Skip to main content

Comparison Between the Sonar of Bats and Dolphins

  • Chapter
The Sonar of Dolphins

Abstract

Another animal that possesses a sophisticated and highly developed sonar is the bat. A considerable amount of research is being performed on the auditory system of bats, much more than on dolphins. A conservative estimate would indicate that there are approximately three to four times more scientists involved with bat sonar and auditory research than with dolphins. There are many reasons for this imbalance; most are related to the high cost associated with a dolphin research facility. The expense of constructing a facility having large tanks filled with high-quality salt water, or installing a facility that includes animal holding pens and laboratories in an isolated but readily accessible lagoon, can be quite high. In comparison, a cage to house a colony of bats can be easily and inexpensively constructed and located in most laboratories even though bats require good control of room temperature and humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altes, R.A., and Titlebaum, E.L. (1970). Bat signals as optimally Doppler tolerant waveforms. J. Acoust. Soc. Am. 48: 1014–1020.

    Article  Google Scholar 

  • Ayrapet’yants, E., and Konstantinov, A.I. (1974). Echolocation in nature. Leningrad: Nauka. (English translation: Joint Publication Research Service, Arlington, Va. )

    Google Scholar 

  • Bel’kovich, V.M., Borisov, V.I., and Gurevich, V.S. (1970). Angular resolution by echolocation by Delphinus delphis. Proc. 23rd Sci-Tech. Conf., Leningrad, pp. 66–67.

    Google Scholar 

  • Bradbury, J. (1970). Target discrimination by the echolocating bat, Vampyrum spectrum. J. Exp. Zool. 173: 23–46.

    Article  PubMed  CAS  Google Scholar 

  • Busnel, R.-G., ed. (1967). Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.

    Google Scholar 

  • Busnel, R.-G., and Fish, J.F., eds. (1980). Animal Sonar Systems. New York: Plenum Press.

    Google Scholar 

  • Dijkgraaf, S. (1946). Die Sinneswelt der Fledermäuse. Experientia 2: 438–448.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1957). Sinnesphysiologische Beobachtungen an Fledermäusen. Acta Physiol. Pharmacol. Neerlandica 6: 675–684.

    CAS  Google Scholar 

  • Evans, W.W., and Powell, B.A. (1967). Discrimination of different metallic plates by an echolocating delphinid. In: R.-G. Busnel, ed., Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 363–382.

    Google Scholar 

  • Fenton, M.B., Racey, R., and Rayner, J.M.V., eds. (1987). Recent Advances in the Study of Bats. London: Cambridge University Press.

    Google Scholar 

  • Fleissner, N. (1974). Intensitätsunterscheidung bei Hufeisennasen (Rhinolophus ferrumequinum). Staatsexamensarbeit, Universität Frankfurt (Main).

    Google Scholar 

  • Grinnell, A.D., and Schnitzler, H.-U. (1977). Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. II. Behavioral directionality of hearing. J. Comp. Phys. A 116: 63–76.

    Article  Google Scholar 

  • Henson, O.W., Jr. (1965). The activity and function of the middle ear muscles in echolocating bats. J. Physiol. (London) 180: 871–887.

    Google Scholar 

  • Johnson, C.S. (1967). Discussion. In: R.-G. Busnel, ed. Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 384–398.

    Google Scholar 

  • Kick, S.A. (1982). Target-detection by the echolocating bat, Eptesicus fuscus. J. Comp. Physiol. 145: 431–435.

    Article  Google Scholar 

  • Kick, S.A., and Simmons, J.A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J. Neurosci. 4: 2725–2737.

    PubMed  CAS  Google Scholar 

  • Konstantinov, A.I. (1970). A description of the ultrasonic location system of piscivorous bats. Tex. Dokl. 23-y Nauchno-Tekhn. Konf. LIAP, Leningrad, 51–52.

    Google Scholar 

  • Konstantinov, A.I., and Akhmarova, N.I. (1968). Discrimination (analysis) of target by echolocation in Myotis oxygnathus. J. Biol. Sci. Moscow Univ. 4: 22–28.

    Google Scholar 

  • Lawrence, B.D., and Simmons, J.A. (1982a). Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation for bats. J. Acoust. Soc. Am. 71: 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, B.D., and Simmons, J.A. (1982b). Echolocation in bats: the external ear and perception of the vertical positions of targets. Science 218: 481–483.

    Article  PubMed  CAS  Google Scholar 

  • Long, G.R., and Schnitzler, H.-U. (1975). Behavioral audiogram from the bat Rhinolophus ferrumequinum. J. Comp. Physiol. A 100: 211–220.

    Article  Google Scholar 

  • Masters, W.M., and Jacobs, S.C. (1989). Target detection and range resolution by the big brown bat (Eptesicus fuscus) using normal and time-reversed model echoes. J. Comp. Physiol. A 166: 63–73.

    Article  Google Scholar 

  • Muhl, B. (1986). Detection by a pipistrelle bat of normal and reversed replica of its sonar pulses. Acustica 61: 75–82.

    Google Scholar 

  • Mghl, B. (1988). Target detection by echolocating bats. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 435–450.

    Google Scholar 

  • Nachtigall, P.E., and Moore, P.W.B., eds. (1988). Animal Sonar: Processes and Performance. New York: Plenum Press.

    Google Scholar 

  • Neuweiler, G. (1984). Foraging, echolocation and audition in bats. Naturwissenschaften 71: 446–455.

    Article  Google Scholar 

  • Neuweiler, G. (1990). Auditory adaptations for prey capture in echolocating bats. Physiol. Rev. 70: 615–641.

    PubMed  CAS  Google Scholar 

  • Poussin, C., and Simmons, J.A. (1982). Low-frequency hearing sensitivity in the echolocating bat, Eptesicus fuscus. J. Acoust. Soc. Am. 72: 340–342.

    Article  Google Scholar 

  • Pye, J.D. (1980). Echolocation signals and echoes in air. In: R.-G. Busnel and J.F. Fish, eds., Animal Sonar System. New York: Plenum Press, pp. 309–353.

    Google Scholar 

  • Renaud, D.L., and Popper, A.N. (1975). Sound localization by the bottlenose porpoise Tursiops truncatus. J. Exp. Biol. 63: 569–585.

    PubMed  CAS  Google Scholar 

  • Roeder, K.D. (1963). Echoes of ultrasonic pulses from flying moths. Biol. Bull. 124: 200–210.

    Article  Google Scholar 

  • Roverud, R.C., and Grinnell, A.D. (1985). Echolocation sound features processed to provide distance information in the CF/FM bat, Noctillio albiventris: evidence for a gated time window using both CF and FM components. J. Comp. Physiol. A 156: 447–456.

    Article  Google Scholar 

  • Schnitzler, H.-U. (1973). Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. J. Comp. Physiol. A 82: 79–92.

    Article  Google Scholar 

  • Schnitzler, H.-U. (1984). The performance of bat sonar systems. In: Varju and H.-U. Schnitzler eds., Localization and Orientation in Biology and Engineering. Berlin: Springer-Verlag, pp. 211–224.

    Google Scholar 

  • Schnitzler, H.-U., and Grinnell, A.D. (1977). Directional sensitivity of echolocation in the horseshoe Bat, Rhinolophus ferrumequinum. I. Directionality of sound emission. J. Comp. Physiol. 116: 51–61.

    Article  Google Scholar 

  • Schnitzler, H.-U., and Henson, O.W., Jr. (1980). Performance of airborne animal sonar systems: I. Microchiroptera. In: R.-G. Busnel and J.F. Fish, eds., Animal Sonar Systems. New York: Plenum Press, pp. 109–181.

    Google Scholar 

  • Schnitzler, H.-U., Menne, D., Kober, R., and Heblich, K. (1983). The acoustical image of fluttering insects in echolocating bats. In: F. Huber and H. Markl, eds., Neuroethology and Behavioral Physiology, Berlin: Springer-Verlag, pp. 235–250.

    Google Scholar 

  • Simmons, J.A. (1969a). Depth perception by sonar in the bat Eptesicus fuscus. Ph.D. dissertation, Princeton University.

    Google Scholar 

  • Simmons, J.A. (1969b). Acoustic radiation patterns for the echolocating bats Chilonycteris rubigninosa and Eptesicus fuscus. J. Acoust. Soc. Am. 46: 1054–1056.

    Article  Google Scholar 

  • Simmons, J.A. (1973). The resolution of target range by echolocating bats. J. Acoust. Soc. Am. 54: 157–173.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A. (1987). Acoustic images of target range in the sonar of bats. Naval Research Review 39: 11–26.

    Google Scholar 

  • Simmons, J.A. (1989). A view of the world through the bat’s ear: the formation of acoustic images in echolocation. Cognition 33: 155–199.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A., and Chen, L. (1989). The acoustic basis for target discrimination by FM echolocating bats. J. Acoust. Soc. Am. 86: 1333–1350.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A., and Grinnell, A.D. (1988). The performance of echolocation: acoustic images perceived by echolocating bats. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 353–385.

    Google Scholar 

  • Simmons, J.A., Lavender, W.A., Lavender, B.A., Doroshow, C.F., Kiefer, S.W., Livingston, R., Scallet, A.C., and Crowley, D.E. (1974). Target structure and echo spectral discrimination by echolocating bats. Science 186: 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A., Howell, D.J., and Suga, N. (1975). Information content of bat sonar echoes. American Scientist 63: 204–215.

    PubMed  CAS  Google Scholar 

  • Simmons, J.A., Kick, S.A., Lawrence, B.D., Hale, C., Bard, C., and Escudie’. (1983). Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus. J. Comp. Physiol. A 153: 321–330.

    Article  Google Scholar 

  • Simmons, J.A., Ferragamo, M., Moss, C.F., Stevenson, S.B., and Altes, R.A. (1990). Discrimination ofjittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation. J. Comp. Physiol. A 167: 587–616.

    Article  Google Scholar 

  • Simmons, J.A., Moffat, A.J.M., and Masters, W.M. (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus, J. Acoust. Soc. Am. 91: 1150–1163.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A., and Vernon, J.A. (1971). Echolocation: discrimination of targets by the bat Eptesicus fuscus. J. Exp. Zool. 176: 315–328.

    Article  PubMed  CAS  Google Scholar 

  • Suga, N. (1988). Parallel-hierarchical processing of biosonar information in the mustached bat. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance, New York: Plenum Press, pp. 149–159.

    Google Scholar 

  • Suga, N. (1990). Biosonar and neural computation in bats. Sci. Am. 262 (June), 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Suga, N., and Jen, P.H.-S. (1975). Peripheral control of acoustic signals in the auditory system of echolocating bats. J. Exp. Biol. 62: 277–331

    PubMed  CAS  Google Scholar 

  • Surlykke, A., and Miller, L. A. (1985). The influence of arctiid moth clicks on bat echolocation: jamming or warning ? J. Comp. Physiol. A 156: 831–843.

    Article  Google Scholar 

  • Trappe, M., and Schnitzler, H.-U. (1982). Doppler-shift compensation in catching horseshoe bats. Naturwissenschaften 69: 193–194.

    Article  Google Scholar 

  • Troest, N. and Mehl, B. (1986). The detection of phantom targets in noise by serotine bats: negative evidence for the coherent receiver. J. Comp. Physiol. A 159: 559–567.

    Article  PubMed  CAS  Google Scholar 

  • Webster, F.A. (1967). Interception performance of echolocating bats in the presence of interference. In: Animal Sonar Systems, vol. I, R.G. Busnel, ed., Jouy-en-Josas; Laboratoire de Physiologie Acoustique, pp. 673–713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Au, W.W.L. (1993). Comparison Between the Sonar of Bats and Dolphins. In: The Sonar of Dolphins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4356-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4356-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8745-2

  • Online ISBN: 978-1-4612-4356-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics