taylor and Francis, London.

    Google Scholar 

  • Griebenow, K., and Klibanov, A.M., 1995. Lyophilization-induced reversible changes in the secondary structure of proteins. Proc. Natl. Acad. Sci. USA 92:10969.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L.D., Erds, E.A., Chiang, H.-S., Calderwood, T., Tsai, K., Visor, G.C., Duffy, J., Hsu, W.C., and Foster, L.C., 1991. Stability of interleukin-1 beta (IL-1 beta) in aqueous solution: analytical methods, kinetics, products, and solution formulation implications. Pharm. Res. 8:485.

    Article  PubMed  CAS  Google Scholar 

  • Hageman, M., 1992. Water sorption and solid state stability of proteins, in: Stability of Protein Pharmaceuticals. Part A. Chemical and Physical Pathways of Protein Degradation, T. Ahern and M.C. Manning, eds., Plenum Press, New York.

    Google Scholar 

  • Hancock, B.C., Shamblin, S.L., and Zografi, G., 1995. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperature. Pharm. Res. 12:799.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M.C., Carpenter, J.F., and Randolph, T.W., 1996. Effects of phase separating systems on lyophilized hemoglobin. J. Pharm. Sci. 85:1358.

    Article  PubMed  CAS  Google Scholar 

  • Her, L.M., Jefferis, R.P., Gatlin, L.A., Braxton, B., and Nail, S.L., 1994. Measurement of glass transition temperatures in freeze concentrated solutions of non-electrolytes by electrical thermal analysis. Pharm. Res. 11:1023.

    Article  PubMed  CAS  Google Scholar 

  • Her, L.M., and Nail, S.L., 1994. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm. Res. 11:54.

    Article  PubMed  CAS  Google Scholar 

  • Her, L.M., Deras, M., and Nail, S.L., 1995. Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes. Pharm. Res. 12:768.

    Article  PubMed  CAS  Google Scholar 

  • Hora, M.S., and Wolfe, S.N., 1999. Critical steps in the preparation of elastomeric closures for biopharmaceutical freeze-dried products, in: Freeze-Drying/Lyophilization of Pharmaceuticals and Biological Products, L. Rey and J.C. May, eds., Marceli Dekker, New York.

    Google Scholar 

  • Izutsu, K., Yoshioka, S., Kojima, S., Randolph, T.W., and Carpenter, J.F., 1996. Effects of sugars and polymers on crystallization of poly (ethylene glycol) in frozen solutions: Phase separation between incompatible polymers. Pharm. Res. 13:1393.

    Article  PubMed  CAS  Google Scholar 

  • Izutsu, K., Yoshioka, S., and Teroa, T., 1993. Decreased protein-stabilizing effects of cry-oprotectants due to crystallization. Pharm. Res. 10:1232.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Chang, B.S., Arakawa, T., Peterson, B., Randolph, T.W., Manning, M.C., and Carpenter, J.F., 1997. Preferential exclusion of sucrose from recombinant inter-leukin-1 receptor antagonist: Role in restricted conformational mobility and compaction of native state. Proc. Nat. Acad. Sci. 94:11917.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Carpenter, J.F., Cleland, J.L., and Randolph, T.W., 1998. A transient expansion of the native state precedes aggregation of recombinant human interferon-gamma. Proc. Nat. Acad. Sci. 95:14142.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y., Wall, J.S., Meyer, J., Murphy, C., Randolph, T.W., Manning, M.C., Solomon, A., and Carpenter, J.F., 2000. Thermodynamic modulation of light chain amyloid fibril formation. J. Biol. Chem. 275:1570.

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard, L., Frokjaer, S., Flink, J.M., Randolph, T.W., and Carpenter, J.F., 1998a. Effects of additives on the stability of recombinant human Factor XIII during freeze-drying and storage in the dried solid. Arch. Biochem. Biophys. 360:121.

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard, L., Jones, L., Randolph, T.W., Frokjaer, S., Flink, J., Manning, M.C., and Carpenter, J.F., 1998b. Effects of Tween 20 on agitation- and freeze-thawing-induced aggregation of recombinant Factor XIII. J Pharm. Sci. 87:1597.

    PubMed  CAS  Google Scholar 

  • Kreilgaard, L., Frokjaer, S., Flink, J.M., Randolph, T.W., and Carpenter, J.F., 1999. Effects of additives on the stability of Humicola lanuginosa lipase during freeze-drying and storage in the dried solid. J. Pharm. Sci. 88:281.

    Article  PubMed  CAS  Google Scholar 

  • Lam, X.M., Costantino, H.R., Overcashier, D.E., Nguyen, TH., and Hsu, C.C., 1996. Replacing succinate with glycolate buffer improves the stability of lyophilized inter-feron-gamma. Int. J. Pharm. 142:85.

    Article  CAS  Google Scholar 

  • Levine, H., and Slade, L., 1988. Thermomechanical properties of small-carbohydrate-water glasses and “rubbers”: Kinetically metastable systems at subzero temperatures. J. Chem. Soc. Faraday Trans. 1(84):2619.

    Google Scholar 

  • Levine, H., and Slade, L., 1992. Glass transitions in foods, in: Physical Chemistry of Foods, H.S. Shartxberg and R.W. Hartel, eds., Marcel Dekker, New York.

    Google Scholar 

  • Li, S., Patapoff, T.W., Overcashier, D., Hsu, C., Nguyen, T.H., and Borchardt, R.T., 1996. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J. Pharm. Sci. 85:873.

    Article  PubMed  CAS  Google Scholar 

  • Lueckel, B., Helk, B., Bodmer, D., and Leuenberger, H., 1998. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage. Pharm. Dev. Technol. 3:337.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M.C., Patel, K., and Borchardt, R.T., 1989. Stability of protein pharmaceuticals. Pharm. Res. 6:903.

    Article  PubMed  CAS  Google Scholar 

  • Nail, S.L., and Gatlin, L.A., 1993. Freeze-drying: Principles and practice, in: Pharmaceutical Dosage Forms: Parenteral Medications, K.E. Avis, H.A. Lieberman and L. Lachman, eds., Marcel Dekker, New York.

    Google Scholar 

  • Nail, S.L., Her, L.M., Proffitt, C.P., and Nail L.L., 1994. An improved microscope stage for direct observation of freezing and freeze drying. Pharm. Res. 11:1098.

    Article  PubMed  CAS  Google Scholar 

  • Neet, K.E., and Timm, D.E., 1994. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Prot. Sci. 3:2167.

    Article  CAS  Google Scholar 

  • Page C., Dawson, P., Woollacott, D., Thorpe, R., Mire-Sluis, 2000. Development of a lyophilization formulation that preserves the biological activity of the platelet-inducing cytokine interleukin-11 at low concentrations. J. Pharm. Pharmacol. 52:19.

    Article  PubMed  CAS  Google Scholar 

  • Pikal, M.J., 1990. Freeze-drying of proteins. Part I: Process design. BioPharm 3(8): 18.

    CAS  Google Scholar 

  • Pikal, M.J., 1994. Freeze-drying of proteins, in: Formulation and Delivery of Proteins and Peptides, J.L. Cleland and R. Langer, eds., Symposium Series 567, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Pikal, M.J., 1999. Mechanisms of protein stabilization during freeze-drying and storage: The relative importance of thermodynamic stabilization and glassy state relaxation dynamics, in: Freeze-Drying/Lyophilization of Pharmaceuticals and Biological Products, L. Rey and J.C. May, eds., Marceli Dekker, New York.

    Google Scholar 

  • Pikal, M.J., and Shah, S., 1992. Moisture transfer from stopper to product and resulting stability implications. Dev. Biol. Standard. 74:165.

    CAS  Google Scholar 

  • Pikal, M.J., Shah, S., Roy, M.L., and Putman, R., 1990. The secondary drying stage of freeze-drying: Drying kinetics as a function of temperature and chamber pressure. Int. J. Pharm. 60:203.

    Article  CAS  Google Scholar 

  • Prestrelski, S.J., Tedeschi, N., Arakawa, T., and Carpenter, J.F., 1993a. Dehydration-induced conformational changes in proteins and their inhibition by stabilizers. Biophys. J. 65:661.

    Article  PubMed  CAS  Google Scholar 

  • Prestrelski, S.J., Arakawa, T., and Carpenter, J.F., 1993b. Separation of freezing- and drying-induced denaturation of lyophilized proteins by stress-specific stabilization: II. Structural studies using infrared spectroscopy. Arch. Biochem. Biophys. 303:465.

    Article  PubMed  CAS  Google Scholar 

  • Prestrelski, S.J., Pikal, K.A., and Arakawa, T., 1995. Optimization of lyophilization conditions for recombinant interleukin-2 by dried state conformational analysis using Fourier transform infrared spectroscopy. Pharm. Res. 12:1250.

    Article  PubMed  CAS  Google Scholar 

  • Remmele, R.L. Jr., Stushnoff, C., and Carpenter, J.F., 1997. Real-time in situ monitoring of lysozyme during lyophilization using infrared spectroscopy: dehydration stress in the presence of sucrose. Pharm. Res. 14:1548.

    Article  PubMed  CAS  Google Scholar 

  • Rey, L., and May, J.C., 1999. Freeze-drying/Lyophilization of Pharmaceuticals and Biological Products, Marcel Dekker, New York.

    Google Scholar 

  • Roy, M.L., Pikal, M.J., Rickard, E.C., and Maloney, A.M., 1991. The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: A test of the WLF glass transition theory. Dev. Biol. Standard. 74:323.

    Google Scholar 

  • Shalaev, E.Y., and Franks, F., 1995. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. J. Chem. Soc. Faraday Trans. 91:1511.

    Article  CAS  Google Scholar 

  • Shalaev, E.Y., Lu, Q., Shalaeva, M., and Zografi, G., 2000. Acid-catalyzed inversion of sucrose in the amorphous state at very low levels of residual water. Pharm. Res. 17:366.

    Article  PubMed  CAS  Google Scholar 

  • Skrabanja, A.T.P., de Meere, A.L.J., de Ruiter Rien, and van der Oetelaar, P.J.M., 1994. Lyophilization of iotechnology products. PDA J. Pharm. Sci. Technol. 48:311.

    PubMed  CAS  Google Scholar 

  • Strambini, G.B., and Gabellieri, E., 1996. Proteins in frozen solutions: Evidence of ice-induced partial unfolding. Biophys. J. 70:971.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Imamura, K., Fujimoto, H., and Okazaki, M., 1998. Relationship between hermal stabilizing effect of sucrose on LDH and sucrose-LDH hydrogen bond. J. Chem. Eng. Japan 31:565.

    Article  CAS  Google Scholar 

  • Suzuki, T., Imamura, K., Fujimoto, H., and Okazaki, M., 1999. Role of sucrose-LDH hydrogen bond for thermal stabilizing effect of sucrose on freeze-dried LDH. Drying Technol. 17:1429.

    Article  CAS  Google Scholar 

  • Tanaka, T., Takeda, T., and Miyajama, R., 1991. Cryoprotective effect of saccharides on denaturation of catalase during freeze-drying. Chem. Pharm. Bull. 39:1091.

    Article  CAS  Google Scholar 

  • Timasheff, S.N., 1998. Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Adv. Prot. Chem. 51:355.

    Article  CAS  Google Scholar 

  • Tzannis, S.T., and Prestrelski, S.J., 1999. Moisture effects on protein-excipient interactions in spray-dried powders. Nature of destabilizing effects of sucrose. J. Pharm. Sci. 88:360.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, L., 1959. The effect of addition of sodium and potassium chloride to the reciprocal system: KH2-PO4-Na2HPO4-H2O on pH and composition during freezing, Arch. Biochem. Biophys. 84:305–315.

    Article  Google Scholar 

  • van den Berg, L., and Rose, D., 1959. The effect of freezing on the pH and composition of sodium and potassium solutions: The reciprocal system KH2-PO4-Na2HPO4-H2O. Arch. Biochem. Biophys. 81:319.

    Article  PubMed  CAS  Google Scholar 

  • Verdonck, E., Schaap, K., and Thomas, L.C., 1999. A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int. J. Pharm. 192:3.

    Article  PubMed  CAS  Google Scholar 

  • Volkin, D.B., and Middaugh, C.R., 1996. The characterization, stabilization, and formulation of acidic fibroblast growth factor. Pharm. Biotechnol. 9:181.

    Article  PubMed  CAS  Google Scholar 

  • Wolkers, W.F., van Kilsdonk, M.G., and Hoekstra, F.A., 1998. Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim. Biophys. Acta 1425:127.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., Kojima, S., and Tanimoto, T., 2000. Effect of polymer excipients on the enzyme activity of lyophilized bilirubin oxidase and beta-galactosidase formulations. Chem. Pharm. Bull. 48:283.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., and Kojima, S., 1999. The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature. Pharm. Res. 16:135.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M.Z., Wen, J., Arakawa, T., and Prestrelski S.J., 1995. A new strategy for enhancing the stability of lyophilized protein: The effect of reconstitution medium on keratinocyte growth factor. Pharm. Res. 12:1447.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M.Z., Pikal, K., Nguyen, T., Arakawa, T., and Prestrelski, S.J., 1996. The effect of the reconstitution medium on aggregation of lyophilized recombinant interleukin-2 and ribonuclease A. Pharm. Res. 13:643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carpenter, J.F., Chang, B.S., Garzon-Rodriguez, W., Randolph, T.W. (2002). Rational Design of Stable Lyophilized Protein Formulations: Theory and Practice. In: Carpenter, J.F., Manning, M.C. (eds) Rational Design of Stable Protein Formulations. Pharmaceutical Biotechnology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0557-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0557-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5131-3

  • Online ISBN: 978-1-4615-0557-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics