Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

Abstract

Signals such as light, hormones, and gravity control diverse physiological and developmental processes throughout the life cycle of plants. How a plant senses these signals and then responds in an appropriate manner has been a subject of great interest. In animal systems, the mechanism of transduction of extracellular signals into intracellular events has been studied in great detail. It involves two major signal pathways. The first pathway employs the messenger cyclic adenosine monophosphate (cyclic AMP), and the second pathway involves a combination of messengers that include inositol trisphosphate (InsP3), diacylglycerol (DAG), and calcium ion (Berridge and Irvine, 1984; Nishizuka, 1986, 1988; Berridge, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Acharya, M. K., Dureja-Munjal, I., and Mukherjee, S., 1991, Light-induced rapid changes in inositol phospholipids and phosphatidyl choline in Brassica seedlings, Phytochemistry 30:2895–2897.

    CAS  Google Scholar 

  • Ahmad, M., and Cashmore, A. R., 1993, HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366:162–164.

    PubMed  CAS  Google Scholar 

  • Alexandre, J., Lassalles, J. P., and Kado, R. T., 1990, Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate, Nature 343:567–570.

    CAS  Google Scholar 

  • Algarra, P., Linder, S., and Thummler, F., 1993, Biochemical evidence that phytochrome of the moss Ceratodon purpureus is a light regulated protein kinase, FEBS Lett. 315:69–73.

    PubMed  CAS  Google Scholar 

  • Bagga, S., Das, R., and Sopory, S. K., 1987, Inhibition of cell proliferation and glyoxalase-I activity by calmodulin inhibitors and lithium in Brassica oleracea, J. Plant Physiol. 129:149–153.

    CAS  Google Scholar 

  • Berridge, M. J., 1987, Inositol trisphosphate and diacylglycerol: Two integrating second messengers, Annu. Rev. Biochem. 56:159–193.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Dawson, R.M.C., Downes, C. P., Heslop, J. P., and Irvine, R. F., 1983, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phospho-inositides, Biochem. J. 212:473–482.

    PubMed  CAS  Google Scholar 

  • Bhatla, S. C., 1994, Moss Protonema Differentiation, Research Studies Press, Taunton, England.

    Google Scholar 

  • Biffen, M., and Hanke, D., 1990, Polyphosphoinositide activity in soybean membrane is Ca2+ dependent and shows no requirement for guanine nucleotides, Plant Sci. 69:147–155.

    CAS  Google Scholar 

  • Biswas, B. B., Biswas, S., Chakrabarty, S., and De, B. P., 1978, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds, in Cyclitols and Phosphos-phoinositides (W.W.F. Eisenberg, Jr., ed.), pp. 57–68, Academic Press, New York.

    Google Scholar 

  • Bilush, S. V., Shebunin, A. G., and Babakov, A. V., 1991, Purification and subunit composition of a GTP-binding protein from maize root plasma membrane, FEBS Lett. 291:219–221.

    Google Scholar 

  • Blatt, M. R., Thiel, G., and Trentham, D. R., 1990, Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate, Nature 346:766–768.

    PubMed  CAS  Google Scholar 

  • Blowers, D. P., and Trewavas, A. J., 1988, Phosphatidylinositol kinase activity of a plasma membrane-associated calcium-activated protein kinase from pea, FEBS Lett. 238:87–89.

    CAS  Google Scholar 

  • Blum, W., Hinsch, K. D., Schultz, G., and Weiler, E. W., 1988, Identification of GTP binding proteins in the plasma membrane of higher plants, Biochem. Biophys. Res. Commun. 156:954–959.

    PubMed  CAS  Google Scholar 

  • Boss, W. F., and Massel, M. O., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun. 132:1018–1023.

    PubMed  CAS  Google Scholar 

  • Boss, W. F., and Moore, J. D., 1989, Second Messengers in Plant Growth and Development, Alan R. Liss, New York.

    Google Scholar 

  • Bossen, M. G., Kendrick, R. E., and Vredenberg, W. J., 1990, The involvement of a G-protein in phytochrome-regulated Ca2+-dependent swelling of etiolated wheat protoplasts, Physiol. Plant. 80:55–62.

    CAS  Google Scholar 

  • Bowler, C., Neuhaus, G., Yamagata, H., and Chua, N. H., 1994, Cyclic GMP and calcium mediated phytochrome phototransduction, Cell 77:73–81.

    PubMed  CAS  Google Scholar 

  • Brown, E. F., and Newton, R. P., 1981, Cyclic AMP in higher plants, Phytochemistry 20:2453–2463.

    CAS  Google Scholar 

  • Chandok, M. R., 1993, Molecular Nature of Signal Transduction in Phytochrome Mediated Stimulation of Nitrate Reductase in Maize: Involvement of Protein Kinase C and Phosphoinositides, Ph.D. thesis, Jawaharlal Nehru University, New Delhi.

    Google Scholar 

  • Chandok, M. R., and Sopory, S. K., 1992, Phorbol myristate acetate replaces phytochrome-mediated stimulation of nitrate reductase in maize, Phytochemistry 31:2255–2258.

    CAS  Google Scholar 

  • Chandok, M. R., and Sopory, S. K., 1994, 5-Hydroxytryptamine affects turnover of phosphoinositides and stimulates nitrate reductase in absence of light, FEBS Lett. 356:39–42.

    PubMed  CAS  Google Scholar 

  • Chandok, M. R., and Sopory, S. K., 1995, Signal response coupling in light mediated stimulation of enzymes, Trans. Bose Res. Inst. Calcutta (in press).

    Google Scholar 

  • Chicha, A., Demandre, C., Justin, A., and Mazliak, P., 1994, The molecular species of phosphatidylinositol and phosphatidylinositol phosphate evidenced in the coleoptiles and first leaves of maize (Zea mays L.), C. R. Acad. Sci. Paris 317:419–423.

    CAS  Google Scholar 

  • Choquette, D., Hakim, G., Foloteo, A. G., Plisher, G. A., Bostwick, J. R., and Penniston, J. T., 1984, Regulation of plasma membrane Ca2+ ATPases by phosphatidylinositol cycle, Biochem. Biophys. Res. Commun. 125:908–915.

    PubMed  CAS  Google Scholar 

  • Clark, G. B., Memon, A. R., Tong, C. G., Thompson, G. A., Jr., and Roux, S. J., 1993, Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei, Plant J. 4:399–402.

    PubMed  CAS  Google Scholar 

  • Cornelius, G., and Nakashima, H., 1987, Vacuoles play a decisive role in calcium homeostasis in Neurospora crassa, J. Gen. Microbiol. 133:2341–2347.

    CAS  Google Scholar 

  • Corson, D. W., and Fein, A., 1987, Inositol 1,4,5-trisphosphate induces bursts of calcium release inside Limulus ventral photoreceptors, Brain Res. 423:343–346.

    PubMed  CAS  Google Scholar 

  • Coté, G. G., and Crain, R. C., 1993, Biochemistry of phosphoinositides, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356.

    Google Scholar 

  • Coté, G. G., and Crain, R. C., 1994, Why do plants have phosphoinositides?, Bioessays 16:39–46.

    Google Scholar 

  • Das, R., and Sopory, S. K., 1985, Evidence of regulation of calcium uptake by phytochrome in maize protoplasts, Biochem. Biophys. Res. Commun. 128:1455–1460.

    PubMed  CAS  Google Scholar 

  • Das, R., Bagga, S., and Sopory, S. K., 1987, Involvement of polyphosphoinositides, calmodulin and glyoxalase I in cell proliferation in callus cultures of Amaranthus paniculatus, Plant Sci. 53:45–57.

    CAS  Google Scholar 

  • Dillenschneider, A., Hetherington, A., Graziana, A., Alibert, G., Berta, P., Haiech, J., and Ran-jeva, R., 1986, The formation of inositol phosphate derivatives by isolated membranes from Acer pseudoplatanus is stimulated by guanine nucleotides, FEBS Lett. 208:413–417.

    CAS  Google Scholar 

  • Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.

    PubMed  Google Scholar 

  • Drøbak, B. K., 1993, Plant phosphoinositides and intracellular signalling, Plant Physiol. 102:705–709.

    PubMed  Google Scholar 

  • Drøbak, B. K., and Ferguson, I. B. 1985, Release of calcium from plant hypocotyl microsomes by inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 130:1241–1246.

    PubMed  Google Scholar 

  • Drøbak, B. K., Allan, E. F., Comerford, J. G., Roberts, K., and Dawson, A. P., 1988, Presence of guanine nucleotide-binding proteins in plant hypocotyl microsomal fraction, Biochem. Biophys. Res. Commun. 150:899–903.

    PubMed  Google Scholar 

  • Drøbak, B. K., Watkins, P.A.C., Valenta, R., Dove, S. K., Lloyd, C. W., and Straiger, C. J., 1994, Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding, profilin, Plant J. 6:389–400.

    Google Scholar 

  • Einspahr, K. J., Peeler, T. C., and Thompson, G. A., Jr., 1989, Phosphatidylinositol 4,5-bisphosphate, phospholipase C., and Phosphomonoesterase in Dunaliella salina membranes, Plant Physiol. 90:1115–1120.

    PubMed  CAS  Google Scholar 

  • Elliot, D. C., and Kokke, Y. S., 1987, Partial purification and properties of a protein kinase C type enzyme from plants, Phytochemistry 26:2929–2935.

    Google Scholar 

  • Elliot, D. C., Fournier, A., and Kokke, Y. S., 1988, Phosphatidylserine activation of plant protein kinase C., Phytochemistry 27:3725–3730.

    Google Scholar 

  • Ettlinger, C., and Lehle, L., 1988, Auxin induces rapid changes in phosphatidylinositol metabolites, Nature 331:176–178.

    PubMed  CAS  Google Scholar 

  • Favre, B., and Turian, G., 1987, Identification of a calcium and phospholipid dependent protein kinase (protein kinase C) in Neurospora crassa, Plant Sci. 49:15–21.

    CAS  Google Scholar 

  • Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation, adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.

    PubMed  CAS  Google Scholar 

  • Gilroy, S., Read, N. D., and Trewavas, A. J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature 346:768–770.

    Google Scholar 

  • Guron, K., Chandok, M. R., and Sopory, S. K., 1992, Phytochrome-mediated rapid changes in the levels of phosphoinositides in etiolated leaves of Zea mays, Photochem. Photobiol. 56:691–695.

    CAS  Google Scholar 

  • Hartmann, E., and Jenkins, G., 1984, Photomorphogenesis of mosses and liverworts, in The Experimental Biology of Bryophytes (A. F. Dyer, ed.), pp. 203–228, Academic Press, London.

    Google Scholar 

  • Hartmann, E., and Pfaffmann, H., 1990, Phosphatidylinositol and phytochrome-mediated phototrop-ism of moss protonema tip cells, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. A. Loewus, eds.), pp. 259–275, Wiley-Liss, New York.

    Google Scholar 

  • Hartmann, E., and Weber, M., 1988, Storage of phytochrome-mediated phototropic response of moss protonemal cells, Planta 175:39–49.

    CAS  Google Scholar 

  • Harwood, J. L., 1980, Lipids: Structure and function, in The Biochemistry of plants, Vol. 4 (P. K. Stumpf, ed.), pp. 1–55, Academic Press, New York.

    Google Scholar 

  • Hasunuma, K., and Funadera, K., 1987, GTP-binding protein(s) in green plant, Lemna paucicostata, Biochem. Biophys. Res. Commun. 143:908–912.

    CAS  Google Scholar 

  • Hasunuma, K., Furaukawa, K., Funadera, K., Kubota, M., and Watanabe, M., 1987a, Partial characterization and light-induced regulation of GTP-binding proteins in Lemna paucicostata, Photochem. Photobiol. 46:531–535.

    CAS  Google Scholar 

  • Hasunuma, K., Furaukawa, K., Tornita, K., Mukai, C., and Nakamura, T., 1987b, GTP-binding proteins in etiolated epicotyls of Pisum sativum (Alaska) seedlings, Biochem. Biophys. Res. Commun. 148:133–139.

    PubMed  CAS  Google Scholar 

  • Hayashi, F., Sokabe, M., Takagi, M., Hayashi, K., and Kishimoto, U., 1978, Calcium-sensitive univalent cation channel formed by lysotriphosphoinositide in bilayer lipid membranes, Bio-chim. Biophys. Acta 510:305–315.

    CAS  Google Scholar 

  • Helsper, J.P.F.G., DeGroot, P.F.M., Linskens, H. F., and Jackson, J. F., 1986, Phosphatidylinositol phospholipase C activity in pollen in Lilium longiflorum, Biochem. J. 25:2053–2055.

    Google Scholar 

  • Hepler, P. K., and Wayne, R. O., 1985, Calcium and plant development, Annu. Rev. Plant Physiol. 35:397–439.

    Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., Drobak, B. K., Dawson, A. P., and Musgraue, A., 1989, Phosphatidylinositol(4,5)biophosphate and phosphatidylinositol(4)phosphate in plant tissues, Plant Physiol. 89:888–892.

    PubMed  CAS  Google Scholar 

  • Jacobs, M., Thelen, M. P., Farndale, R. W., Astle, M. C., and Rubey, P. H., 1988, Specific guanine nucleotide binding by membranes from Curcurbita pepo seedlings, Biochem. Biophys. Res. Commun. 155:1478–1484.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y., Coté, G. G., and Crain, R. C., 1992, Effect of light on the membrane potential of protoplasts from Samanea saman pulvini: Involvement of K+ and H+-ATPase, Plant Physiol. 99:1532–1539.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y., Coté, G. G., and Crain, R. C., 1993, Potassium channels in Samanea saman protoplasts controlled by phytochrome and biological clock, Science 260:960–962.

    PubMed  CAS  Google Scholar 

  • Kurosaki, F., Tsurusawa, Y., and Nishi, A., 1987, Breakdown of phosphatidyl inositol during elicitation of phytoalexin production in cultured cells, Plant Physiol. 85:601–604.

    PubMed  CAS  Google Scholar 

  • Litosh, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260:5464–5471.

    Google Scholar 

  • Longeran, T. A., 1990, Steps linking the photosynthetic light reaction to the biological clock require calcium, Plant Physiol. 93:110–115.

    Google Scholar 

  • McMurray, W. C., and Irvine, R. F., 1988, Phosphatidyl-4,5-biphosphate phosphodiesterase in higher plants, Biochem. J. 249:877–881.

    PubMed  CAS  Google Scholar 

  • Melin, P. M., Sommarin, M., Sandelius, A. S., and Jergil, B., 1987, Identification of Ca2+ stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes, FEBS Lett. 223:87–91.

    PubMed  CAS  Google Scholar 

  • Memon, A. R., and Boss, W. F., 1990, Rapid light-induced changes in phosphoinositide kinases and H+-ATPase in plasma membrane of sunflower hypocotyls, J. Biol. Chem. 265:14817–14821.

    PubMed  CAS  Google Scholar 

  • Mohr, H., 1972, Lectures on Photomorphogenesis, Springer-Verlag, Berlin.

    Google Scholar 

  • Morre, D. J., Gripshover, B., Monroe, A., and Morre, J. T., 1984, Phosphatidyl turnover in isolated soybean membranes stimulated by synthetic growth hormone, 2,4-dichlorophenoxyacetic acid, J. Biol. Chem. 259:15364–15368.

    PubMed  CAS  Google Scholar 

  • Morse, M. J., Crain, R. C., and Satter, R. L., 1987a, Phosphatidylinositol cycle metabolites in Samanea saman pulvinus, Plant Physiol. 83:640–644.

    PubMed  CAS  Google Scholar 

  • Morse, M. J., Crain, R. C., and Satter, R. L., 1987b, Light-stimulated inositol phospholipid turnover in Samanea saman leaf pulvini, Proc. Natl. Acad. Sci. USA 84:7075–7078.

    PubMed  CAS  Google Scholar 

  • Morse, M. J., Satter, R. L., Crain, R. C., and Coté, G. G., 1989, Signal transduction and phosphatidylinositol turnover in plants, Physiol. Plant. 76:118–121.

    CAS  Google Scholar 

  • Morse, M. J., Crain, R. C., Coté, G. G., and Satter, R. L., 1990, Light-signal transduction via accelerated inositol phospholipid turnover in Samanea pulvini, in Inositol Metabolism in Plants (J. D. Morre, W. F. Boss, and F. A. Loewus, eds.), PP-201–205, Wiley-Liss, New York.

    Google Scholar 

  • Murthy, P.P.N., Renders, J. M., and Keranen, L. M., 1989, Phosphoinositides in barley aleurone layers and gibberellic acid induced changes in metabolism, Plant Physiol. 91:1266–1269.

    PubMed  CAS  Google Scholar 

  • Newton, R. P., and Brown, E. G., 1986, The biochemistry and physiology of cyclic AMP in higher plants, in Hormones, Receptors and Cellular Interactions (C.M. Chadwick and D. R. Garrod, eds.), pp. 115–153. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C., Science 233:305–312.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334:661–665.

    PubMed  CAS  Google Scholar 

  • Olah, Z., and Kiss, Z., 1986, Occurrence of lipid and phorbol ester activated protein kinase in wheat cell, FEBS Lett. 195:33–37.

    CAS  Google Scholar 

  • Pal, S., Acharaya, M. K., and Mukherjee, S. G., 1993, Red light-mediated changes in inositol phospholipids and phosphatidylcholine in Brassica hypocotyls, Phytochemistry 32:832–825.

    Google Scholar 

  • Perdue, D. O., LaFaure, A. K., and Leopold, A. C., 1988, Calcium in the regulation of gravitropism by light, Plant Physiol. 86:1276–1280.

    PubMed  CAS  Google Scholar 

  • Pfaffmann, H., Hartmann, E., Brightman, A. O., and Morre, D. J., 1987, Phosphatidylinositol specific phospholipase C of plant stems: Membrane associated activity concentrated in plasma membranes, Plant Physiol. 85:1151-1155.

    PubMed  CAS  Google Scholar 

  • Pical, C., Sandelius, A. S., Melin, P. M., and Sommarin, M., 1992, Polyphosphoinositide phospholipase C in plasma membranes of wheat, Plant Physiol. 100:1296–1303.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B. W., McFadden, J. J., and Reddy, A.S.N., 1987, The role of calcium ions in gravity signal perception and transduction, Physiol. Plant, 71:401–407.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B. W., and Reddy, A.S.N., 1987, Calcium messenger system in plants, CRC Crit. Rev. Plant Sci. 6:47–103.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B. W., and Reddy, A.S.N., 1989, Calcium and root development: Importance of calcium in signal transduction, in Plant Roots (Y. Woisel, A. Eshel, and V. Kaffafi, eds.), pp. Marcel Dekker, New York.

    Google Scholar 

  • Poovaiah, B. W., and Reddy, A.S.N., 1990a, Turnover of inositol phospholipids and calcium dependent protein phosphorylation in signal transduction, in Inositol Metabolism in Plants (D.J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 335–350, Wiley-Liss, New York.

    Google Scholar 

  • Poovaiah, B.W., and Reddy, A.S.N., 1990b, The role of calcium in signal transduction, in Proceedings of the International Congress on Plant Physiology (S. K. Sinha, P. V. Sane, S. C. Bhargava, and P. K. Agarwal, eds.), pp. 735–749, Society for Plant Physiology and Biochemistry, New Delhi.

    Google Scholar 

  • Raghuram, N., and Sopory, S. K., 1995, Evidence for some common signal transduction events for opposite regulation of nitrate reductase and phytochrome-I gene expression by light, Plant Mol. Biol. 29:25–35.

    PubMed  CAS  Google Scholar 

  • Ranjeva, R., and Boudet, A. M., 1989, Signal Perceptions and Transduction in Higher Plants, Springer-Verlag, New York.

    Google Scholar 

  • Ranjeva, R., Carrasco, A., and Boudet, A. M., 1988, Inositol triphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells, FEBS Lett. 230:137–141.

    CAS  Google Scholar 

  • Reddy, A.S.N., McFadden, J. J., Friedmann, M., and Poovaiah, B. W., 1987, Signal transduction in plants: Evidence for the involvement of calcium and turnover of inositol phospholipids, Bio-chem. Biophys. Res. Commun. 149:334–339.

    CAS  Google Scholar 

  • Rincon, M., and Boss, W. F., 1987, myo-Inositol triphosphate mobilizes calcium from fusogenic carrot (Daucus carota L.) protoplasts, Plant Physiol. 83:395–398.

    PubMed  CAS  Google Scholar 

  • Roberts, D. M., and Harmon, A. C., 1992, Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:375–414.

    CAS  Google Scholar 

  • Romero, L. C., Biswal, B., and Song, P. S., 1991a, Protein phosphorylation in isolated nuclei from etiolated Avena seedlings. Effects of red/far-red light and cholera toxin, FEBS Lett. 282:347–380.

    PubMed  CAS  Google Scholar 

  • Romero, L. C., Sommer, D., Gotor, C., and Song, P. S., 1991b, G-protein in etiolated Avena seedlings. Possible phytochrome regulation, FEBS Lett. 282:341–346.

    PubMed  CAS  Google Scholar 

  • Roux, S. J., and Serlin, B. S., 1987, Cellular mechanisms controlling light stimulated gravitropism: Role of calcium. CRC Crit. Rev. Plant Sci. 5:205–236.

    PubMed  CAS  Google Scholar 

  • Roux, S. J., and Slocum, R. D., 1982, Role of calcium in mediating cellular functions important for growth and development in higher plants, in Calcium and Cell Function, Vol. III (W. Y. Cheung, ed.), pp. 409–453, Academic Press, New York.

    Google Scholar 

  • Roux, S. J., Wayne, R. C., and Datta, N., 1986, Role of calcium ions in phytochrome responses: An update, Physiol. Plant. 66:344–348.

    PubMed  CAS  Google Scholar 

  • Sandelius, A. S., and Sommarin, M., 1986, Phosphorylation of phosphatidylinositols in isolated plant membranes, FEBS Lett. 201:282–286.

    CAS  Google Scholar 

  • Sasaki, T., Song, J., Koga-Ban, Y., Matsui, E., Fang Fang, Higo, H., Nagasaki, H., Hori, M., Miya, M., Murayamakayano, E., Takiguchi, T., Takasuga, A., Niki, T., Ishimaru, K., Ikeda, H., Yamamoto, Y., Mukai, Y., Ohta, Isamu, Miyadera, N., Havukkala, I. and Minobe, Y., 1994, Toward cataloguing all rice genes: Large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library, Plant J. 6:615–624.

    PubMed  CAS  Google Scholar 

  • Satter, R. L., Geballe, G. T., Applewhite, P. B., and Glaston, A. W., 1974, Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement, J. Gen. Physiol. 64:413–430.

    PubMed  CAS  Google Scholar 

  • Satter, R. L., Guggino, S. E., Lonergan, T. A., and Galston, A. W., 1981, The effect of blue and far-red light on rhythmic leaflet movements in Samanea and Albizzia, Plant Physiol. 64:965–968.

    Google Scholar 

  • Schafer, A., Bygrave, F., Matzenauer, S., and Marme, D., 1985, Identification of a calcium and phospholipid-dependent protein kinase in plant tissue, FEBS Lett. 187:25–28.

    Google Scholar 

  • Schafer, M., Behele, G., Varsannyi, M., and Heilmeyer, L.M.G., Jr., 1987, Ca+2-regulation of l-(sn-phosphatidyl)-1D-myo-inositol-4-phosphate formation and hydrolysis on sarcoplasmic reticulum Ca+2-transport ATPase: A new principle of phospholipid turnover regulation, Biochem. J. 249:579–587.

    Google Scholar 

  • Scherer, G., 1990, Phospholipid-activated protein kinase in plants: Coupled to phospholipase A2? in Signal Perception and Transduction in Higher Plants (R. Ranjeva and A. M., Boudet, eds.) pp. 69–82, Springer-Verlag, New York.

    Google Scholar 

  • Schumaker, K. S., and Sze, H., 1987, Inositol 1,4,5-triphosphate releases calcium from vacuolar membrane vesicles of oat roots, J. Biol. Chem. 262:3944–3946.

    PubMed  CAS  Google Scholar 

  • Sharma, A. K., Raghuram, N., Chandok, M. R., Das, R., and Sopory, S. K., 1994, Characterization of phytochrome induced transmitter for the stimulation of nitrate reductase in etiolated leaves of maize, J. Exp. Bot. 45:485–490.

    CAS  Google Scholar 

  • Simon, E., Satter, R. L., and Galston, A. W., 1976, Circadian rhythmicity in excised Samanea pulvini II. Resetting the clock of phytochrome conversion, Plant Physiol. 58:421–425.

    PubMed  CAS  Google Scholar 

  • Sommarin, M., and Sandelius, A. S., 1988, Phosphatidylinositol and phosphatidylinositol phosphate kinases in plant plasma membranes, Biochim. Biophys. Acta 958:268–278.

    CAS  Google Scholar 

  • Strasser, H., Hoffman, C., Grisebach, H., and Matern, U., 1986, Are polyphosphoinositides induced in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells?, Z. Naturforsch. 41:717–724.

    CAS  Google Scholar 

  • Tate, B. F., Schaller, G. E., Sussman, M. R., and Crain, R. C., 1989, Characterization of polyphosphoinositide phospholipase C from plasma membrane of Avena sativa, Plant Physiol. 91:1275–1279.

    PubMed  CAS  Google Scholar 

  • Tretyn, A., Kendrick, R. E., and Wagner, G., 1991, The role(s) of calcium ions in phytochrome action, Photochem. Photobiol. 53:1135–1156.

    Google Scholar 

  • Wagh, S. S., and Natarajan, V., 1990, Phosphoinositide metabolism and calcium mobilization in plants, in Proceedings of the International Congress on Plant Physiology (S. K. Sinha, P. V. Sane, S. C. Bhargava, and P. K. Agarwal, eds.), pp. 680–687, Society for Plant Physiology and Biochemistry, New Delhi.

    Google Scholar 

  • Warpeha, K.M.F., Hamm, H. E., Rasenick, M. M., and Kaufman, L. S., 1991, A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas, Proc. Natl. Acad. Sci. USA 88:8925–8929.

    PubMed  CAS  Google Scholar 

  • Wheeler, J. J., and Boss, W. F., 1987, Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells, Plant Physiol. 85:389–392.

    PubMed  CAS  Google Scholar 

  • Wheeler, J. J., and Boss, W. F., 1990, Inositol lysophospholipids in inositide metabolism in plants, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 163–172, Wiley-Liss, New York.

    Google Scholar 

  • Zocchi, G., 1990, Comparison of the effect of indoleacetic acid and fusicoccin on the breakdown of phosphatidylinositol in maize coleoptiles, Plant Physiol. 94:1009–1011.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Sopory, S.K., Chandok, M.R. (1996). Light-Induced Signal Transduction Pathway Involving Inositol Phosphates. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics