Skip to main content

Dynamics

A Visual Introduction

  • Chapter
Self-Organizing Systems

Part of the book series: Life Science Monographs ((LSMO))

Abstract

A dynamical system is one whose state may be represented as a point in a space, where each point is assigned a vector specifying the evolution. The basic ideas of the mathematical theory of dynamical systems are presented here visually, with a minimum of discussion, using examples in low dimensions. The “AB portrait” is introduced as a record of attractors and basins. The basic dynamical bifurcations also are given, including examples of bifurcations with two controls. Extensions of dynamical concepts are proposed in order to allow modeling of hierarchical and complex systems. These extensions include serial and parallel coupling of dynamical systems in networks.

The references for the ideas in this chapter can be found in Chapter 30. —The Editor

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Feigenbaum, M. (1978) Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19:25–52.

    Article  Google Scholar 

  • Herman, M. R. (1979) Sur la Conjugaison Differentiable des Diffeomorphismes du Cerole a des Rotations. Puhl. Math. IHES 49.

    Google Scholar 

  • Lefshetz, S. (1950) Contribution to the Theory of Nonlinear Oscillations. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Lorenz, E. (1963) Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–141.

    Article  Google Scholar 

  • Lorenz, E. (1980) Noisy periodicity and reverse bifurcation. Ann. NY. Acad. Sci. 357:282–291.

    Article  Google Scholar 

  • Neimark, Y. I. (1959) On some cases of dependence of periodic motions on parameters. Dokl. Akad. Nauk SSSR 129:736–739.

    Google Scholar 

  • Peixoto, M. (1962) Structural stability on two-dimensional manifolds. Topology 2:101–121.

    Article  Google Scholar 

  • Poincaré, H. (1885) Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math. 7:259–380.

    Article  Google Scholar 

  • Pugh, C. C., and M. Shub (1980) Differentiability and continuity of invariant manifolds. Preprint, Queens College, Flushing, N.Y.

    Google Scholar 

  • Rössler, O. E. (1979) Chaos. In: Structural Stability in Physics, W. Güttinger and E. Eikemeyer (eds.). Springer-Verlag, Berlin, pp. 290–309.

    Google Scholar 

  • Ruelle, D., and F. Takens (1971) On the nature of turbulence. Commun. Math. Phys. 20:167–192.

    Article  Google Scholar 

  • Shaw, R. (1981) Strange attractors, chaotic behavior, and information flow. Z. Naturforsch. 36a:80–112.

    Google Scholar 

  • Sotomayor, J. (1974) Generic one-parameter families of vector fields in two-dimensional manifolds. Publ. Math. I. H. E. S. 43:5–46.

    Google Scholar 

  • Takens, F. (1973) Introduction to global analysis. Commun. Math. Inst., Rijksuniversiteit Utrecht 2:1–111.

    Google Scholar 

  • Thorn, R. (1972) Stabilité structurelle et morphogénèse: Essai d’une théorie générale des modeles. Benjamin, New York.

    Google Scholar 

  • Whitehead, A. N. (1925) Science and the Modern World. Macmillan Co., New York.

    Google Scholar 

  • Zeeman, C (1976) The classification of elementary catastrophes of codimension 5. In: Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, P. Hilton (ed.). Springer-Verlag, Berlin, pp. 263–327.

    Chapter  Google Scholar 

  • Zeeman, E. C (1977) Catastrophe Theory: Selected Papers. Addison-Wesley, Reading, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Abraham, R.H., Shaw, C.D. (1987). Dynamics. In: Yates, F.E., Garfinkel, A., Walter, D.O., Yates, G.B. (eds) Self-Organizing Systems. Life Science Monographs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0883-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0883-6_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8227-3

  • Online ISBN: 978-1-4613-0883-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics