Skip to main content

Regulation of Body Temperature

  • Chapter
Avian Physiology

Abstract

Birds are “homeotherms,” which means that they maintain a relatively constant deep-body temperature (Bligh and Johnson, 1973). Birds are also “endotherms,” a term indicating that they are able to increase their body temperature by generating a considerable amount of heat within their tissues instead of relying on heat gained directly from their surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arad, Z., and J. Marder. (1982). Comparative thermoregulation of four breeds of fowls (Gallus domesticus) exposed to a gradual increase of ambient temperatures. Comp. Biochem. Physiol. A, 72, 179.

    Google Scholar 

  • Arieli, A., A. Berman, and A. Meltzer. (1978). Indication for non-shivering thermogenesis in the adult fowl (Gallus domesticus). Comp. Biochem. Physiol., C: Comp. Pharmacol., 60, 33.

    CAS  Google Scholar 

  • Arieli, A., A. Berman, and A. Meltzer. (1979). Cold thermogenesis in the summer-acclimatized and cold-acclimated domestic fowl. Comp. Biochem. Physiol., C: Comp. Pharmacol., 63, 7.

    Google Scholar 

  • Aulie, A. (1976a). The pectoral muscles and the development of thermoregulation in chicks of Willow Ptarmigan (Lagopus lagopus). Comp. Biochem. Physiol. A, 53, 343.

    PubMed  CAS  Google Scholar 

  • Aulie, A. (1976b). The shivering pattern in an arctic (Willow Ptarmigan) and a tropical bird (bantam hen). Comp. Biochem. Physiol. A, 53, 347.

    PubMed  CAS  Google Scholar 

  • Aulie, A., and H.J. Grav. (1979). Effect of cold acclimation on the oxidative capacity of skeletal muscles and liver in young bantam chicks. Comp. Biochem. Physiol. A, 62, 335.

    Google Scholar 

  • Avery, P. and S.A. Richards. (1983). Thermosensitivity of the hypothalamus and spinal cord in the domestic fowl. J. Therm. Biol., 8, 237.

    Google Scholar 

  • Bakken, G.S. (1980). The use of standard operative temperature in the study of the thermal energetics of birds. Physiol. Zool., 53, 108.

    Google Scholar 

  • Bakken, G.S., W.A. Buttemer, W.R. Dawson, and D.M. Gates. (1981). Heated taxidermic mounts: A means of measuring the standard operative temperature affecting small animals. Ecology, 62, 311.

    Google Scholar 

  • Barnas, G.M., J.A. Estavillo, F.B. Mather, and R.E. Burger. (1981). The effect of CO2 and temperature on respiratory movements in the chicken. Respir. Physiol., 43, 315.

    PubMed  CAS  Google Scholar 

  • Barré, H. (1983). Calorigenic action of glucagon in several species of chicks at neutral ambient temperatures. In “Environment, Drugs and Thermoregulation” ( P. Lomax and E. Schónbaum, Eds.). Basel: Karger, p. 31.

    Google Scholar 

  • Bartholomew, G.A., F.N. White, and T.R. Howell. (1976). The thermal significance of the nest of the Sociable Weaver Philetairus socius: Summer observations. Ibis, 118, 402.

    Google Scholar 

  • Bartholomew, G.A., C.M. Vleck, and T.L. Bucher. (1983). Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiol. Zool., 56, 370.

    Google Scholar 

  • Baudinette, R.V., and K. Schmidt-Nielsen. (1974). Energy cost of gliding flight in herring gulls. Nature (London), 248, 83.

    Google Scholar 

  • Baudinette, R.V., J.P. Loveridge, K.J. Wilson, C.D. Mills, and K. Schmidt-Nielsen. (1976). Heat loss from feet of herring gulls at rest and during flight. Am. J. Physiol., 230, 920.

    PubMed  CAS  Google Scholar 

  • Bech, C. (1980). Body temperature, metabolic rate, and insulation in winter and summer acclimatized Mute Swans (Cygnus olor). J. Comp. Physiol., 136, 61.

    Google Scholar 

  • Bech, C., and K. Johansen. (1980). Ventilatory and circulatory responses to hyperthermia in the Mute Swan (Cygnus olor).). Exp. Biol., 88, 195.

    CAS  Google Scholar 

  • Bech, C., K. Johansen, and G.M.O. Maloiy. (1979). Ventilation and expired gas composition in the flamingo, Phoenicopterus ruber, during normal respiration and panting. Physiol. Zool., 52, 313.

    Google Scholar 

  • Bech, C., W. Rautenberg, B. May, and K. Johansen. (1982). Regional blood flow changes in response to thermal stimulation of the brain and spinal cord in the Pekin Duck. J. Comp. Physiol., 147, 71.

    Google Scholar 

  • Bennett, A.F., and W.R. Dawson. (1979). Physiological responses of embryonic Heermann’s Gulls to temperature. Physiol. Zool., 52, 413.

    Google Scholar 

  • Berger, M., and J.S. Hart. (1972). Die Atmung beim Kolibri Amizilia fimbriata Während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J. Comp. Physiol., 81, 363.

    Google Scholar 

  • Berger, M., J.S. Hart, and O.Z. Roy. (1970). Respiration, oxygen consumption and heart rate in some birds during rest and flight. Z. Vgl: Physiol., 66, 201.

    Google Scholar 

  • Berman, A., and A. Meltzer. (1978). Metabolic rate: its circadian rhythmicity in the female domestic fowl. J. Physiol., 282, 419.

    PubMed  CAS  Google Scholar 

  • Bernstein, M.H., and F.C. Samaniego. (1981). Ventilation and acid-base status during thermal panting in pigeons (Columba livia). Physiol. Zool., 54, 308.

    Google Scholar 

  • Bernstein, M.H., S.P. Thomas, and K. Schmidt-Nielsen. (1973). Power input during flight of the Fish Crow, Corvus ossifragus. J. Exp. Biol., 58, 401.

    Google Scholar 

  • Bernstein, M.H., M.B. Curtis, and D.M. Hudson. (1979a). Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am. J. Physiol., 237, R58.

    PubMed  CAS  Google Scholar 

  • Bernstein, M.H., I. Sandoval, M.B. Curtis, and D.M. Hudson. (1979b). Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol., 129, 115.

    Google Scholar 

  • Bligh, J., and K.G. Johnson. (1973). Glossary of terms for thermal physiology. J. Appl. Physiol., 35, 941.

    PubMed  CAS  Google Scholar 

  • Booth, D.T. (1984). Thermoregulation in neonate Mallee Fowl Leipoa ocellata. Physiol. Zool., 57, 251.

    Google Scholar 

  • Bouverot, P., G. Hildwein, and D. Le Goff. (1974). Evaporative water loss, respiratory pattern, gas exchange and acid- base balance during thermal panting in Pekin Ducks exposed to moderate heat. Respir. Physiol., 21, 255.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H. (1978). Experimentally induced antagonism of chemical and thermal reflexes in the respiratory system of fully conscious chickens. Respir. Physiol., 34, 377.

    PubMed  CAS  Google Scholar 

  • Brackenbury,J., P. Avery, and M. Gleeson. (1981a). Respiratory evaporation in panting fowl: partition between the respiratory and buccopharyngeal pumps. J. Comp. Physiol., 145, 63.

    Google Scholar 

  • Brackenbury, J.H., M. Gleeson, and P. Avery. (1981b). Respiration in exercising fowl. II. Respiratory water loss and heat balance. J. Exp. Biol., 93, 327.

    PubMed  CAS  Google Scholar 

  • Brent, R., P.F. Pedersen, C. Bech, and K. Johansen. (1984). Lung ventilation and temperature regulation in the European Coot Fulica atra. Physiol. Zool., 57, 19.

    Google Scholar 

  • Brown, J.H., W.A. Calder, and A. Kodric-Brown. (1978). Correlates and consequences of body size in nectar-feeding birds. Am. Zool., 18, 687.

    Google Scholar 

  • Butler, P.J., N.H. West, and D.R. Jones. (1977). Respiratory and cardiovascular responses of the pigeon to sustained level flight in a wind tunnel. J. Exp. Biol., 71, 7.

    Google Scholar 

  • Calder, W.A., and J.R. King. (1974). Thermal and caloric relations of birds. In “Avian Biology,” Vol. IV ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 259.

    Google Scholar 

  • Calder, W.A., and T.J. Dawson. (1978). Resting metabolic rates of ratite birds: the kiwis and the Emu. Comp. Biochem. Physiol. A, 60, 479.

    Google Scholar 

  • Chappel, M.A. (1980). Thermal energetics of chicks of arctic- breeding shorebirds. Comp. Biochem. Physiol. A, 65, 311.

    Google Scholar 

  • Chappell, M.A., D.L. Goldstein, and D.W. Winkler. (1984). Oxygen consumption, evaporative water loss, and temperature regulation of California Gull chicks (Larus californicus) in a desert rookery. Physiol. Zool., 57, 204.

    Google Scholar 

  • Dawson, W.R. (1975). Avian physiology. Ann. Rev. Physiol., 37, 441.

    CAS  Google Scholar 

  • Dawson, W.R. (1982). Evaporation losses of water by birds. Comp. Biochem. Physiol., 71A, 495.

    CAS  Google Scholar 

  • Dawson, W.R., and A.F. Bennett. (1980). Metabolism and thermoregulation in hatchling Western Gulls. Condor, 82, 103.

    Google Scholar 

  • Dawson, W.R., and C.D. Fisher. (1982). Observations on the temperature regulation and water economy of the Galah (Cacatua roseicapilla). Comp. Biochem. Physiol. A, 72, 1.

    Google Scholar 

  • Dawson, W.R., A.F. Bennett, and J.W. Hudson. (1976). Metabolism and thermoregulation in hatchling Ring-billed Gulls. Condor, 78, 49.

    Google Scholar 

  • Dawson, W.R., R.L. Marsh, W.A. Buttener, and C. Carey. (1983). Seasonal and geographic variation of cold resistance in House Finches Carpodacus mexianus. Physiol. Zool., 56, 353.

    Google Scholar 

  • De Jong, A.A. (1976). The influence of simulated solar radiation on the metabolic rate of White-crowned Sparrows. Condor, 78, 1974.

    Google Scholar 

  • Dunn, E.H. (1975). Growth, body components and energy content of nestling Double-crested Cormorants. Condor, 77, 431.

    Google Scholar 

  • Dunn, E.H. (1976). The development of endothermy and existence energy expenditure in Herring Gull chicks. Condor, 78, 493.

    Google Scholar 

  • Ebibara, S., and H. Kawamura. (1981). The role of the pineal organ and the supra-chiasmatic nucleus in the control of circadian locomotor rhythms in the Java Sparrow, Padda oryzivora. J. Comp. Physiol., 141, 207.

    Google Scholar 

  • Eissel, K., and E. Simon. (1980). How are neuronal thermo- sensitivity and lack of thermoreception related in the duck’s hypothalamus? A tentative answer. J. Therm. Biol., 5, 219.

    Google Scholar 

  • El-Halawani, M. El-S., W.O. Wilson, and R.E. Burger. (1970). Cold acclimation and the role of catecholamines in body temperature regulation in male Leghorns. Poult. Sci., 49, 621.

    CAS  Google Scholar 

  • El-Halawani, M.E., P.E. Waibel, J R. Appel, and A.L. Good. (1973). Effects of temperature stress on catecholamines and corticosterone of male turkeys. Am. J. Physiol., 224, 384.

    PubMed  CAS  Google Scholar 

  • Ellis, H.I. (1980). Metabolism and solar radiation in dark and white herons in hot climates. Physiol. Zool., 53, 358.

    Google Scholar 

  • Eppley, Z.A. (1984). Development of thermoregulatory abilities in Xantus’ Murrelet chicks Synthliboramphus hypoleucus. Physiol. Zool., 57, 307.

    Google Scholar 

  • Freeman, B.M. (1977). Lipolysis and its significance in the response to cold of the neonatal fowl, Gallus domesticus. J. Therm. Biol., 2, 145.

    CAS  Google Scholar 

  • Freeman, B.M. (1979). Is 5-hydroxytryptamine concerned in avian thermoregulation? J. Therm. Biol., 4, 219.

    CAS  Google Scholar 

  • Frost, P.G.H., W.R. Siegfried, and P.J. Greenwood. (1975). Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J. Zool., 175, 231.

    Google Scholar 

  • Gates, D.M. (1980). “Biophysical Ecology.” New York: Springer-Verlag.

    Google Scholar 

  • Graf, R. (1980). Simultaneously activated heat gain and heat loss mechanisms in pigeons. Proc. I.U.P.S., 14, 442.

    Google Scholar 

  • Graf, R., and R. Necker. (1979). Cyclic and noncyclic variations of spinal cord temperature related with temperature regulation in pigeons. Pfleugers Arch., 380, 215.

    CAS  Google Scholar 

  • Graf, R., H.C. Heller, and S. Sakaguchi. (1983). Slight warming of the spinal cord and the hypothalamus in the pigeon: effects on thermoregulation and sleep during the night. J. Therm. Biol., 8, 159.

    Google Scholar 

  • Grant, G.S. (1982). Avian incubation: egg temperature, nest humidity, and behavioral thermoregulation in a hot environment. Ornithol. Monogr., No. 30.

    Google Scholar 

  • Hagan, A.A., and J.E. Heath. (1980). Regulation of heat loss in the duck by vasomotion in bill. J. Therm. Biol., 5, 95.

    Google Scholar 

  • Hailman, J.P. (1982). Radiation angle and heat transferred to a bird. Science, 219, 919.

    Google Scholar 

  • Hails, C.J. (1979). A comparison of flight energetics in hirundines and other birds. Comp. Biochem. Physiol. A, 63, 581.

    Google Scholar 

  • Hails, C.J. (1983). The metabolic rate of tropical birds. Condor, 8, 61.

    Google Scholar 

  • Haim, A., S. Saarela, and R. Hissa. (1979). Heat production induced by photoperiodicity in the pigeon. Comp. Biochem. Physiol. A, 63, 547.

    Google Scholar 

  • Hayes, S.R., and J. A. Gessaman. (1982). Prediction of raptor resting metabolism: comparison of measured values with statistical and biophysical estimates. J. Therm. Biol., 7, 45.

    Google Scholar 

  • Helfmann, W., P. Jannes, and C. Jessen. (1981). Total body thermosensitivity and its spinal and supra-spinal fractions in the conscious goose. Pfleugers Arch., 391, 60.

    CAS  Google Scholar 

  • Hennemann, W.W. (1983). Environmental influences on the energetics and behavior of Anhingas and Double-crested Cormorants. Physiol. Zool., 56, 201.

    Google Scholar 

  • Hill, R.W., and D.L. Beaver. (1982). Inertial thermostability and thermoregulation in broods of Redwing Blackbirds. Physiol. Zool., 55, 250.

    Google Scholar 

  • Hill, R.W., D.L. Beaver, and J.H. Veghte. (1980). Body surface temperatures and thermoregulation in the Black- capped Chickadee (Parus atricapillus). Physiol. Zool., 53, 305.

    Google Scholar 

  • Hissa, R., and R. Palokangas. (1970). Thermoregulation in the Titmouse (Parus major L.). Comp. Biochem. Physiol., 33, 941.

    CAS  Google Scholar 

  • Hissa, R., and W. Rautenberg. (1974). The influence of centrally applied noradrenaline on shivering and body temperature in the pigeon. J. Physiol., 238, 421.

    Google Scholar 

  • Hissa, R., and W. Rautenberg. (1975). Thermoregulatory effects of intrahypothalamic injections of neurotransmitters and their inhibitors in the pigeon. Comp. Biochem. Physiol. A, 51, 319.

    PubMed  CAS  Google Scholar 

  • Hissa, R., A. Pyornila, and J.C. George. (1980). The influence of intrahypothalamic injections of prostaglandins E1 and F2α and ambient temperature on thermoregulation in the pigeon. J. Therm. Biol., 5, 163.

    CAS  Google Scholar 

  • Hissa, R., S. Saarela, H. Rintamaki, H. Linden, and E. Hohtola. (1983). Energetics and development of temperature regulation in Capercaillie Tetrao urogallus. Physiol. Zool., 56, 142.

    Google Scholar 

  • Hohtola, E., H. Rintamaki, and R. Hissa. (1980). Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J. Comp. Physiol., 136, 77.

    Google Scholar 

  • Horowitz, K.A., N.R. Scott, P.E. Hillman, and A. van Tienhoven. (1978). Effects of feathers on instrumental thermoregulatory behavior in chickens. Physiol. Behav., 21, 233.

    PubMed  CAS  Google Scholar 

  • Howell, T.R. (1979). Breeding biology of the Egyptian Plover, Pluvianus aegyptius. Univ. Calif. Publ. Zool., 113, 1.

    Google Scholar 

  • Howell, T.R., and G.A. Bartholomew. (1961). Temperature regulation in Laysan and Black-footed albatrosses. Condor, 63, 185.

    Google Scholar 

  • Howell, T.R., B. Araya, and W.R. Millie. (1974). Breeding biology of the Gray Gull, Larus modestus. Univ. Calif. Publ. Zool., 104, 1.

    Google Scholar 

  • Hudson, D.M., and M.H. Bernstein. (1981). Temperature regulation and heat balance in flying White-necked Ravens, Corvus cryptoleucus. J. Exp. Biol., 90, 267.

    Google Scholar 

  • Hudson,J.W., W.R. Dawson, and R.W. Hill. (1974). Growth and development of temperature regulation in nestling Cattle Egrets. Comp. Biochem. Physiol. A, 49, 717.

    Google Scholar 

  • Johansen, K., and R.W. Millard. (1973). Vascular responses to temperature in the foot of the giant fulmar, Macronectes giganteus. J. Comp. Physiol., 85, 47.

    Google Scholar 

  • Kendeigh, S.C., V.R. Dol’nick and V.M. Gavrilov. (1977). Avian energetics. In “Granivorous Birds in Ecosystems” ( J. Pinowski and S.C. Kendeigh, Eds.). Cambridge: Cambridge University Press, p. 127.

    Google Scholar 

  • Kilgore, D.L. (1976). Brain temperatures in birds. J. Comp. Physiol., 110, 209.

    Google Scholar 

  • Kilgore, D.L., and K. Schmidt-Nielsen. (1975). Heat loss from duck’s feet immersed in cold water. Condor, 77, 475.

    Google Scholar 

  • Kilgore, D.L., D.F. Boggs, and G.F. Birchard. (1979). Role of the rete mirabile ophthalmicum in maintaining the body-to-brain temperature difference in pigeons. J. Comp. Physiol., 129, 119.

    Google Scholar 

  • Klandorf, H., R.W. Lea, and P.J. Sharp. (1982). Thyroid function in laying, incubating and broody bantam hens. Gen. Comp. Endocrinol., 47, 492.

    PubMed  CAS  Google Scholar 

  • Kluger, M.J. (1979). Phylogeny of fever. Fed. Proc. Fed. Am. Soc. Exp. Biol., 38, 30.

    CAS  Google Scholar 

  • Koban, M., and D.D. Feist. (1982). The effect of cold on norepinephrine turnover in tissues of seasonably acclimatized redpolls (Carduelis flammea). J. Comp. Physiol., 146, 137.

    CAS  Google Scholar 

  • Kooyman, G.L., R.L. Gentry, W.P. Bergman, and H.T. Hammel. (1976). Heat loss in penguins during immersion and compression. Comp. Biochem. Physiol. A, 54, 75.

    PubMed  CAS  Google Scholar 

  • Le Maho, Y. (1983). Metabolic adaptations to long-term fasting in antarctic penguins and domestic geese. J. Therm. Biol., 8, 91.

    Google Scholar 

  • Le Maho, Y., P. Delclitte, and J. Chatonnet. (1976). Thermoregulation in fasting emperor penguins under natural conditions. Am. J. Physiol., 231, 913.

    PubMed  Google Scholar 

  • Lustick, S. (1969). Bird energetics: Effects of artificial radiation. Science, 163, 387.

    PubMed  CAS  Google Scholar 

  • Lustick, S.I. (1983). Cost-benefit of thermoregulation in birds: influences of posture, microhabitat selection, and color. In “Behavioral Energetics: the Cost of Survival in Vertebrates” ( W.P. Aspey and S.I. Lustick, Eds.). Columbus: Ohio State University Press, p. 265.

    Google Scholar 

  • Lustick, S., S. Talbot, and E.L. Fox. (1970). Absorption of radiant energy in Red-winged Blackbirds (Agelaius phoeniceus). Condor, 72, 471.

    Google Scholar 

  • Lustick, S., B. Battersby, and M. Kelty. (1978). Behavioral thermoregulation: orientation toward the sun in Herring Gulls. Science, 200, 81.

    Google Scholar 

  • Lustick, S., B. Battersby, and M. Kelty. (1979). Effects of insolation on juvenile Herring Gull energetics and behavior. Ecology, 60, 673.

    Google Scholar 

  • MacMillen, R.E. (1981). Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia, 49: 340.

    Google Scholar 

  • MacMillen, R.E., G.C. Whittow, E.A. Christopher, and R.J. Ebisu. (1977). Oxygen consumption, evaporative water loss and body temperature in the Sooty Tern. Auk, 94, 72.

    Google Scholar 

  • Marder, J. (1973). Body temperature regulation in the Brown-necked Raven (Corvus cor ax ruficollis) 1. Metabolic rate, evaporative water loss and body temperature of the raven exposed to heat stress. Comp. Biochem. Physiol. A, 45, 421.

    PubMed  CAS  Google Scholar 

  • Marjakangas, A., H. Rintamaki and R. Hissa. (1984). Thermal responses in the Capercaillie Tetrao urogallus and the Black Grouse Lyrurus tetrix roosting in the snow. Physiol. Zool., 57, 99.

    Google Scholar 

  • Marsh, R.L. (1979). Development of endothermy in nestling Bank Swallows (Riparia riparia). Physiol. Zool., 52, 340.

    Google Scholar 

  • Marsh, R.L., and W.R. Dawson. (1982). Substrate metabolism in seasonally acclimatized American goldfinches. Am. J. Physiol., 242, R 563.

    Google Scholar 

  • Mather, F.B., G.M. Barnas, and R.E. Burger. (1980). The influence of alkalosis on panting. Comp. Biochem. Physiol. A, 67, 265.

    Google Scholar 

  • McNab, B.K. (1980). On estimating thermal conductance in endotherms. Physiol. Zool., 53, 145.

    Google Scholar 

  • Menaum, B., and S.A. Richards. (1975). Observations on the sites of respiratory evaporation in the fowl during thermal panting. Respir. Physiol., 25, 39.

    Google Scholar 

  • Misson, B.H. (1974). An open circuit respirometer for metabolic studies on the domestic fowl: establishment of standard operating conditions. Br. Poult. Sci., 15, 287.

    PubMed  CAS  Google Scholar 

  • Misson, B.H. (1977). The relationships between age, mass, body temperature and metabolic rate in the neonatal fowl (Gallus domesticus). J. Therm. Biol., 2, 107.

    Google Scholar 

  • Misson, B.H. (1982). The thermoregulatory responses of fed and starved 1-week-old chickens (Gallus domesticus). J. Therm. Biol., 7, 189.

    Google Scholar 

  • Morton, M.L., and C. Carey. (1971). Growth and the development of endothermy in the Mountain White-crowned Sparrow (Zonotricbia leucophrys oriantha). Physiol. Zool., 44, 177.

    Google Scholar 

  • Murrish, D.E. (1973). Respiratory heat and water exchange in penguins. Respir. Physiol., 19, 262.

    PubMed  CAS  Google Scholar 

  • Murrish, D.E. (1982). Acid-base balance in three species of antarctic penguins exposed to thermal stress. Physiol. Zool., 55, 137.

    Google Scholar 

  • Murrish, D.E. (1983). Acid-base balance in penguin chicks exposed to thermal stress. Physiol. Zool., 56, 335.

    Google Scholar 

  • Myrhe, K. (1978). Behavioral temperature regulation in neonate chick of bantam hen (Gallus domesticus). Poult. Sci., 57, 1369.

    Google Scholar 

  • Necker, R. (1977). Thermal sensitivity of different skin areas in pigeons. J. Comp. Physiol., 116, 239.

    Google Scholar 

  • Necker, R., and W. Rautenberg. (1975). Effect of spinal deaf- ferentation on temperature regulation and spinal thermo-sensitivity in pigeons. Pfleugers Arch., 360, 287.

    CAS  Google Scholar 

  • Nice, M.M. (1962). Development of behavior in precocial birds. Trans. Linn. Soc. (N.Y.), 8, 1.

    Google Scholar 

  • Nistico, G., and E. Marley. (1976). Central effects of prosta-glandins E2, A1 and F2α in adult fowls. Neuropharmacology, 15, 737.

    PubMed  CAS  Google Scholar 

  • Nomoto, S., C. Bech, W. Rautenberg, and K. Johansen. (1983). Temperature regulation and cardiovascular responses during bipedal exercise in birds. J. Therm. Biol., 8, 175.

    Google Scholar 

  • O’Connor, R.J. (1975). Growth and metabolism in nestling passerines. In “Avian Physiology” ( M. Peaker, Ed.). London: Academic Press, p. 277.

    Google Scholar 

  • Palokangas, R., and R. Hissa. (1971). Thermoregulation in young Black-headed Gull (Larus ridibundus L.). Comp. Biochem. Physiol. A, 38, 743.

    CAS  Google Scholar 

  • Pettit, T.N., G.C. Whittow, and G.S. Grant. (1981). Rete mirabile ophthalmicum in Hawaiian Seabirds. Auk, 98, 844.

    Google Scholar 

  • Pinshow, B., M.A. Fedak, D.R. Battles, and K. Schmidt-Nielsen. (1976). Energy expenditure for thermoregulation and locomotion in emperor penguins. Am. J. Physiol., 231, 903.

    PubMed  CAS  Google Scholar 

  • Pinshow, B., M.H. Bernstein, G.E. Lopez, and S. Kleinhaus. (1982). Regulation of brain temperature in pigeons: effects of corneal convection. Am. J. Physiol., 242, R577.

    PubMed  CAS  Google Scholar 

  • Prinzinger, R. (1982). The energy costs of temperature regulation in birds: the influence of quick sinusoidal temperature fluctuations on the gaseous metabolism of the Japanese Quail (Coturnix coturnixjaponica). Comp. Biochem. Physiol. A, 71, 469.

    PubMed  CAS  Google Scholar 

  • Prinzinger, R., and I. Hanssler. (1980). Metabolism-weight relationship in some small non-passerine birds. Experientia, 36, 1299.

    Google Scholar 

  • Ramirez, J.M., and M.H. Bernstein. (1976). Compound ventilation during thermal panting in pigeons: a possible mechanism for minimizing hypocapnic alkalosis. Fed. Proc. Fed. Am. Soc. Exp. Biol., 35, 2562.

    CAS  Google Scholar 

  • Rautenberg, W., R. Necker, and B. May. (1972). Thermoregulatory responses of the pigeon to changes of the brain and the spinal cord temperatures. Pfleugers Arch., 338, 31.

    CAS  Google Scholar 

  • Rayner, J.M.V. (1982). Avian flight energetics. Annu. Rev. Physiol., 44, 109.

    PubMed  CAS  Google Scholar 

  • Rintamaki, H., S. Saarela, A. Marjakangas, and R. Hissa. (1983) Summer and winter temperature regulation in the Black Grouse Lyrurus tetrix. Physiol. Zool., 56, 152.

    Google Scholar 

  • Saarela, S., and O. Vakkuri. (1982). Photoperiod-induced changes in temperature-metabolism curve, shivering threshold and body temperature in the pigeon. Experientia, 38, 373.

    PubMed  CAS  Google Scholar 

  • Schmidt, I. (1978a). Behavioral and autonomic thermoregulation in heat stressed pigeons modified by central thermal stimulation. J. Comp. Physiol., 127, 75.

    Google Scholar 

  • Schmidt, I. (1978b). Interactions of behavioral and autonomic thermoregulation in heat-stressed pigeons. Pfleugers Arch., 374, 47.

    CAS  Google Scholar 

  • Schmidt, I. (1983). Weighting regional thermal inputs to explain autonomic and behavioral thermoregulation in the pigeon. J. Therm. Biol., 8, 47.

    Google Scholar 

  • Schuchmann, K.L. (1979). Metabolism of flying hummingbirds. Ibis, 121, 85.

    Google Scholar 

  • Shapiro, C.J., and W.W. Weathers. (1981). Metabolic and behavioral responses of American Kestrels to food deprivation. Comp. Biochem. Physiol. A, 68, 111.

    Google Scholar 

  • Sieland, M.,J.D. Delius, W. Rautenberg, and B. May. (1981). Thermoregulation mediated by conditioned heart-rate changes in pigeons. J. Comp. Physiol., 144, 375.

    Google Scholar 

  • Simon, E., C. Simon-Opperman, H.T. Hammel, R. Kaul, and J. Maggert. (1976). Effects of altering rostral brain stem temperature on temperature regulation in the Adelie Penguin, Pygoscelis adeliae. Pfleugers Arch., 362, 7.

    CAS  Google Scholar 

  • Simon-Oppermann, C., and R. Martin. (1979). Mammalian-like thermosensitivity in the lower brainstem of the Pekin Duck. Pfleugers Arch., 379, 291.

    CAS  Google Scholar 

  • Simon-Opperman, C., E. Simon, C. Jessen, and H.T. Hammel. (1978). Hypothalamic thermosensitivity in conscious Pekin ducks. Am. J. Physiol., 235, R130.

    Google Scholar 

  • Skowron, C., and M. Kern. (1980). The insulation in nests of selected North American songbirds. Auk, 97, 816.

    Google Scholar 

  • Smith, W.K., S.W. Roberts, and P.C. Miller. (1974). Calculating the nocturnal energy expenditure of an incubating Anna’s Hummingbird. Condor, 76, 176.

    Google Scholar 

  • Snapp, B.D., H.C. Heller, and S.M. Gospe, Jr. (1977). Hypothalamic sensitivity in California Quail (Lophortyx californicus). J. Comp. Physiol., 107, 345.

    Google Scholar 

  • Southwick, E.E., and D.M. Gates. (1975). Energetics of occupied hummingbird nests. In “Perspectives of Biophysical Ecology” ( D.M. Gates and R.B. Schmerl, Eds.). New York: Springer-Verlag, p. 417.

    Google Scholar 

  • Spiers, D.E., R.A. McNabb, and F.M.A. McNabb. (1974). The development of thermoregulatory ability, heat-seeking activities, and thyroid function in hatchling Japanese Quail (Coturnix coturnix japonica). J. Comp. Physiol., 89, 159.

    CAS  Google Scholar 

  • Stahel, C.D., and S.C. Nicol. (1982). Temperature regulation in the Little Penguin, Eudyptula minor, in air and water. J. Comp. Physiol., 148, 93.

    Google Scholar 

  • Torre-Bueno, J.R. (1978). Evaporative cooling and water balance during flight in birds. J. Exp. Biol., 75, 231.

    PubMed  CAS  Google Scholar 

  • Torre-Bueno, J.R., and J. Larochelle. (1978). The metabolic cost of flight in unrestrained birds. J. Exp. Biol., 75, 223.

    PubMed  CAS  Google Scholar 

  • Turner, J.C., and L. McClanahan. (1981). Physiogenesis of endothermy and its relation to growth in the Great Horned Owl (Bubo virginianus). Comp. Biochem. Physiol. A, 68, 167.

    Google Scholar 

  • Walker, L.E., J.M. Walker, J.W. Palca, and R.J. Berger. (1983). A continuum of sleep and shallow torpor in fasting doves. Science, 221, 194.

    PubMed  CAS  Google Scholar 

  • Walsberg, G.E., G.S. Campbell, and J.R. King (1978). Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol., 126, 211.

    Google Scholar 

  • Weathers, W.W. (1979). Climatic adaptation in avian standard metabolic rate. Oecologia, 42, 81.

    Google Scholar 

  • Weathers, W.W. (1981). Physiological thermoregulation in heat-stressed birds: consequences of body size. Physiol. Zool., 54, 345.

    Google Scholar 

  • Weathers, W.W., and D.C. Schoenbaechler. (1976). Contribution of gular flutter to evaporative cooling in Japanese Quail. J. Appl. Physiol., 40, 521.

    PubMed  CAS  Google Scholar 

  • Weathers, W.W., and C. van Riper, III. (1982). Temperature regulation in two endangered Hawaiian honey creepers: the Palila (Psittirostra bailleui) and the Laysan Finch (Psittirostra cantans). Auk, 99, 667.

    Google Scholar 

  • Whittow, G.C. (1965). Regulation of body temperature. In “Avian Physiology,” 2nd ed. ( P.D. Sturkie, Ed.). Ithaca: Cornell University Press, p. 186.

    Google Scholar 

  • Whittow, G.C. (1976). Regulation of body temperature. In “Avian Physiology,” 3rd ed. ( P.D. Sturkie, Ed.). New York: Springer-Verlag, p. 146.

    Google Scholar 

  • Whittow, G.C. (1980). Thermoregulatory behavior of the Laysan and Black-footed Albatross. Elepaio, 40, 97.

    Google Scholar 

  • Whittow, G.C., and A.J. Berger. (1977). Heat loss from the nest of the Hawaiian honeycreeper, “Amakihi.” Wilson Bull., 89, 480.

    Google Scholar 

  • Whittow, G.C., C.T. Araki, and R.L. Pepper. (1978). Body temperature of the Great Frigate-bird Fregata minor. Ibis, 120, 358.

    Google Scholar 

  • Withers, PC. (1977). Measurement of VO2, VCO2 and evaporative water loss with a flow-through mask. J. Appl. Physiol., 42, 120.

    PubMed  CAS  Google Scholar 

  • Wunder, B.A. (1979). Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem Physiol. A, 63, 493.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Whittow, G.C. (1986). Regulation of Body Temperature. In: Sturkie, P.D. (eds) Avian Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4862-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4862-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9335-4

  • Online ISBN: 978-1-4612-4862-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics