Skip to main content

Chitinolytic Communities From an Anaerobic Estuarine Environment

  • Chapter
Chitin in Nature and Technology

Abstract

Mineralization of organic matter in anaerobic environments is accomplished by a community of physiologically different bacteria.1 Biogenic polymers such as carbohydrates and proteins are hydrolyzed and the monomers produced are subsequently converted to a variety of products by fermentative bacteria. Their fermentation products are further oxidized by sulfate-reducing bacteria or by syntrophic consortia of acetogenic and methanogenic bacteria. Our knowledge of anaerobic polysaccharide degrading communities mainly originates from the cellulolytic system in the rumen2,3,4 Much less is known about the microbiology of anaerobic polysaccharide composition in marine environments. This is particularly true for the structure of these communities and the possible interspecies interaction involved (i.e. the primary hydrolysing bacteria and those using hydrolysis and fermentation products).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. J. Laanbroek and H. Veldkamp, Microbial interactions in sediment communities. Phil. Trans. R. Soc. Lond. B 297:550 (1982).

    Google Scholar 

  2. R. E. Hungate, “The rumen and its microbes”, Academic Press, New York (1966).

    Google Scholar 

  3. H. D. Peck Jr. and M. Odom, Anaerobic fermentations of cellulose to methane, in: “Basic Life Sciences” vol. 18, Trends in the biology of fermentations for fuels and chemicals. A. Hollaender, ed., Plenum Press (1981).

    Google Scholar 

  4. N. O. van Gylswyk and H. M. Schwarz, Microbial ecology of cellulose and hemicellulose metabolism in gastro-intestinal ecosystems, in: “Current perspectives in microbial ecology”, M. J. Klug and C. A. Reddy, eds., American Society for Microbiology, Washington (1983).

    Google Scholar 

  5. F. Colijn, Primary production in the Ems-Dollard estuary, Thesis University of Groningen, The Netherlands (1983).

    Google Scholar 

  6. Invertebrates of the Wadden Sea, Final report of the section “Marine Zoology” of the Wadden Sea working group, N. Dankers, H. Kühl and W. J. Wolff, eds., (1981).

    Google Scholar 

  7. K. Timmis, G. Hobbs, and R.C.W. Berkeley, Chitinolytic Clostridia isolated from mud. Can. J. Microbiol. 20:1284 (1974).

    Google Scholar 

  8. R. C. W. Berkeley, in. Berkeley, in: “Microbial polysaccharides and polysaccharases”, R. C. W. Berkeley, G. W. Gooday and D. C. Ellwood, eds., Special Publ. SGM: 3, Academic Press, (1979).

    Google Scholar 

  9. P.E. Guire, Fractionation of oligosaccharides by polyacrylamide gel filtration, Proc. Okla. Acad. Sci. 51:63 (1971).

    CAS  Google Scholar 

  10. H.J. Laanbroek, H.J. Geerligs, A.A. C.M. Peijnenburg, and J. Siesling, Competition for L-lactate between Desulfovibrio, Veillonella and Acetobacterium species isolated from anaerobic intertidal sediments, Microb. Ecol. 9:341 (1983).

    Google Scholar 

  11. H.J. Laanbroek, H.J. Geerligs, L. Sijtsma, and H. Veldkamp, Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus and Desulfovibrio species isolated from intertidal sediments, Appl. Environm. Microbiol. 47:329 (1984).

    Google Scholar 

  12. H. G. Trüper and H. G. Schlegel, Sulphur metabolism in Thiorhodacea. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225 (1964).

    Article  Google Scholar 

  13. G.C. Chen and B.R. Johnson, Improved colorimetric determination of cell wall chitin in wood decay fungi, Appl. Environ. Microbiol. 46:13 (1983).

    Google Scholar 

  14. M. V. Tracey, Chitin, in: “Modern methods of plant analysis”, K.Paech and M. V. Tracey, eds., Springer, Berlin (1955).

    Google Scholar 

  15. K. Blumberg, F. Liniere, L. Prestilnik, and C.A. Bush, Fractionation of oligosaccharides containing N-acetylamino sugars by reversephase hugh-pressure liquid chromatography. Anal. Biochem. 119:407–412 (1982)

    Google Scholar 

  16. N. Aï, N. Creuzet, and J. Cattaneo, Properties of ß-glucosidase purified from Clostridium thermocellum, J. Gen. Microbiol. 128:569 (1982).

    Google Scholar 

  17. E. A. Johnson and A. E. Demain, Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermorellum, Arch. Microbiol. 137:135 (1984).

    Google Scholar 

  18. C. W. Forsberg and D. Grolean, Stability of the endo-ß-1,4-gluconase and ß-1,4-glucosidase from Bacteroides succinogenes, Can. J. Microbiol. 28:144 (1982).

    Google Scholar 

  19. C. Giuliano and A. W. Khan, Cellulase and sugar formation by Bacteroides cellulosolvers, a newly isolated cellulolytic anaerobe, Appl. Environ. Microbiol. 48:446. (1984).

    Google Scholar 

  20. B. Schink and M. Stieb, Fermentative degredation of polyethylene glycol by a strictly anaerobic, gram-negative, nonspore-forming bacterium, Pelobacter venetianus sp. nov., Appl. Environ. biol. 45:1905 (1983).

    Google Scholar 

  21. B. Schink and J.G. Zeikus, Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate, J. Gen. Microbiol. 129:1149 (1983).

    Google Scholar 

  22. T.K. Ng and J.G. Zeikus, Differential metabolism of cellobiose and glucose by Clostridium thermohydrosulfuricum, J. Bacteriol. 150:1391 (1982).

    PubMed  CAS  Google Scholar 

  23. M.C. Fasee and J. M. Leatherwood, Regulation of cellulase from Rumminococcus, Can. J. Microbiol. 18:347 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Pel, R., Gottschal, J.C. (1986). Chitinolytic Communities From an Anaerobic Estuarine Environment. In: Muzzarelli, R., Jeuniaux, C., Gooday, G.W. (eds) Chitin in Nature and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2167-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2167-5_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9277-7

  • Online ISBN: 978-1-4613-2167-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics