Skip to main content

Multicompartment Models

  • Chapter
Prescribing Hemodialysis

Part of the book series: Developments in Nephrology ((DINE,volume 29))

Abstract

Urea is a small, uncharged, yet highly soluble organic solute. Because of its high diffusibility, it finds its way easily across nearly all biological membranes by simple or facilitated diffusion. The result is rapid and complete equilibration among all aqueous body compartments (1). Transport of urea from its site of production in the liver is relatively unimpeded and, at equilibrium, tissue water concentrations are equal throughout the organism with one exception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 369.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colton CK, Lowrie EG: Hemodialysis: Physical principles and technical considerations, in The Kidney, Brenner BM, Rector FC Jr (eds), Philadelphia, Saunders, pp 2425–2489, 1981.

    Google Scholar 

  2. Pitts RF, Windhager EE: Mechanisms of reabsorption and excretion of ions and water, in Physiology of the Kidney and Body Fluids (3ed), Chicago, Year Book Medical Publishers, pp 99–139, 1974.

    Google Scholar 

  3. Steffenson KA: Some determinations of the total body water in man by means of intravenous injections of urea. Acta Physiol Scand 13:282, 1947.

    Google Scholar 

  4. Shackman R, Chisholm GD, Holden AJ, Pigott RW: Urea distribution in the body after haemodialysis. Br Med J 2:355–58, 1962.

    Article  PubMed  CAS  Google Scholar 

  5. Pedrini LA, Zereik S, Rasmy S: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int 34:817–824, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Lee CJ, Chang YL: On the solution of equations for feel-better hemodialysis. Comput Biol Med 17:161–172, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Maeda K, Kawaguchi S, Kobayashi S, Niwa T, Kobayashi K, Saito A, Iyoda S, Ohta K: Cell-wash dialysis. Trans Am Soc Artif Intern Organs 26:213–218, 1980.

    PubMed  CAS  Google Scholar 

  8. Schindhelm K, Farrell PC: Patient-hemodialyzer interactions. Trans Am Soc Artif Intern Organs 24:357–365, 1978.

    PubMed  CAS  Google Scholar 

  9. Grossmann DF, Kopp KF, Frey J: Transport of urea by erythrocytes during haemodialysis. Proc Europ Dial Transplant Assoc 4:250–253, 1968.

    Google Scholar 

  10. Popovich RP, Hlavinka DJ, Bomar JB, Moncrief JW, Decherd JF: The consequences of physiological resistance on metabolite removal from the patient-artificial kidney system. Trans Am Soc Artif Intern Organs 21:108–115, 1975.

    PubMed  CAS  Google Scholar 

  11. Bowsher DJ, Krejcie TC, Avram MJ, Chow MJ, del Greco F, Atkinson AJ: Reduction in slow intercompartmental clearance of urea during dialysis. J Lab Clin Med 105:489–497, 1985.

    PubMed  CAS  Google Scholar 

  12. Kaplan MA, Hays L, Hays RM: Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am J Physiol 226:1327–1332, 1974.

    PubMed  CAS  Google Scholar 

  13. Brahm J: Urea permeability of human red cells. J Gen Physiol 82:1–23, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Harris CP, Townsend JJ: Dialysis disequilibrium syndrome. West JMed 151:52–55, 1989.

    CAS  Google Scholar 

  15. Krane NK: Intracranial pressure measurement in a patient undergoing hemodialysis and peritoneal dialysis. Am J Kidney Dis 13:336–339, 1989.

    PubMed  CAS  Google Scholar 

  16. Arieff AI, Massry SG, Barrientos A, Kleeman CR: Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 4:177, 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Keller F, Offermann, Scholle J: Kinetics of the redistribution phenomenon after extracorporeal elimination. Int J Artif Organs 7:181–188, 1984.

    PubMed  CAS  Google Scholar 

  18. Sargent JA, Gotch FA: Principles and biophysics of dialysis, in Replacement of Renal Function by Dialysis (3ed), Maher JF (ed), Dordrecht, Kluwer Academic Publishers, pp 87–143, 1989.

    Google Scholar 

  19. Rastogi SP, Frost T, Anderson J, Ashcroft R, Kerr DNA: The significance of disequilibrium between body compartments in the treatment of chronic renal failure. Proc Europ Dial Transplant Assoc 5:102–115, 1968.

    Google Scholar 

  20. Malchesky PS, Ellis P, Nosse C, Magnusson M, Lankhorst B, Nakamoto S: Direct quantification of dialysis. Dial Transplant 11:42–44, 1982.

    Google Scholar 

  21. Lankhorst BJ, Ellis P, Nosse C, Malchesky P, Magnusson MO: A practical guide to kinetic modeling using the technique of direct dialysis quantification. Dial Transplant 12:694, 1983.

    Google Scholar 

  22. Ellis PW, Malchesky PS, Magnusson MO, Goormastic M, Nakamoto S: Comparison of two methods of kinetic modeling. Trans Am Soc Artif Intern Organs 30:60–64, 1984.

    PubMed  CAS  Google Scholar 

  23. Hume R, Weyers E: Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol 24:234–238, 1971.

    Article  PubMed  CAS  Google Scholar 

  24. Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM: The Body Cell Mass and its Supporting Environment, Philadelphia and London, Saunders, 1963.

    Google Scholar 

  25. Gotch FA: Kinetic modeling in hemodialysis, in Clinical Dialysis (2ed), Nissensen AR, Gentile DE, Fine RN (eds), Norwalk CT, Appleton and Lange, pp 118–146, 1989.

    Google Scholar 

  26. Aebischer P, Schorderet D, Juillerat A, Wauters JP, Fellay G: Comparison of urea kinetics and direct dialysis quantification in hemodialysis patients. Trans Am Soc Artif Intern Organs 31:338–341, 1985.

    PubMed  CAS  Google Scholar 

  27. Keshaviah P, Ilstrup K, Shapiro W, Hanson G: Hemodialysis urea kinetics is not single pool (abstract). Kidney Int 27:165, 1985.

    Google Scholar 

  28. Ilstrup K, Hanson G, Shapiro W, Keshaviah P: Examining the foundations of urea kinetics. Trans Am Soc Artif Intern Organs 31:164–168, 1985.

    PubMed  CAS  Google Scholar 

  29. Tsang HK, Leonard EF, LeFavour GS, Cortell S: Urea dynamics during and immediately after dialysis. ASAIO Journal 8:251–260, 1985.

    Google Scholar 

  30. Ward RA, Shirlow MJ, Hayes JM, Chapman GV, Farrell PC: Protein catabo-lism during hemodialysis. Am J Clin Nutr 32: 2443–2449, 1979.

    PubMed  CAS  Google Scholar 

  31. Farrell PC, Hone PW: Dialysis-induced catabolism. Am J Clin Nutr 33:1417–1422, 1980.

    PubMed  CAS  Google Scholar 

  32. Borah MF, Schoenfeld PY, Gotch FA, Sargent JA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14:491–500, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Gutierrez A, Alvestrand A, Bergstrom J, Wahren: Blood-membrane interaction without dialysis induces increased protein catabolism in normal man. Artif Organs 9:9–13, 1985.

    Google Scholar 

  34. Farrell PC: Adequacy of dialysis; marker molecules and kinetic modeling. Artif Organs 10:195–200, 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Kimura G, Gotch FA: Serum sodium concentration and body flud distribution during interdialysis: importance of sodium to fluid intake ratio in hemodialysis patients. Int J Artif Organs 7:331–336, 1984.

    PubMed  CAS  Google Scholar 

  36. Heineken FG, Evans MC, Keen ML, Gotch FA: Intercompartmental fluid shifts in hemodialysis patients. Biotechnol Progr 3:69–73, 1987.

    Article  Google Scholar 

  37. Pastan S, Colton C: Transcellular urea gradients cause minimal depletion of extracellular volume during hemodialysis. Trans Am Soc Artif Intern Organs 35:247–250, 1989.

    CAS  Google Scholar 

  38. Fleming SJ, Wilkinson JS, Greenwood RN, Aldridge C, Baker LRI, Cattell WR: Effect of dialysate composition on intercompart-mental fluid shift. Kidney Int 32:267–273, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Fleming SJ, Wilkinson JS, Aldridge C, Greenwood RN, Muggleston SD, Baker LRI, Cattell WR: Dialysis-induced change in erythrocyte volume calculated from packed cell volume. Clin Nephrol 29:63–68, 1988.

    PubMed  CAS  Google Scholar 

  40. Wehle B, Asaba H, Castenfors J, Gunnarsson B, Bergstrom J: Influence of dialysate composition on cardiovascular function in isovolaemic haemodialy-sis. Proc Europ Dial Transplant Assoc 18:153–159, 1981.

    CAS  Google Scholar 

  41. Swartz RD, Somermeyer MG, Hsu CH: Preservation of plasma volume during hemodialysis depends on dialysate osmolality. Am J Nephrol 2:189–194, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Van Stone JC, Bauer J, Carey J: The effect of dialysate sodium concentration on body fluid compartment volume, plasma renin activity and plasma aldosterone concentration in chronic hemodialysis patients. Am J Kidney Dis 11:58, 1982.

    Google Scholar 

  43. Cala PM, Mandel LJ, Murphy E: Volume regulation by Amphiuma red blood cells: cytosolic free Ca and alkali metal-H exchange. Am J Physiol 250:C423–429, 1986.

    PubMed  CAS  Google Scholar 

  44. Grinstein S, Rothstein A, Sarkadi B, Gelfand EW: Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol 246:C204–215, 1984.

    PubMed  CAS  Google Scholar 

  45. Stec GP, Atkinson AJ Jr., Nevin MJ, Thenot J-P, Ruo TI, Gibson TP, Ivanovich P, del Greco F: N-Acetylprocainamide pharmacokinetics in functionally aneph-ric patients before and after perturbation by hemodialysis. Clin Pharmacol Ther 26:618–628, 1979.

    PubMed  CAS  Google Scholar 

  46. Sargent JA: Control of dialysis by single-pool urea model: the National Cooperative Dialysis Study. Kidney Int 23 (Suppl 13):S19–25, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Depner, T.A. (1991). Multicompartment Models. In: Prescribing Hemodialysis. Developments in Nephrology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1509-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1509-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8811-4

  • Online ISBN: 978-1-4613-1509-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics