Skip to main content

Phonon Imaging: Theory and Applications

  • Chapter
Nonequilibrium Phonon Dynamics

Part of the book series: NATO ASI Series ((ASIB,volume 124))

Abstract

The subject of this chapter is the propagation of thermal energy through crystalline solids at low temperatures. A remarkable observation is that thermal energy emanating from a point source of heat is strongly channelled into various directions in the crystal. This effect is simply caused by the elastic anisotropy of the crystal and is known as phonon focusing. Over the past several years phonon imaging techniques have been developed which graphically demonstrate phonon focusing and use it to study the scattering of high frequency phonons in crystals. We will review here the experimental methods and the physics learned from such experiments. We begin with a general discussion of ballistic heat propagation in real crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, A.C., and Malinowski, M.E., 1971, Interaction between thermal phonons and dislocations in LiF, Phys. Rev. B5, 3199.

    ADS  Google Scholar 

  • Anderson, A.C., 1976, The thermal boundary resistance, in: “Phonon scattering in solids”, L.J. Challis V.W. Rampton, and A.F.G. Wyatt, eds., ( Plenum, New York).

    Google Scholar 

  • Anderson, A.C., 1981, The Kapitza thermal boundary resistance between two solids, in: “Nonequilibrium superconductivity, phonons, and Kapitza boundaries”, K.E. Gray, ed., ( Plenum, New York).

    Google Scholar 

  • Armbruster, D., Dangelmayr, G., and Guttinger, W., 1984, Nonlinear phonon focusing, in: “Phonon Scattering in Condensed Matter”, W. Eisenmenger, K. Lassmann, and S. Dottinger, eds., ( Springer-Verlag, Berlin).

    Google Scholar 

  • Bagaev, V.S, Galkina, T.I., and Sibeldin, N.N., 1983, Interaction of EHD with deformation field, ultrasound and non-equilibrium phonons, in: “Electron-hole droplets in semiconductors”, C.D. Jeffries and L.V. Keldysh, ed., ( Elsevier, New York).

    Google Scholar 

  • Berman, R., 1976, “Thermal Conduction in Solids”, ( Clarendon, Oxford).

    Google Scholar 

  • Bron, W.E., 1980, Spectroscopy of High Frequency Phonons, Rep. Prog. Phys. 43, 20.

    Article  Google Scholar 

  • Brown, R.A., 1981, The effect of dislocations on thermal conductivity, in: “International conference on phonon physics”, W.E. Bron, ed., (J. Phys. (Paris) 42, C6).

    Google Scholar 

  • Cady, W.G., 1946, “Piezoelectricity”, ( McGraw-Hill, New York ).

    Google Scholar 

  • Carruthers, P., 1961, Theory of thermal conductivity of solids at low temperatures, Rev. Mod. Phys. 33, 92.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Christoffel, E.B.,1877, Ann. Mat. Pura. Appl. 8,193.

    Article  Google Scholar 

  • Cotts, E.J., Miliotis, D.M., and Anderson, A. C., 1981, Thermal transport in deformed LiF, Phys. Rev. B24, 7336.

    ADS  Google Scholar 

  • Dietsche, W., Northrop, G.A., and Wolfe, J.P., 1981, Phonon focusing of large-k acoustic phonons in Germanium, Phys. Rev. Lett. 47, 660.

    Article  ADS  Google Scholar 

  • Dietsche, W., Kirch, S.J., and Wolfe, J.P., 1982, Phonon spectroscopy of the electron-hole liquid in Ge, Phys. Rev. B26, 780.

    ADS  Google Scholar 

  • Eichele, R., Huebener, R.P., and Seifert, H., 1982a, Phonon focusing in quartz and sapphire imaged by electron beam scanning, Z. Phys. B48, 89.

    Article  ADS  Google Scholar 

  • Eichele, R., Huebener, R.P., Seifert, H., and Selig, K.P., 1982b, Imaging of ballistic phonon propagation in quartz by electron beam scanning, Phys. Lett. 87A, 469.

    ADS  Google Scholar 

  • Eisenmenger, W., and Dayem, A.H., 1967, Quantum generation and detection of incoherent phonons in superconductors, Phys. Rev. Lett. 18,125.

    Article  ADS  Google Scholar 

  • Eisenmenger, W., 1976, Superconducting Tunnel Junctions as Phonon Generators and Detectors, Physical Acoustics, Vol. 12, ed. W. P. Mason and R. N. Thurston ( New York: Academic ), p. 79.

    Google Scholar 

  • Eisenmenger, W., 1979, Phonon Detection by the Fountain Preassure in Superfluid Helium Films, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., ( Plenum, New York ).

    Google Scholar 

  • Every, A.G., 1980, General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B22, 1746.

    ADS  MathSciNet  Google Scholar 

  • Every, A.G., 1981, Ballistic phonons and the shape of the ray surface in cubic crystals, Phys. Rev. B24, 3456.

    ADS  Google Scholar 

  • Every, A.G., Koos, G.L., and Wolfe, J.P., 1984, Ballistic phonon imaging in sapphire: bulk focusing and critical-cone channeling effects, Phys. Rev. B29, 2190.

    ADS  Google Scholar 

  • Granato, A.V., 1958, Thermal properties of mobile defects, Phys. Rev. 111, 740.

    Article  ADS  Google Scholar 

  • Greenstein, M., and Wolfe, J.P., 1978, Anisotropy in the shape of the electron-hole-drop cloud in germanium, Phys. Rev. Lett. 41, 715.

    Article  ADS  Google Scholar 

  • Greenstein, M., and Wolfe, J.P., 1981, Phonon-wind-induced anisotropy of the electron-hole droplet cloud in Ge, Phys. Rev. B24, 3318.

    ADS  Google Scholar 

  • Greenstein, M., Tamor, M.A., and Wolfe, J.P., 1982, Propagation of laser-generated heat pulses in crystals at low temperature: Spatial filtering of ballistic phonons, Phys. Rev. B26, 5604.

    ADS  Google Scholar 

  • Guseinov, N.M., and Levinson, Y.B., 1983, Diffusion of nondecaying TA phonons, Solid State Commun. 45, 371.

    Article  ADS  Google Scholar 

  • Hensel, J. C., Phillips, T.G., and Thomas, G.A., and Rice, T.M., 1977, The electron-hole liquid in semiconductors in: “Solid State Physics”, Vol. 32, H. Ehrenreich, F. Seitz, and D. Turnbull, eds., ( Academic Press, New York).

    Google Scholar 

  • Hensel, J.C., and Dynes, R.C.,1977, Interactions of electron-hole drops with ballistic phonons in heat pulses: the phonon wind, Phys. Rev. Lett. 39, 969.

    Article  ADS  Google Scholar 

  • Hensel, J.C., and Dynes, R.C., 1979, Observation of singular behavior in the focusing of ballistic phonons in Ge, Phys. Rev. Lett. 43, 1033.

    Article  ADS  Google Scholar 

  • Hurley, D.C., and Wolfe, J.P., 1984, Phonon focusing in cubic crystals (to be published).

    Google Scholar 

  • Hurley, D.C., Every, A.G., and Wolfe, J.P., 1984, Ballistic Phonon Imaging of Diamond, J. Phys. C.: Solid State Phys. 17, 3157.

    Article  ADS  Google Scholar 

  • Keldysh, L.V., 1976, Phonon wind and dimensions of electron-hole drops in semiconductors, JETP Lett. 23, 86.

    ADS  Google Scholar 

  • Kinder, H., Lassmann, K., and Eisenmenger, W., 1970, Phonon emission by quasiparticle decay in superconducting tunnel junctions, Phys. Lett. 31A, 475.

    ADS  Google Scholar 

  • Kinder, H., 1975, Phonon spectroscopy at ultrahigh frequencies, in: “Proceedings of the 14th international conference on low temperature physics”, Vol. 5, M. Krusius and M. Vuorio, eds., (North-Holland, New York ).

    Google Scholar 

  • Kittel, C., 1976, “Introduction to Solid State Physics”, Fifth edition ( Wiley, New York).

    Google Scholar 

  • Kirch, S.J., and Wolfe, J.P., 1984, Phonon-absorption imaging of the electron-hole liquid in Ge, Phys. Rev. B29, 3382.

    ADS  Google Scholar 

  • Klemens, P.G., 1958, Thermal conductivity and lattice vibrational modes in: “Solid State Physics”, Vol. 7, F. Seitz and D. Turnbull, eds., ( Academic Press, New York).

    Google Scholar 

  • Kneezel, G.A., and Granato, A.V., 1982, Effect of independent and coupled vibrations of dislocations on low-temperature thermal conductivity in alkali halides, Phys. Rev. B25, 2851.

    ADS  Google Scholar 

  • Koos, G.L. and Wolfe, J.P., 1984, Piezoelectricity and ballistic heat flow, Phys. Rev. B29, 6015.

    ADS  Google Scholar 

  • Koos, G.L., Every, A.G., Northrop, G.A. and Wolfe, J.P., 1984, Ballistic Phonon Imaging in Sapphire: Bulk Focusing and Critical-cone Channeling Effects, Phys. Rev. B29, 2190.

    ADS  Google Scholar 

  • Koos, G.L., Every, A.G., Northrop, G.A., and Wolfe, J.P., 1983, Critical-cone channeling of thermal phonons at a sapphiremetal interface, Phys. Rev. Lett. 51, 276.

    Article  ADS  Google Scholar 

  • Koos, G.L., and Wolfe, J.P., 1984a, Phonon focusing in piezo-electric crystals: Quartz and lithium niobate, Phys. Rev. B (September 15 ).

    Google Scholar 

  • Kunc, K., Nielsen, O. Holm, 1979a, Lattice dynamics of zincblende structure compounds using deformation-dipole model and rigid ion model, Comp. Phys. Comm. 16, 181.

    Article  ADS  Google Scholar 

  • Kunc, K., Nielsen, O. Holm, 1979b, Lattice dynamics of zincblende structure compounds: II. Shell model, Comp. Phys. Comm. 17, 413.

    Article  ADS  Google Scholar 

  • Lax, M., and Narayanamurti, V., 1980, Phonon magnification and the gaussian curvature of the slowness surface in anisotropic media: detector shape effects with application to GaAs, Phys. Rev. B22, 4876.

    Article  ADS  MathSciNet  Google Scholar 

  • Maris, H.J., 1971, Enhancement of heat pulses in crystals due to elastic anisotropy, J. Acoust. Soc. Am. 50, 812.

    Article  ADS  Google Scholar 

  • Marx, D., Buck, J., Lassmann, K., and Eisenmenger, W., 1978, Reflection of high frequency phonons at free silicon surfaces, Journal de Physique 39, C6, 1015.

    Google Scholar 

  • Marx, D., and Eisenmenger, W., 1981, Reflection of high-frequency phonons at silicon-solid interfaces, Phys. Lett. 82A, 291.

    ADS  Google Scholar 

  • Marx, D., and Eisenmenger, W., 1982, Phonon scattering at siliconcrystal surfaces, Z. Phys. B48, 277.

    Article  ADS  Google Scholar 

  • McCurdy, A.K., Maris, H.J., and Elbaum, C., 1970, Anisotropic heat conduction in cubic crystals in the boundary scattering regime, Phys. Rev. B2, 4077.

    ADS  Google Scholar 

  • Metzger, W., Eichele, R., Seifert, H., and Huebener, R.P., 1984, Phonon focusing in germanium imaged by electron-beam scanning, in: “Phonon Scattering in Condensed Matter”, W. Eisenmenger, K. Lassmann, and S. Dottinger, eds., ( Springer-Verlag, Berlin).

    Google Scholar 

  • Musgrave, M.J.P., “Crystal Acoustics”, 1970, ( Holden-Day, San Francisco).

    MATH  Google Scholar 

  • Northrop, G.A., 1982a, Acoustic phonon anisotropy: phonon focusing, Comp. Phys. Comm. 28, 103.

    Article  ADS  Google Scholar 

  • Northrop, G.A., 1982b, Phonon focusing of dispersive phonons in Ge, Phys. Rev. B26, 903.

    Article  ADS  Google Scholar 

  • Northrop, G.A., and Wolfe, J.P., 1979, Ballistic phonon imaging in solids - a new look at phonon focusing, Phys. Rev. Lett. 43, 1424; 1980, Ballistic phonon imaging in germanium, Phys. Rev. B22, 6196.

    Google Scholar 

  • Northrop, G.A.,Cotts, E.J., Anderson, A. C., and Wolfe, J. P., 1982, Phonon imaging of highly dislocated LiF, Phys. Rev. Lett. 49, 54; 1983, Anisotropic phonon-dislocation scattering in deformed Li F, Phys. Rev. B27, 6395.

    ADS  Google Scholar 

  • Northrop, G.A., and Wolfe, J.P., 1984, Phonon reflection imaging: A determination of specular versus diffuse boundary scattering, Phys. Rev. Lett. 52, 2156.

    Article  ADS  Google Scholar 

  • Northrop,G.A., Hebboul, S., and Wolfe, J.P., 1985, to be published.

    Google Scholar 

  • Parrott, J.E., and Stukes, Audrey, 1975, “Thermal Conductivity of Solids”, ( Pion, London ).

    Google Scholar 

  • Rösch, F., and Weis, O., 1976, Geometric propagation of acoustic phonons in monocrystals within anisotropic continuum acoustics, Part I, Z. Physik B25, 101; 1976, Geometric propagation of acoustic phonons in monocrystals within anisotropic continuum acoustics, Part II, Z. Physik B25, 115.

    Google Scholar 

  • Rösch, F., and Weis, O., 1977, Phonon transmission from incoherent radiators into Quartz, Sapphire, Diamond, Silicon, and Germainium within anisotropic continuum acoustics, Z. Physik B27, 33.

    Article  ADS  Google Scholar 

  • Stock,B., Ulbrich, R.G., and Fieseler,M., 1984, Direct observation of ballistic large-wavevector phonon propagation in gallium arsenide, in: “Phonon Scattering in Condensed Matter”, W. Eisenmenger, K. Lassmann, and S. Dottinger, eds., ( Springer-Verlag, Berlin).

    Google Scholar 

  • Taborek, P., and Goodstein, D., 1980a, Phonon focusing catastrophes, Sol. St. Comm. 33, 1191.

    Google Scholar 

  • Taborek, P., and Goodstein, D., 1980b, Diffuse reflection of phonons and the anomalous Kapitza resistance, Phys. Rev. B22, 1550.

    Article  ADS  Google Scholar 

  • Tamor, M.A., Greenstein, M., and Wolfe, J.P., 1983, Time-resolved studies of electron-hole-droplet transport in Ge,Phys.Rev.B27, 7353.

    Article  ADS  Google Scholar 

  • Tamura, S., 1982, Focusing of high-frequency dispersive phonons, Phys. Rev. B25, 1415.

    Article  ADS  Google Scholar 

  • Tamura, S., 1983a, Isotope scattering of dispersive phonons in Ge, Phys. Rev. B27, 858.

    Article  ADS  Google Scholar 

  • Tamura, S., 1983b, Large-wavevector phonons in highly dispersive crystals: Phonon-focusing effects, Phys. Rev. B28, 897.

    Article  ADS  Google Scholar 

  • Taylor, B., Maris, H.J., and Elbaum, C., 1969, Phonon focusing in solids, Phys. Rev. Lett. 23, 416.

    Article  ADS  Google Scholar 

  • Taylor, B., Maris, H.J., and Elbaum, C., 1971, Focusing of phonons in crystalline solids due to elastic anisotropy, Phys. Rev. B3, 1462.

    ADS  Google Scholar 

  • Ulbrich, R.G., Narayanamurti, V., and Chin, M.A., 1980, Propagation of large wave vector acoustic phonons in semiconductors, Phys. Rev. Lett. 45, 1432; 1981, Ballistic transport and decay of near zone-edge non-thermal phonons in semiconductors, in: “International conference on phonon physics”, W.E. Bron, ed., (J. Phys. (Paris) 42, C6).

    Google Scholar 

  • von Gutfeld, R.J., and Nethercot, A.H., 1964, Heat pulses in Quartz and Sapphire at low temperatures, Phys. Rev. Lett. 12, 641.

    Article  ADS  Google Scholar 

  • von Gutfeld, R.J., 1968, Heat Pulse Transmission,in: “Physical Acoustics”, Vol. 5, ed. W.P. Mason (Academic, New York).

    Google Scholar 

  • Weber, J., Sandemann, W., Dietsche, W., and Kinder, H., 1978, Absence of anomalous Kapitza conductance on freshly cleaved surfaces, Phys. Rev. Lett. 40, 1469.

    Article  ADS  Google Scholar 

  • Weis, O., 1969, Thermal phonon radiation, Z. Angew. Phys.26, 325.

    Google Scholar 

  • Weis, O., 1972, The solid-solid interface in thermal phonon radiation, J. Phys. (France) 33, C-4, 48.

    Google Scholar 

  • Wolfe, J.P., 1980, Ballistic heat pulses in crystals, Phys. Today, 33, 44. (December)

    Article  ADS  Google Scholar 

  • Wolfe, J.P., 1982, Thermodynamics of excitons in semiconductors, Phys. Today, 35, 46. (March)

    Article  Google Scholar 

  • Wolfe, J.P., Greenstein, M., Northrop, G.A., and Tamor, M.A., 1980, Images of electron-hole droplets and ballistic phonons inGe, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., ( Plenum, New York ).

    Google Scholar 

  • Wolfe, J.P., and Jeffries, C.D., 1983, Strain-confined excitons and electron-hole liquid, in: “Electron-hole droplets in semiconductors”, C.D. Jeffries and L.V. Keldysh, ed., ( Elsevier, New York ).

    Google Scholar 

  • Wolfe, J.P., and Northrop, G.A., 1984, Search for large k-vector phonons in GaAs, in: “Phonon Scattering in Condensed Matter”, W. Eisenmenger, K. Lassmann, and S. Dottinger, eds., ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Wyatt, A.F.G., 1981, Kapit za conductance of solid-liquid He interfaces, in: “Nonequilibrium superconductivity, phonons, and Kapitza boundaries”, K.E. Gray, ed., ( Plenum, New York).

    Google Scholar 

  • Zdetsis, A.D., and Wang, C.S., 1979, Lattice dynamics of Ge and Si using the Born-von Karman model, Phys. Rev. B19, 2999.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Northrop, G.A., Wolfe, J.P. (1985). Phonon Imaging: Theory and Applications. In: Bron, W.E. (eds) Nonequilibrium Phonon Dynamics. NATO ASI Series, vol 124. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2501-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2501-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9513-6

  • Online ISBN: 978-1-4613-2501-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics