Skip to main content

Abstract

The widely used term “secondary structure” implies that it is of value to consider the structure of a protein as organized hierarchically. “Hierarchic” relates to the idea that the structure can be considered on at least two levels; there are, in fact, three levels of interest here, namely, the covalent structure (primary), the structural organization of stereoregular regions as specific backbone conformations (secondary), and the way in which they are assembled in a three-dimensional conformation (tertiary structure) to make a protein. The recently introduced concept of “supersecondary” structure intermediate to secondary and tertiary levels describes the interactions between secondary structures in space. It should also be stated that the more recently recommended definition of secondary structure covers all backbone conformations, stereoirregular as well as stereoregular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., 1977, The protein data bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112:535–543.

    Article  PubMed  CAS  Google Scholar 

  • Biou, V., Gibrat, J. F., Levin, J., Robson, B., and Garnier, J., 1988, Secondary structure prediction: Combination of three different methods, Protein Engineering 2:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Brillouin, L., 1956, Science and Information Theory, Academic Press, New York.

    Google Scholar 

  • Busetta, B., and Hospital, M., 1982, An analysis of the prediction of secondary structures, Biochim. Biophys. Acta 701:111–118.

    Article  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13:222–245.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J., 1986, Turn prediction in proteins using a pattern matching approach, Biochemistry 25:266–275.

    Article  PubMed  CAS  Google Scholar 

  • Fano, R., 1961, Transmission of Information, John Wiley & Sons, New York.

    Google Scholar 

  • Fisher, R. A., 1934, Statistical Methods for Research Workers, Oliver and Boyd, London, pp. 99–101.

    Google Scholar 

  • Garnier, J., and Robson, B., 1979, Classes of protein folding and accuracy of prediction, in: Workshop on Protein Structure, CECAM, Orsay, France, pp. 147–148.

    Google Scholar 

  • Garnier, J., Salesse, R., Rerat, B., Rerat, C., and Blake, C., 1976, Comparison of x-ray data to estimated secondary structures from amino acid sequence and circular dichroism of human prealbumin, J. Chimie Phys. 73:1019–1023.

    Google Scholar 

  • Garnier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple method for predicting the secondary structure of globular proteins, J. Mol. Biol. 120:97–120.

    Article  PubMed  CAS  Google Scholar 

  • Gibrat, J. F., 1986, Modelisation by Computers of the 3-D Structure of Proteins, Ph.D. thesis, University of Paris VI, Paris.

    Google Scholar 

  • Gibrat, J. F., Gamier, J., and Robson, B., 1987, Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs, J. Mol. Biol. 198:425–443.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., and Sander, C., 1983a, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22:2577–2637.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., and Sander, C., 1983b, How good are predictions of protein secondary structure? FEBS Lett. 155: 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B., and Richards, F. M., 1971, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55:379–400.

    Article  PubMed  CAS  Google Scholar 

  • Levin, J. M., and Garnier, J., 1988, Improvements in a secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool, Biochim. Biophys. Acta. 955:283–295.

    Article  PubMed  CAS  Google Scholar 

  • Levin, J. M., Robson, B., and Garnier, J., 1986, An algorithm for secondary structure determination in proteins based on sequence similarity, FEBS Lett. 205:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., and Greer, J., 1977, Automatic identification of secondary structure in globular proteins, J. Mol. Biol. 114:181–293.

    Article  PubMed  CAS  Google Scholar 

  • Lim, V. I., 1974, Algorithm for prediction of α-helical and ß-structural regions in globular proteins, J. Mol. Biol. 88:873–894.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, B. B., 1975, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta 405:442–451.

    PubMed  CAS  Google Scholar 

  • Maxfield, F. R., and Scheraga, H. A., 1975, The effect of neighboring charges on the helix forming ability of charged amino acids in proteins, Macromolecules 8:491–493.

    Article  PubMed  CAS  Google Scholar 

  • Maxfield, F. R., and Scheraga, H. A., 1976, Status of empirical methods for the prediction of protein backbone topography, Biochemistry 15:5138–5153.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, H., Nishikawa, K., and Ooi, T., 1986, The folding type of a protein is relevant to the amino acid composition, J. Biochem. 99:153–162.

    PubMed  CAS  Google Scholar 

  • Pain, R. H., and Robson, B., 1970, Analysis of the code relating sequence to secondary structure in proteins, Nature 227:62–63.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.

    Article  PubMed  CAS  Google Scholar 

  • Robson, B., 1974, Analysis of the code relating sequence to conformation in globular proteins, Biochem. J. 141:853–867.

    PubMed  CAS  Google Scholar 

  • Robson, B., and Garnier, J., 1986, Introduction to Proteins and Protein Engineering, Elsevier, Amsterdam.

    Google Scholar 

  • Robson, B., and Pain, R. H., 1971, Analysis of the code relating sequence to conformation in proteins: Possible implications for the mechanism of formation of helical regions, J. Mol. Biol. 58:237–259.

    Article  PubMed  CAS  Google Scholar 

  • Robson, B., and Suzuki, E., 1976, Conformational properties of amino acids residues in globular proteins, J. Mol. Biol. 107:327–356.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., and Zehfus, M. H., 1985, Hydrophobicity of amino acid residues in globular proteins, Science 229:834–838.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer, M., and Edmundson, A. B., 1967, Use of helical wheels to represent the structures of protein and to identify segments with helical potential, Biophys. J. 7:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. M., and Dayhoff, M. O., 1978, Matrices for detecting distant relationships in: Atlas of Protein Sequence and Structure, Volume 5, Suppl. 3 (M. O. Dayhoff, ed.), National Biochemical Research Foundation, Washington, pp. 353–358.

    Google Scholar 

  • Taylor, W. R., and Thornton, J. M., 1983, Prediction of supersecondary structure in proteins, Nature 301:540–542.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Garnier, J., Robson, B. (1989). The GOR Method for Predicting Secondary Structures in Proteins. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics