Skip to main content

Digestive Plasticity in Avian Energetics and Feeding Ecology

  • Chapter
Avian Energetics and Nutritional Ecology

Abstract

This chapter focuses on changes in gastrointestinal (GI) structure and function and how they influence the supply of energy and nutrients for maintenance and production (growth, storage, and reproduction). There is considerable evidence that digestive features are influenced by factors such as diet quality and quantity in species from many avian orders including the Anseriformes (Ankney 1977; Drobney 1984; Prop and Vulink 1992), Galliformes (Gasaway 1976; Moss 1983), Columbiformes (Kenward and Sibly 1977), and Passeriformes (Davis 1961; Al- Dabbagh et al. 1987; Brugger 1991; Walsberg and Thompson 1990). The likely ecological importance of digestive adjustments is suggested by a number of theoretical arguments and some observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afik, D. and W. H. Karasov. 1995. The tradeoffs between digestion rate and efficiency in the Yellow-rumped Warbler, and its ecological implications. Ecology 76:2247–2257.

    Google Scholar 

  • Afik, D., E. Caviedes Vidal, C. Martinez del Rio, and W. H. Karasov. 1995. Dietary modulation of intestinal hydrolytic enzymes in Yellow-rumped Warblers. Am. J. Physiol.269: R413–R420.

    Google Scholar 

  • Al-Dabbagh, K. Y., J. H. Jiad, and I. N. Waheed. 1987. The influence of diet on the intestine length of the White-cheeked Bulbul. Ornis Scand. 18:150–152.

    Google Scholar 

  • Alerstam, T. and A. Lindstrom. 1990. Optimal bird migration: the relative importance of time, energy and safety. In Bird Migration: Physiology, Ecophysiology, ed. E. Gwinner, pp. 331–351. Springer-Verlag Berlin.

    Google Scholar 

  • Al-Joborae, F. F. 1980. The influence of diet on the gut morphology of the starling (Sturnus vulgaris). Ph.D. diss., Oxford University, Oxford.

    Google Scholar 

  • Ankney, C. D. 1977 Feeding and digestive organ size in breeding Lesser Snow Geese. Auk 94:275–282.

    Google Scholar 

  • Ankney, C. D. and D. M. Scott. 1988. Size of digestive organs in breeding Brown-headed Cowbirds, Molothrus ater, relative to diet. Can. J. Zool. 66:1254–1257.

    Google Scholar 

  • Atchley, W. R. 1984. Ontogeny, timing of development, and genetic variance-covariance structure. Am. Nat. 123:519–540.

    Google Scholar 

  • Bairlein, F. 1985. Efficiency of food utilization during fat deposition in the long distance migratory garden warbler, Sylvia borin. Oecologia 68:118–125.

    Google Scholar 

  • Barnes, G. G. and V G. Thomas. 1987. Digestive organ morphology, diet, and guild structure of North American Anatidae. Can. J. Zool. 65:1812–1817.

    Google Scholar 

  • Barnes, A., Y. Yom-Tov, and J. Friedman. 1991. Does ingestion by birds affect seed germination? Funct. Ecol. 5:394–402.

    Google Scholar 

  • Bednekoff, P. A. and A. I. Houston. 1994. Avian daily foraging patterns: effects of digestive constraints and variability. Evol. Ecol. 8:36–52.

    Google Scholar 

  • Belovsky, G. E. 1984. Herbivore optimal foraging: a comparative test of three models. Am. Nat. 124:97–115.

    Google Scholar 

  • Berthold, P. 1975. Migration: Control and metabolic physiology. In Avian Biology; vol. 5, eds. D. S. Farner, and J. R. King, pp. 77–128. Academic Press, New York.

    Google Scholar 

  • Biebach, H., W. Friedrich, and G. Heine. 1986. Interaction of bodymass, fat, foraging and stopover period in trans-sahara migrating passerine birds. Oecologia 69:370–379.

    Google Scholar 

  • Biviano, A. B., C. Martinez del Rio, and D. L. Phillips. 1993. Post-hatching ontogenesis of sucrase and maltase in chickens (Gallus gallus) fed contrasting purified diets. J. Comp. Physiol. 163:508–518.

    CAS  Google Scholar 

  • Blem, C. R. 1980. The energetics of migration. In Animal Migration, Orientation, and Navigation, ed. S. A. Gauthreaux, pp. 175–224. Academic Press, New York.

    Google Scholar 

  • Boag, P. T. 1987. Effects of nestling diet on growth and adult size of Zebra Finches (Poephila guttata). Auk 104:155–166.

    Google Scholar 

  • Brugger, K. E. 1991. Anatomical adaptation of the gut to diet in Red-winged Blackbirds (Agelaius phoeniceus). Auk 108:562–567.

    Google Scholar 

  • Brugger, K. E. 1992. Repellency of sucrose to captive American Robins. J. Midi. Manage. 56:794–799.

    Google Scholar 

  • Castro, G., N. Stoyan, and J. P. Myers. 1989. Assimilation efficiency in birds: a function of taxon or food type? Comp. Biochem. Physiol. 92A:271–278.

    Google Scholar 

  • Coleman, J. D. 1974. Breakdown rates of foods ingested by Starlings. J. Wildl. Manage. 38:910–912.

    Google Scholar 

  • Courtney, S. P. and R. Salabanks. 1992. It takes guts to handle fruits. Oikos 65:163–166.

    Google Scholar 

  • Custer, T. W. and F. A. Pitelka. 1975. Correction factors for digestion rates for prey taken by Snow Bunting (Plectrophenax nivalis). Condor 77:210–212.

    Google Scholar 

  • Davis, J. 1961. Some seasonal changes in morphology of the Rufous-sided Towhee. Condor 63:313–321.

    Google Scholar 

  • Diamond, J. M. 1991. Evolutionary design of intestinal nutrient absorption: enough but not too much. News Physiol. Sci. 6:92–96.

    Google Scholar 

  • Diamond, J. M. and W. H. Karasov. 1984. Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. J. Physiol 349:419–440.

    PubMed  CAS  Google Scholar 

  • Drobney, R. D. 1984. Effect of diet on visceral morphology of breeding Wood Ducks. Auk 101:93–98.

    Google Scholar 

  • Duke, G. E. 1989. Gastrointestinal motility and its regulation. Poult. Sci. 61:1245–1256.

    Google Scholar 

  • Dykstra, C. R. and W. H. Karasov. 1992. Changes in gut structure and function in House Wrens (Troglodytes aedori) in response to increased energy demands. Physiol. Zool. 65:422–442.

    Google Scholar 

  • Dykstra, C. R. and W. H. Karasov. 1993a. Nesting energetics of House Wrens (Troglodytes aedon) in relation to maximal rates of energy flow. Auk 110:481–491.

    Google Scholar 

  • Dykstra, C. R. and W. H. Karasov. 1993b. Daily energy expenditure by nestling House Wrens (Troglodytes aedon). Condor 95:1028–1030.

    Google Scholar 

  • Escribano, E, B. I. Rahn, and J. L. Sell. 1988. Development of lipase activity in yolk membrane and pancreas of young turkeys. Poult. Sci. 67:1089–1097.

    PubMed  CAS  Google Scholar 

  • Feare, C. J. and M. McGinnity. 1986. The relative importance of invertebrates and barley in the diet of Starlings Sturnus vulgaris. Bird Study 33:164–167.

    Google Scholar 

  • Fenna, L. and D. A. Boag. 1974. Adaptive significance of the caeca in Japanese quail and spruce grouse (Galliformes). Can. J. Zool. 52:1577–1584.

    PubMed  CAS  Google Scholar 

  • Gasaway, W. C.1976. Seasonal variation in diet, volatile fatty acid production and size of the cecum of Rock Ptarmigan. Comp. Biochem. Physiol. 53 A: 109–114.

    CAS  Google Scholar 

  • Green, R. E., M. R. W. Rands, and S. J. Moreby. 1987. Species differences in diet and the development of seed digestion in partridge chicks Perdixperdix and Alectoris rufa. Ibis 129:511–514.

    Google Scholar 

  • Guglielmo, C. G. and W. H. Karasov. 1993. Endogenous losses of mass and energy in Ruffed Grouse. Auk 110:386–390.

    Google Scholar 

  • Guglielmo, C. G., W. J. Jakubas, and W. H. Karasov. 1996. Nutritional costs of a plant secondary metabolite to an avian herbivore: the basis for avoidance of coniferyl benzoate in quaking aspen flower buds by Ruffed Grouse. Ecology (in press).

    Google Scholar 

  • Halse, S. A. 1984. Food intake, digestive efficiency, and retention time in spur-winged geese Plectropterus gambensis. S. Afr. J. Wildl. Res. 14:106–110.

    Google Scholar 

  • Hixon, M. A. 1982. Energy maximizers and time minimizers: theory and reality. Am. Nat. 119:596–599.

    Google Scholar 

  • Hulan, H. W. and F. H. Bird. 1972. Effect of fat level in isonitrogenous diets on the composition of avian pancreatic juice. J. Nutr. 102:459–468.

    PubMed  CAS  Google Scholar 

  • Imondi, A. R. and F. H. Bird. 1966. The turnover of intestinal epithelium in the chick. Poult. Sci. 45:142–147.

    PubMed  CAS  Google Scholar 

  • Imondi, A. R. and F. H. Bird. 1967. Effects of dietary protein level on growth and proteolytic activity of the avian pancreas. J. Nutr. 91:421–428.

    PubMed  CAS  Google Scholar 

  • Jakubas, W. J., W. H. Karasov, and C. G. Guglielmo. 1993. Ruffed grouse tolerance and bio-transformation of the plant secondary metabolite coniferyl benzoate. Condor 95:625–640.

    Google Scholar 

  • Jehl, J. R. 1994. Nothing is forever: cyclical reorganization of body composition in Eared Grebes. J. Ornithol. 135:103(abstract).

    Google Scholar 

  • Karasov, W. H. 1988. Nutrient transport across vertebrate intestine. In Advances in Compar-ative and Environmental Physiology, ed. R. Gilles, pp. 131–172. Springer-Verlag, Berlin.

    Google Scholar 

  • Karasov, W. H. 1990. Digestion in birds: chemical and physiological determinants and eco-logical implications. In Avian Foraging: Theory, Methodology, and Applications, eds. M. L. Morrison, C. J. Ralph, J. Verner, and J. R. Jehl, Studies in Avian Biology No. 13, pp. 391–415. Cooper Ornithological Society, Lawrence, Kansas.

    Google Scholar 

  • Karasov, W. H. 1992. Tests of the adaptive modulation hypothesis for dietary control of in-testinal nutrient transport. Am. J. Physiol 263:R496–R502.

    PubMed  CAS  Google Scholar 

  • Karasov, W. H. 1994. Digestive adaptations in avian omnivores. In Nutrition in a Sustainable Environment, ed. M. Wahlqvist, Proc. XVth Int. Cong. Nutr. pp. 494–497. Smith-Gordon, Edinburgh: UK.

    Google Scholar 

  • Karasov, W. H. and S. J. Cork. 1994. Glucose absorption by a nectarivorous bird: the passive pathway is paramount. Am. J. Physiol. 267:G18–G26.

    PubMed  CAS  Google Scholar 

  • Karasov, W. H. and S. J. Cork. 1996. Test of a reactor-based digestion optimization model for nectar-eating Rainbow Lorikeets. Physiol. Zool. 69:117–138.

    Google Scholar 

  • Karasov, W. H. and J. M. Diamond. 1983. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am. J. Physiol 245:G443–G462.

    PubMed  CAS  Google Scholar 

  • Karasov, W. H. and I. D. Hume. 1996. Vertebrate gastrointestinal system. In Handbook of Comparative Physiology, ed. W. Dantzler, in press. American Physiological Society, Washington, DC.

    Google Scholar 

  • Karasov, W. H. and D. J. Levey. 1990. Digestive system tradeoffs and adaptations of frugivorous birds. Physiol Zool. 63:1248–1270.

    Google Scholar 

  • Karasov, W. H., M. W. Meyer, and B. W. Darken. 1992. Tannic acid inhibition of amino acid and sugar absorption by mouse and vole intestine: tests following acute and subchronic exposure. J. Chem. Ecol. 18:719–736.

    CAS  Google Scholar 

  • Karasov, W. H., D. Phan, J. M. Diamond, and F. L. Carpenter. 1986. Food passage and intestinal nutrient absorption in hummingbirds. Auk 103:453–464.

    Google Scholar 

  • Karasov, W. H., D. Afik, and B. W. Darken. 1996. Do Northern Bobwhite quail modulate intestinal nutrient absorption in response to dietary change? A test of an adaptational hypothesis. Comp. Biochem. Physiol. (in press).

    Google Scholar 

  • Kehoe, F. P. and C. D. Ankney. 1985. Variation in digestive organ size among five species of diving ducks (Avthva spp.). Can. J. Zool. 63:2339–2342.

    Google Scholar 

  • Kehoe, F. P., C. D. Ankney, and R. T. Alisauskus. 1988. Effects of dietary fiber and diet di-versity on digestive organs of captive mallards (Anas platyrynchos). Can. J. Zool. 66:1597–1602.

    Google Scholar 

  • Kenward, R. E. and R. M. Sibly. 1977. A woodpigeon (Columba palumbus) feeding prefer-ence explained by a digestive bottleneck. J. Appl. Ecol. 14:815–826.

    Google Scholar 

  • Kenward, R. E. and R. M. Sibly. 1978. Woodpigeon feeding behavior at Brassica-sites. A field and laboratory investigation of woodpigeon feeding behavior during adoption and maintenance of a Brassica diet. Anim. Behav. 26:778–790.

    Google Scholar 

  • King, J. R. 1961. The bioenergetics of vernal premigratory fat deposition in the White- crowned Sparrow. Condor 63:128–142.

    Google Scholar 

  • Klaassen, M. and H. Biebach. 1994. Energetics of fattening and starvation in the longdistance migratory garden warbler, Sylvia borin, during the migratory stage. J. Comp. Physiol. B164:362–371.

    Google Scholar 

  • Koenig, W. D. 1991. The effects of tannins and lipids on digestion of acorns by Acorn Woodpeckers. Auk 108:79–88.

    Google Scholar 

  • Konarzewski, M., J. Kozlowski, and M. Ziolko. 1989. Optimal allocation of energy to growth of alimentary tract in birds. Funct. Ecol. 3:589–596.

    Google Scholar 

  • Konarzewski, M., C. Lilja, J. Kozlowski, and B. Lewonczuk. 1990. On the optimal growth of the alimentary tract in avian postembryonic development. J. Zool. (London) 222:89–101.

    Google Scholar 

  • Krogdahl, A. and J. L. Sell. 1989. Influence of age on lipase, amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult. Sci. 68:1561–1568.

    PubMed  CAS  Google Scholar 

  • Langslow, D. R. 1976. Weights of blackcap on migration. Ringing and Migration 1:78–92.

    Google Scholar 

  • Lei, K. Y. and S. J. Slinger. 1970. Energy utilization in the chick in relation to certain envi-ronmental stress. Can. J. Anim. Sci. 50:285–292.

    Google Scholar 

  • Levey, D. J. and M. L. Cipollini. 1996. Glucose absorption is primarily passive in quail. Comp. Biochem. Physiol. (in press).

    Google Scholar 

  • Levey, D. J. and A. Grajal. 1991. Evolutionary implications of fruit-processing limitations in Cedar Waxwings. Am. Nat. 138:171–189.

    Google Scholar 

  • Levey, D. J. and W. H. Karasov. 1989. Digestive responses of temperate birds switched to fruit or insect diets. Auk 106:675–686.

    Google Scholar 

  • Levey, D. J. and W. H. Karasov. 1992. Digestive modulation in a seasonal frugivore, the American Robin (Turdus migratorius). Am. J. Physiol. 262:G711–G718.

    PubMed  CAS  Google Scholar 

  • Levey, D. J., and W. H. Karasov. 1994. Gut passage of insects by European starlings and a comparison with other species. Auk 111:478–481.

    Google Scholar 

  • Lilja, C. 1983. A comparative study of postnatal growth and organ development in some species of birds. Growth 47:317–339.

    PubMed  CAS  Google Scholar 

  • Lilja, C., I. Sperber, and H. L. Marks. 1985. Postnatal growth and organ development in Japanese quail selected for high growth rate. Growth 49:51–62.

    PubMed  CAS  Google Scholar 

  • Lindstrom, A. 1991. Maximum fat deposition rates in migrating birds. Ornis Scand. 22:12–19.

    Google Scholar 

  • Malcarney, H. L., C. Martinez del Rio, and V Apanius. 1994. Sucrose intolerance in birds: simple nonlethal diagnostic methods and consequences for assimilation of complex carbohydrates. Auk 111:170–177.

    Google Scholar 

  • Malone, C. R. 1965. Dispersal of plankton: rate of food passage in mallard ducks. J. Wildl. Manage. 29:529–533.

    Google Scholar 

  • Marks, H. L. 1988. Body-weight in Coturnix following long-term selection under different environments. In Acta XIX Congressus Internationalis Ornithologici, ed. H. Ouellet pp.1434–1443. National Museum of Natural Sciences, University of Ottawa Press, Ottawa, Canada.

    Google Scholar 

  • Martinez del Rio, C. 1990. Dietary, phylogenetic, and ecological correlates of intestinal su- crase and maltase activity in birds. Physiol Zool 63:987–1011.

    CAS  Google Scholar 

  • Martinez del Rio, C. and W. H. Karasov. 1990. Digestion strategies in nectar- and fruit- eating birds and the sugar composition of plant rewards. Am. Nat. 136:618–637.

    Google Scholar 

  • Martinez del Rio, C. and C. Restrepo. 1993. Ecological and behavioral consequences of di-gestion in frugivorous animals. Vegetatio 107/108:205–216.

    Google Scholar 

  • Martinez del Rio, C., B. R. Stevens, D. Daneke, and P. T. Andreadis. 1988. Physiological correlates of preference and aversion for sugars in three species of birds. Physiol. Zool. 61:222–229.

    CAS  Google Scholar 

  • Martinez del Rio, C., K. E. Brugger, J. L. Rios, M. E. Vergara, and M. Witmer. 1995. An experimental and comparative study of dietary modulation of intestinal enzymes in the European Starling. Physiol. Zool. 68:490–511.

    CAS  Google Scholar 

  • Mateos, G. G., J. L. Sell, and J. A. Eastwood. 1982. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci. 61:94–100.

    PubMed  CAS  Google Scholar 

  • Meier, A. H. and A. J. Fivizzani. 1980. Physiology of migration. In Animal Migration, Orientation, and Navigation, ed. S. A. Gauthreaux, pp. 225–282. Academic Press, New York.

    Google Scholar 

  • Moss, R. 1974. Winter diets, gut lengths, and interspecific competition in Alaskan ptarmigan. Auk 91:737–746.

    Google Scholar 

  • Moss, R. 1983. Gut size, body weight and digestion of winter food by grouse and ptarmigan. Condor 85:185–193.

    Google Scholar 

  • Murphy, S. R., N. Reid, Y. Zhaugui, and W. N. Venables. 1993. Differential passage time of mistletoe fruits through the gut of honeyeaters and flowerpeckers: effects on seedling establishment. Oecologia 93:171–176.

    Google Scholar 

  • Murray, K. G., S. Russell, C. M. Picone, K. Winnett-Murray, W. Sherwood, and M. L. Kuhlmann. 1994. Fruit laxatives and seed passage rates in frugivores: consequences for plant reproductive success. Ecology 75:989–994.

    Google Scholar 

  • Nir, I., Z. Nitsan, Y. Dror, and N. Shapira. 1978. Influence of overfeeding on growth, obesity and intestinal tract in young chicks of light and heavy breeds. Br. J. Nutr. 39:27–35.

    PubMed  CAS  Google Scholar 

  • Obst, B. S. and J. M. Diamond. 1992. Ontogenesis of intestinal nutrient transport in domestic chickens (Gallus gallus) and its relation to growth. Auk 109:451–464.

    Google Scholar 

  • Owen-Smith, N. and P. Novellie. 1982. What should a clever ungulate eat? Am. Nat. 119:151–178.

    Google Scholar 

  • Pappenheimer, J. R. 1990. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am. J. Physiol. 259:G290–G299.

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J. R. 1993. On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am. J. Physiol. 265:G409–G417.

    PubMed  CAS  Google Scholar 

  • Penry, D. L. and P. A. Jumars. 1987. Modeling animal guts as chemical reactors. Am. Nat. 129:69–96.

    CAS  Google Scholar 

  • Piersma, T., A. Koolhaas, and A. Dekinga. 1993. Interactions between stomach structure and diet choice in shorebirds. Auk 110:552–564.

    Google Scholar 

  • Prop, J. and T. Vulink. 1992. Digestion by barnacle geese in the annual cycle: the interplay between retention time and food quality. Funct. Ecol. 6:180–190.

    Google Scholar 

  • Redig, P. T. 1989. The avian ceca: obligate combusion chambers or facultative afterburners?—the conditioning influence of diet. J. Exp. Zool. Suppl. 3:66–69.

    PubMed  CAS  Google Scholar 

  • Remington, T. E. 1989. Why do grouse have ceca? A test of the fiber digestion theory. J. Exp. Zool. Suppl. 3:87–94.

    PubMed  CAS  Google Scholar 

  • Ricklefs, R. E. 1983. Avian postnatal development. In Avian Biology; vol. VII, eds. D. S. Farner, J. R. King, and K. C. Parkes, pp. 2–83. Academic Press, New York.

    Google Scholar 

  • Robbins, C. T. 1993. Wildlife Feeding and Nutrition. Academic Press, New York.

    Google Scholar 

  • Robbins, C. T., A. E. Hagerman, P. J. Austin, C. McArthur, and T. A. Hanley. 1991. Varia-tion in mammalian physiological responses to a condensed tannin and its ecological im-plications. J. Mamm. 72:480–486.

    Google Scholar 

  • Savory, C. J. and M. J. Gentle. 1976. Effects of dietary dilution with fibre on the food intake and gut dimensions of Japanese quail. Br. Poult. Sci. 17:561–570.

    PubMed  CAS  Google Scholar 

  • Schoener, T. W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Sys. 11:369–404.

    Google Scholar 

  • Sell, J. L., O. Koldovsky, and B. L. Reid. 1989. Intestinal disaccharidases of young turkeys: Temporal development and influence of diet composition. Poult. Sci. 68:265–277.

    PubMed  CAS  Google Scholar 

  • Sell, J. L., A. Krogdahl, and N. Hanyu. 1986. Influence of age on utilization of supplemental fats by young turkeys. Poult. Sci. 65:546–554.

    PubMed  CAS  Google Scholar 

  • Sibly, R. M. 1981. Strategies of digestion and defecation. In Physiological Ecology, eds. C. R. Townsend, and P. Calow, pp. 109–139. Sinouer Assoc., Sunderland, Massachusetts.

    Google Scholar 

  • Siddons, R. C. 1972. Effect of diet on disaccharidase activity in the chick. Biochem. J. 112:51–59.

    Google Scholar 

  • Smith, J. N. M. and P. Arcese. 1988. Effects of supplemental food on growth and adult size in the Song Sparrow. In Acta XIX Congressus Internationalis Ornithologicus, ed. H. Ouellet, pp. 1416–1423. National Museum of Natural Sciences, University of Ottawa Press, Ottawa, Canada.

    Google Scholar 

  • Smith, M. W. and M. A. Peacock. 1989. Comparative aspects of microvillus development in avian and mammalian enterocytes. Comp. Biochem. Physiol. 93A:617–622.

    Google Scholar 

  • Speakman, J. R. 1987. Apparent absorption efficiencies for redshank (Tringa totanus) and oystercather (Haematopus ostralegus): implications for the predictions of optimal foraging models. Am. Nat. 130:677–691.

    Google Scholar 

  • Starck, J. M. 1993. Evolution of avian ontogenies. In Current Ornithology, vol. 10, ed. D. M. Power, pp. 275–366. Plenum Press, New York.

    Google Scholar 

  • Storey, M. L. and N. K. Allen. 1982. Apparent and true metabolizable energy of feedstuffs for mature, nonlaying female Embden Geese. Poult. Sci. 59:1275–1279.

    Google Scholar 

  • Temeles, E. J. 1989. The effect of prey consumption on territorial defense by harriers; differential responses to neighbors versus floaters. Behav. Ecol. Sociobiol. 24:239–243.

    Google Scholar 

  • Tiebout, H. M. III 1989. Tests of a model of food passage rates in hummingbirds. Auk 106:203–208.

    Google Scholar 

  • Vispo, C. and W. H. Karasov. 1996. An elusive symbiosis: the interaction of avian gut microbes and their host, a bird’s-eye view. In Gastrointestinal Microbial Ecology, Ch. 5 ed. R. I. Mackie, (in press). Chapman & Hall, New York.

    Google Scholar 

  • Walsberg, G. E. and C. W. Thompson. 1990. Annual changes in gizzard size and function in a frugivorous bird. Condor 92:794–795.

    Google Scholar 

  • Weathers, W. W. 1992. Scaling nestling energy requirements. Ibis 134:142–153.

    Google Scholar 

  • Weathers, W. W. and K. A. Sullivan. 1989. Juvenile foraging proficiency, parental effort, and avian reproductive success. Ecol. Monogr. 59:223–246.

    Google Scholar 

  • Weiner, J. 1992. Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends in Ecol Evol. 7:384–388.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Karasov, W.H. (1996). Digestive Plasticity in Avian Energetics and Feeding Ecology. In: Carey, C. (eds) Avian Energetics and Nutritional Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0425-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0425-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8046-7

  • Online ISBN: 978-1-4613-0425-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics