Skip to main content

Deforming Galois Representations

  • Conference paper
Galois Groups over ℚ

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 16))

Abstract

Given a continuous homomorphism

$${G_{Q,S}}G{L_2}\left( {{Z_p}} \right)$$

where Gℚ,S is the Galois group of the maximal algebraic extension of ℚ unramified outside the finite set S of primes of ℚ, the motivating problem of this paper is to study, in a systematic way, the possible liftings of ρ̄ to p-adic representations,

$${G_{Q,S}}\mathop \to \limits^{{\rho _o}} G{L_2}\left( {{Z_p}} \right).$$

.

for A. Mazur

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Artin, “Theory of Algebraic Numbers,” notes by G. Würges from lectures at the Mathematisches Institut, Göttingen, translated and distributed by G. Striker, Göttingen, 1959.

    Google Scholar 

  2. N. Boston, N., “Deformation Theory of Galois Representations,” Harvard Ph.D. Thesis, 1987.

    Google Scholar 

  3. B-M] N. Boston, and B. Mazur, Explicit universal deformations of Galois representations,, (to appear).

    Google Scholar 

  4. E. Cline, B. Parshall and L. Scott, Cohomology of finite groups of Lie type I, Publ. Math. IHES 45 (1975), 169–191.

    MathSciNet  MATH  Google Scholar 

  5. C. Curtis and I. Reiner, “Representation Theory of Finite Groups and Associated Algebras,” Interscience, New York-London, 1962.

    Google Scholar 

  6. P. Deligne, Formes modulaires et représentations de GL(2), Lecture Notes in Math. 349 (1973), 55–105, Springer-Verlag.

    Article  MathSciNet  Google Scholar 

  7. P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Annales scientifiques de l’E.N.S. 7 (1974), 507–530.

    MathSciNet  MATH  Google Scholar 

  8. W. Feit, As and A 7 are Galois groups over number fields, J. Alg. 104 (1986), 231–260.

    Article  MathSciNet  MATH  Google Scholar 

  9. G-M] W. Goldman and J. Millson, The deformation theory of representations of fundamental groups of compact Kahler manifolds.

    Google Scholar 

  10. F. Gouvêa, “Arithmetic of p-adic Modular Forms,” Harvard Ph.D. Thesis, 1987; Lecture Notes in Mathematics 1304 (1988), Springer.

    MATH  Google Scholar 

  11. K. Haberland, “Galois Cohomology of Algebraic Number Fields,” VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

    Google Scholar 

  12. E. Hecke, Zur Theorie der elliptischen Modulfunktionen, in “Mathematische Werke,” (no. 23), Vandenhoeck & Ruprecht, Göttingen, 1970, pp. 428–453.

    Google Scholar 

  13. H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ed. Norm. Sup. 19 (1986), 231–273.

    MathSciNet  MATH  Google Scholar 

  14. N. Katz and S. Lang, Finiteness theorems in geometric classfield theory, L’Enseignement mathématique XXVII (1981), 285–319.

    MathSciNet  Google Scholar 

  15. S. LaMacchia, Polynomials with Galois group PSL(2,7), Comm. Alg. 8 (1980), 983–992.

    Article  Google Scholar 

  16. A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the A.M.S. 58 (1985), 336.

    MathSciNet  Google Scholar 

  17. B. Mazur and A. Wiles, Onpadic analytic families of Galois representations, Comp. Math. 59 (1986), 231–264.

    MathSciNet  MATH  Google Scholar 

  18. W. Narkiewicz, “Elementary and Analytic Theory of Algebraic Numbers,” PWN — Polish Scientific Publishers, Warsaw, 1974.

    Google Scholar 

  19. M. Schlessinger, Functors on Artin rings, Trans. A.M.S. 130 (1968), 208–222.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Sen, Continuous cohomology and p-adic Galois representations, Inv. Math. 62 (1981), 89–116.

    Article  Google Scholar 

  21. Sen 2] S. Sen, The analytic variation of p-adic Hodge structure, to appear in Annals of Math.

    Google Scholar 

  22. Serre 1] J.-P. Serre, Abelian t-adic Representations and Elliptic Curves, Benjamin, New York.

    Google Scholar 

  23. J.-P. Serre, Modular forms of weight one and Galois representations, in “Algebraic Number Fields,” edited by A. Fröhlich, Acad. Press, 1977, pp. 193–268.

    Google Scholar 

  24. G. Shimura, “Introduction to the Arithmetic Theory of Automorphic Functions,” Princeton Univ. Press, 1971.

    Google Scholar 

  25. ZM] A. Zeh-Marschke, SL2(7) als Galoisgruppe über Q, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Mazur, B. (1989). Deforming Galois Representations. In: Ihara, Y., Ribet, K., Serre, JP. (eds) Galois Groups over ℚ. Mathematical Sciences Research Institute Publications, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9649-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9649-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9651-2

  • Online ISBN: 978-1-4613-9649-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics