Skip to main content

On the Relationship of Plant Geometry to Photosynthetic Response

  • Chapter
Tropical Forest Plant Ecophysiology

Abstract

The chapter by Chazdon et al. (Chapter 1) concerned relationships between the light environment and the photosynthetic response of tropical forest plants. This chapter builds upon these relationships by exploring the dependence of total plant photosynthesis upon orientation and position of photosynthetic surfaces and characteristics of the photosynthetic response. A simple two-dimensional model of an individual plant or plant stand will be used to explore the dependence of total plant photosynthetic rate on plant geometry, particularly with respect to two common characteristics of tropical forest plants and their environment, heliotropism and high solar elevation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Chazdon, R. L. (1985) Leaf display, canopy structure, and light interception of two understory palm species. American Journal of Botany, 72, 1493–1502.

    Article  Google Scholar 

  • Darwin, C. R. (1881) The Power of Movement in Plants. D. Appleton, New York.

    Google Scholar 

  • Diggle P. J., Fisher, N. I. (1985) SPHERE: A contouring program for spherical data. Computers and Geosciences, 11, 725–766.

    Article  Google Scholar 

  • Ehleringer, J. R. & Forseth, I. N. (1980) Solar tracking by plants. Science 210, 1094–1098.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G. D. (1989) Models of integrated photosynthesis of cells and leaves. Philosophical Transactions of the Royal Society B (London), 323, 357–367.

    Article  CAS  Google Scholar 

  • Fisher, J. B. (1986) Branching patterns and angles in trees. On the Economy of Plant Form and Function, (ed. T. J. Givnish,), Cambridge University Press, Cambridge, pp 493 – 523.

    Google Scholar 

  • Fisher, J. B. & Honda, H. (1979) Ratio of tree branch lengths: the equitable distribution of leaf clusters on branches. Proceedings of the National Academy of Sciences USA, 76, 3875–3879.

    Article  Google Scholar 

  • Geller, G. N. & Nobel, P. S. (1984) Cactus ribs: Influence on PAR interception and update. Photosynthetica, 18, 482–494.

    CAS  Google Scholar 

  • Geller, G. N. & Nobel, P. S. (1986) Branching patterns of columnar cacti: Influences on PAR interception and update. American Journal of Botany, 73, 1192–1200.

    Article  Google Scholar 

  • Gutschick, V. P. & Wiegel, F. W. (1988) Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. American Naturalist, 132, 67–86.

    Article  Google Scholar 

  • Herbert, T. J. (1984) Axial rotation of Erythrina herbacea leaflets. America Journal of Botany, 71, 76–79.

    Article  Google Scholar 

  • Herbert, T. J. (1989) A model of daily leaf movement in relation to the radiation regime, in Advances in Legume Biology, (eds Stirton, C.H., Zarucchi, J. L.) Monographs in Systematic Botany from the Missouri Botanical Garden, 29 pp. 629–643.

    Google Scholar 

  • Herbert, T.J. (1991) Statistical variation in interception of the direct solar beam by top canopy layers. Ecology 72, 17–22.

    Article  Google Scholar 

  • Herbert, T.J. (1992a) Geometry of heliotropic and nyctinastic leaf movements. American Journal of Botany, 79, 547–550.

    Article  Google Scholar 

  • Herbert, T. J. (1992b) Random wind-induced leaf orientation — Effect upon maximization of whole plant photosynthesis. Photosynthetica, 26, 601–607.

    Google Scholar 

  • Herbert, T. J. & Larsen, P. B. (1985) Leaf movement in Calathea lutea (Marantaceae). Oecologia, 67, 238–243.

    Article  Google Scholar 

  • Herbert, T. J. & Nilson, T. (1991) A model of variance of photosynthesis between leaves and maximization of whole plant photosynthesis. Photosynthetica, 25,597–606.

    Google Scholar 

  • Honda, H. E., Fisher, J. B. (1978) Tree branch angle: Maximizing effective leaf area. Science 199, 888–890.

    Article  PubMed  CAS  Google Scholar 

  • Horn, H. S. (1971) The Adaptive Geometry of Trees. Princeton University Press, Princeton.

    Google Scholar 

  • Kawashima, R. (1969a) Studies on the leaf orientation-adjusting movement in soybean plants. I. The leaf orientation-adjusting movement and light intensity on leaf surface. Proceedings of the Crop Science Society of Japan, 38,718–729.

    Google Scholar 

  • Kawashima, R. (1969b) Studies on the leaf orientation-adjusting movement in soybean plants. II. Fundamental pattern of the leaf orientation-adjusting movement and its significance for dry matter production. Proceedings of the Crop Science Society of Japan, 38, 730–742.

    Google Scholar 

  • Kuroiwa, S. (1970) Total photosynthesis of a foliage in relation to inclination of leaves. Prediction and Measurement of Photosynthetic Productivity. PVDOC, Wageningen, pp. 79–89.

    Google Scholar 

  • Laisk, A., Eichelmann, H. (1989) Towards understanding oscillations: a Mathematical model of the biochemistry of photosynthesis. Philosophical Transactions of the Royal Society B (London), 323, 369–384.

    Article  CAS  Google Scholar 

  • Laisk, A. & Walker, D. A. (1989) A mathematical model of electron transport. Thermodynamic necessity for photosystem II regulation: ‘Light Stomata’. Philosophical Transactions of the Royal Society B (London), 237, 417–444.

    CAS  Google Scholar 

  • Lieth, J. R. & Reynolds, J. F. (1987) The nonrectangular hyperbola as a photosynthetic light response model: geometrical interpretation and estimation of the parameter Θ. Photosynthetica, 21, 363 – 366.

    Google Scholar 

  • Myneni, R. B. & Impens, I. (1985a) A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part I. Theoretical considerations. Agricultural and Forest Meteorology, 33, 327–337.

    Article  Google Scholar 

  • Myneni, R. B. & Impens, I. (1985b) A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part II. Experimental results and discussion. Agricultural and Forest Meteorology, 34, 3–16.

    Article  Google Scholar 

  • Myneni, R. B., Asrar, G., Kanemasu, E. T., Lawlor, D. J. & Impens, I. (1986a) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. Part I. Theoretical considerations. Agricultural and Forest Meteorology, 37, 189–204.

    Article  Google Scholar 

  • Myneni, R. B., Asrar, G., Wall, G. W., Kanemasu E. T. & Impens, I. (1986b) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. Part II. Results and discussion. Agricultural and Forest Meteorology, 37, 205 –218.

    Article  Google Scholar 

  • Niklas, K. J. & Kerchner, V. (1984) Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology 10, 79–101.

    Google Scholar 

  • Nilson, T. (1968) On the optimum geometrical arrangement of foliage in the plant cover. Investigations of Atmospheric Physics (Tartu), 11, 112–146.

    Google Scholar 

  • Oikawa, T. (1977a) Light regime in relation to plant population geometry II. Light penetration in a square-planted population. Botanical Magazine (Tokyo), 90, 11–22.

    Article  Google Scholar 

  • Oikawa, T. (1977b) Light regime in relation to plant population geometry III. Ecological implications of a square-planted population from the viewpoint of utilization efficiency of solar energy. Botanical Magazine (Tokyo), 90, 301–311.

    Article  Google Scholar 

  • Oikawa, T. & Saeki, T. (1977) Light regime in relation to plant population geometry I. A Monte Carlo simulation of light microclimates within a random distribution foliage. Botanical Magazine (Tokyo), 90, 1 –10.

    Article  Google Scholar 

  • Pearcy, R.W. & Calkin, H. W. (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 58, 26 – 32.

    Article  Google Scholar 

  • Richards, P. W. (1966) The Tropical Rainforest. Cambridge Univ. Press, Cambridge, p. 89.

    Google Scholar 

  • Shell, G. S. G., Lang, A. R. G. & Sale, P. J. M. (1974) Quantitative measures of leaf orientation and heliotropic response in sunflower, bean, pepper and cucumber. Agricultural Meteorology, 13, 25–37.

    Article  Google Scholar 

  • Wainwright, G. M. (1977) Sun-tracking and related leaf movements in a desert lupine (Lupinus arizonicus). American Journal of Botany, 64, 1032–1041.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Herbert, T.J. (1996). On the Relationship of Plant Geometry to Photosynthetic Response. In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (eds) Tropical Forest Plant Ecophysiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1163-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1163-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8493-2

  • Online ISBN: 978-1-4613-1163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics