Skip to main content

The Properties of Austenitic Stainless Steel at Cryogenic Temperatures

  • Chapter
Austenitic Steels at Low Temperatures

Abstract

The austenitic stainless steels are Fe-Cr alloys with sufficient nickel and manganese (and sometimes nitrogen) to stabilize austenite, a face-centered cubic (f.c.c.) phase. Chromium provides corrosion resistance. The most typical austenitic stainless steels are variations of the 18Cr-9Ni alloy. Although none of the commercial alloys were specifically developed for low-temperature service, several of them have been widely used in a variety of cryogenic applications. Their popularity stems from their retention of excellent mechanical properties, particularly toughness, at low temperatures coupled with ready availability, ease of fabrication, and good service experience. Their disadvantages are they are more expensive and have lower yield strength than ferritic Fe-Ni steels and aluminum alloys, and their machinability is poorer than that of aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. LNG Materials and Fluids, D. B. Mann, ed., National Bureau of Standards, Boulder, Colorado (1978).

    Google Scholar 

  2. 2. Handbook on Materials for Superconducting Machinery, MCIC-HB-04, Battelle, Columbus, Ohio (1977).

    Google Scholar 

  3. 3. Brickner, K. G. and Defilippi, J. D., Mechanical properties of stainless steels at cryogenic temperatures and at room temperature, in Handbook of Stainless Steels, McGraw-Hill, New York (1977), pp. 20-1-20-39.

    Google Scholar 

  4. 4. Materials for Cryogenic Service, Engineering properties of austenitic stainless, International Nickel Limited, London (1974).

    Google Scholar 

  5. 5. Low Temperature and Cryogenic Steels, Materials Manual, u.S. Steel Corp., Pittsburgh (1966).

    Google Scholar 

  6. 6. Nachtigall, A. J., Strain cycling fatigue behavior of ten structural metals tested in liquid helium, liquid nitrogen, and ambient air, in: Properties of Materials for Liquefied Natural Gas Tankage, ASTM STP 579, American Society for Testing and Materials, Philadelphia (1975), pp. 378-396.

    Chapter  Google Scholar 

  7. 7. Shepic, J. A. and Schwartzberg, F. R., Fatigue testing of stainless steels, in: Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—I, NBSIR 78-884, National Bureau of Standards, Boulder, Colorado (1978), pp. 15-68.

    Google Scholar 

  8. 8. Tobler, R. L. and Reed, R. P., Fatigue crack growth resistance of structural alloys at cryogenic emperatures, in: Advances in Cryogenic Engineering, Vol 24, Plenum Press, New York (1978), pp. 82-90.

    CAS  Google Scholar 

  9. 9. Ledbetter, H. M., Weston, W. F., and Naiman, E. R., Low temperature elastic properties of four austenitic stainless steels, J. Appl. Phys. 46:3855-3860 (1975).

    Google Scholar 

  10. 10. Clark, A. F., Childs, G. E., and Wallace, G. H., Electrical resistivity of some engineering alloys at low temperatures, Cryogenics 10:295-305 (1970).

    Google Scholar 

  11. 11. Efferson, K. R. and Leonard, W. J., Magnetic Properties of Some Structural Materials Used in Cryogenic Applications, ORNL-4150, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1976), p. 126.

    Google Scholar 

  12. 12. Sanderson, G. P. and Llewellyn, D. T., Mechanical properties of standard austenitic stainless steels in the temperature range -196 to +800C, J. Iron Steel Inst. London 207:1129-1146 (1969).

    Google Scholar 

  13. 13. McHenry, H. I. and Reed, R. P., Structural alloys for superconducting magnets in fusion energy systems, Nucl. Eng. Des. 58:219-236 (1980).

    Google Scholar 

  14. 14. Randak, V. A., Wessling, W., Bock, H. E., Steimaurer, H. and Faust, L., Stahl Eisen 91:1255 (1971).

    Google Scholar 

  15. 15. Read, D. T. and Reed, R. P., Toughness, fatigue crack growth and tensile properties of three nitrogen-strengthened stainless steels at cryogenic temperatures, in: The Metal Science of Stainless Steel, American Society of Metals, Metals Park, Ohio (1979), pp. 92-121.

    Google Scholar 

  16. 16. Read, D. T. and Reed, R. P., Fracture and strength properties of selected austenitic stainless steels at cryogenic temperatures, Cryogenics 21:415-417 (198l).

    Google Scholar 

  17. 17. Ledbetter, H. M., Anomalous low-temperature elastic behavior of a nitrogen-strengthened chromium-manganese stainless steel, Mater. Sci. Eng. 29:255-260 (1977).

    Google Scholar 

  18. 18. Ledbetter, H. M. and Collings, E. W., Low-temperature magnetic and elastic-constant anomalies in three manganese stainless steels, in: Metal Science of Stainless Steels, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (1979).

    Google Scholar 

  19. 19. Watson, J. F. and Christian, J. L., Low temperature properties of cold-rolled AISI types 301, 302, 304 ELC, and 310 stainless steel sheet, in: Low-Temperat~re Properties of HighStrength Aircraft and Missile Materials, ASTM STP 287, American Society for Testing and Materials, Philadelphia (1961), pp. 170-193.

    Chapter  Google Scholar 

  20. 20. Watson, J. F. and Christian, J. L., Mechanical properties of high-strength 301 stainless steel sheet at 70, -320, and -423°F in the base metal and welded joint configuration, in: Low-Temperature Properties of High Strength Aircraft and Missile Materials, ASTM STP 287, American Society for Testing and Materials, Philadelphia, (1961), pp. 136-149.

    Chapter  Google Scholar 

  21. 21. Christian, J. L., Gruner, J. D., and Girton, L. D., The effects of cold rolling on the mechanical properties of type 310 stainless steel at room and cryogenic temperatures, Trans. Am. Soc. Met. 57:199–207 (1964).

    Google Scholar 

  22. 22. Schwartzberg, F. R. and Kiefer, T. F., Properties of Cryogenically Worked Metals, NASA contractor report No. NASA-CR-134757, National Aeronautics and Space Administration, Washington, D.C. (1975).

    Google Scholar 

  23. 23. Favor, R. J., Gideon, D. N., Grover, H. J., Hayes, J. E., and McClure, G. M., Investigation of Fatigue Behavior of Certain Alloys in the Temperature Range of Room Temperature to -423°F, Report WADD TR 61–132, Battelle, Columbus, Ohio (1961).

    Google Scholar 

  24. 24. Gideon, D. N., Favor, R. J., Koppenhafer, A., Grover, H. J., and McClure, M., Investigation of Notched Fatigue Behavior of Certain Alloys in the Temperature Range of Room Temperature to -423°F, ASD-TRD-62–351, Battelle, Columbus, Ohio (1962).

    Google Scholar 

  25. 25. Read,D. T., McHenry, H. I., Steinmeyer, P. A., and Thomas, R. D., Jr., Metallurgical factors affecting the toughness of 316L SMA weldments at cryogenic temperatures, Weld. J. 59:104s–113s (1980).

    Google Scholar 

  26. 26. Szumachowski, E. R. and Reid, H. F., Cryogenic toughness of SMA austenitic stainless steel weld metals: Part I-Role of ferrite, Weld. J. 57:325s–333s (1978).

    Google Scholar 

  27. 27. Elmer, J. W., McHenry, H. I., and Whipple, T. A., Strength and toughness of fully austenitic stainless steel filler metals at 4K, in: Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—IV, NBSIR 81–1645, National Bureau of Standards, Boulder, Colorado (1981), pp. 289–302.

    Google Scholar 

  28. 28. Whipple, T. A. and Kotecki, D. J., Weld process study for 316L stainless steel weld metal for liquid helium service, in: Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—IV., NBSIR 81–1645, National Bureau of Standards, Boulder, Colorado (1981), pp. 303–321.

    Google Scholar 

  29. 29. Lancaster, J. F., The Metallurgy of Welding, Brazing.and Soldering, American Elsevier, New York (1965).

    Google Scholar 

  30. 30. Whipple, T. A., McHenry, H. I., and Read, D. T., Fracture behavior of ferrite-free stainless steel welds in liquid helium, Weld. J. 60:72s–78s (1981).

    Google Scholar 

  31. 31. Whipple, T. A. and McHenry, H. I., The mechanical properties of stainless steel castings at 4 K, in: Austenitic Stainless Steels at Low Temperatures, Plenum Press, New York (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

McHenry, H.I. (1983). The Properties of Austenitic Stainless Steel at Cryogenic Temperatures. In: Reed, R.P., Horiuchi, T. (eds) Austenitic Steels at Low Temperatures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3730-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3730-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3732-4

  • Online ISBN: 978-1-4613-3730-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics