Skip to main content

Microbial Food Webs in Freshwater Planktonic Ecosystems

  • Chapter
Complex Interactions in Lake Communities

Abstract

The new microbial paradigm that implicates bacteria, small algae, and protozoa in major pathways for carbon flow was first developed for the pelagic food webs of oligotrophic oceans (Pomeroy 1974, 1984), and is now being recognized in lake and river plankton (Porter 1984; Porter et al. 1985; Stockner and Antia 1986; Stockner 1987; Meyer et al. 1985). The microbial component of freshwater food webs consists of picoplankton such as bacteria, coccoid and rod-shaped cyanobacteria and small eukaryotes (Stockner and Antia 1986), heterotrophic microflagellates (Porter et al. 1985; Riemann 1985) and mixotrophic flagellates (Porter et al. 1985; Bird and Kalff 1986), and ciliates (Pace and Orcutt 1981; Porter et al. 1985). Protozoan members of these groups are also active bacterivores in marine and estuarine microbial food webs along with additional groups not found in fresh water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, J. S. Ray, L. A. Meyer-Reh and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–263.

    Article  Google Scholar 

  • Bailey-Watts, A. E., M. E. Bindloss and J. H. Belcher. 1968. Freshwater primary production by a blue-green alga of bacterial size. Nature, London. 220:1344–1345.

    Article  PubMed  CAS  Google Scholar 

  • Bienfang, P. K. and M. Takahashi. 1983. Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76:213–218.

    Article  CAS  Google Scholar 

  • Bird, D. F. and J. Kalff. 1986. Bacterial grazing by planktonic lake algae. Science, Washington, D.C. 231:493–495.

    Article  PubMed  CAS  Google Scholar 

  • Boraas, M. E., C. C. Remsen and D. D. Seale. 1985. Phagotrophic flagellate populations in Lake Michigan: use of image analysis to determine numbers and size distribution. EOS 66:1299.

    Google Scholar 

  • Caron, D. A., F. R. Pick and D. R. S. Lean. 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol. 21:171–175.

    Article  Google Scholar 

  • Chang, V. T. P. 1980. Zwei neue Synechococcus-Arten aus dem Zurichsee. Schweiz. Z. Hydrol. 42:247–254.

    Google Scholar 

  • Costella, A. C., K. S. Shortreed and J. G. Stockner. 1979. Phytoplankton fractionation studies in Great Central Lake, British Columbia: a nutrient enriched sockeye salmon (Oncorhynchus nerka) nursery lake. Fish. Mar. Serv. Tech. Rep. 800: 27 p.

    Google Scholar 

  • Craig, S. R. 1984. Productivity of algal picoplankton in a small meromictic lake. Verh. Int. Ver. Limnol. 22:351–354.

    Google Scholar 

  • Craig, S. R. 1985. Distribution of algal picoplankton in some European freshwaters. Abstr. 2nd Int. Phycol. Congr. Copenhagen, Aug. 1985, 31.

    Google Scholar 

  • Cronberg, G. and C. Weibull. 1981. Cyanodictyon imperfectum, a new chroococcal blue-green alga from Lake Trummen. Sweden Arch. Hydrobiol. Suppl. 60:101–110.

    Google Scholar 

  • Currie, D. J. and J. Kalff. 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29:298–310.

    Article  CAS  Google Scholar 

  • Daley, R. J. 1979. Direct epifluorescence enumeration of native aquatic bacteria: uses, limitations, and comparative accuracy, in: Native aquatic bacteria: enumeration, activity, and ecology, ed. J. W. Costerton and R. R. Colwell, 29–45. Philadelphia: American Society for Testing and Materials.

    Chapter  Google Scholar 

  • Fahnenstiel, G. L., L. Sicko-Goad, D. Scavia and E. F. Stoermer. 1986. Importance of picoplankton in Lake Superior. Can. J. Fish. Aquat. Sci. 43:235–240.

    Article  Google Scholar 

  • Fenchel, T. 1982a. Ecology of heterotrophic microflagellates. I. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Article  Google Scholar 

  • Fenchel, T. 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Article  Google Scholar 

  • Fenchel, T. 1984. Suspended marine bacteria as a food source, in: Flows of energy and material in marine ecosystems—theory and practice, ed. M. R. Fasham, 301–315. New York: Plenum Press.

    Google Scholar 

  • Fenchel, T. 1986. The ecology of heterotrophic microflagellates. in: Advances in microbial ecology, ed. K. C. Marshall, 51–97. New York: Plenum Press.

    Google Scholar 

  • Fogg, G. E. 1986. Picoplankton. Proc. R. Soc. Lond. B 228: 1–30.

    Article  Google Scholar 

  • Gates, M. A. 1984. Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108: 233–238.

    Article  Google Scholar 

  • George, D. G. and G. P. Harris. 1985. The effect of climate on long-term changes in the crustacean Zooplankton biomass of Lake Windermere, U.K. Nature 316(8):536–539.

    Article  Google Scholar 

  • Gilbert, J. J. and K. G. Bogdan. 1984. Rotifer grazing: in situ studies and selectivity rates, in: Trophic interactions within aquatic ecosystems, ed. D. G. Meyers and J. R. Strickler. Denver: Westview Press.

    Google Scholar 

  • Gliwicz, Z. M. 1980. Filtering rates, food size selection, and feeding rates in cladocerans— another aspect of interspecific competition in filter-feeding zooplankton, in: Evolution and ecology of Zooplankton communities, ed. W. C. Kerfoot, 282–291. Hanover: University Press of New England.

    Google Scholar 

  • Goldman, J. C. and D. A. Caron. 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32:899–915.

    Article  Google Scholar 

  • Gude, H., B. Haibel and H. Muller. 1985. Development of planktonic bacterial populations in a water column of Lake Constance (Bodensee-Obersee). Arch. Hydrobiol. 105(1): 59–77.

    Google Scholar 

  • Hobbie, J. E., O. Holm-Hansen, T. T. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas and W. J. Wiebe. 1972. A study of the distribution and activity of miocroorganisms in ocean water. Limnol. Oceanogr. 17:544–555.

    Article  Google Scholar 

  • Johannes, R. E. 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10:434–442.

    Article  Google Scholar 

  • Johnson, P. W. and J. McN. Sieburth. 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18:318–317.

    Article  Google Scholar 

  • Lehman, J. T. and D. Scavia. 1984. Measuring the ecological significance of microscale nutrient patches. Limnol. Oceanogr. 29:214–216.

    Article  Google Scholar 

  • McDonough, R. J., R. W. Saunders, K. G. Porter and D. L. Kirchman. 1986. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Appl. Environment. Microbiol. 52:922–1000.

    Google Scholar 

  • Melack, J. M., P. Kilham and T. R. Fisher. 1982. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52:321–326.

    Article  Google Scholar 

  • Meyer, J. L., R. T. Edwards and L. Carlough. 1985. Microbial food web of a Southeastern blackwater river. EOS 66(51): 1334.

    Google Scholar 

  • Munawar, M. and G. L. Fahnenstiel. 1982. The abundance and significance of ultraplankton and microalgae at an offshore station in Central Lake Superior. Can. Tech. Rep. Fish. Aquat. Sci. 1153:1–13.

    Google Scholar 

  • Pace, M. L. 1982. Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. Aquat. Sci. 39:1106–1116.

    Article  Google Scholar 

  • Pace, M. L. and J. D. Orcutt, Jr. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater Zooplankton community. Limnol. Oceanogr. 26:822–830.

    Article  Google Scholar 

  • Pace, M. L., K. G. Porter and Y. S. Feig. 1983. Species and age specific differences in bacterial resource utilization by two co-occurring cladocerans. Ecology 64:1145–1156.

    Article  Google Scholar 

  • Paerl, H. W. 1977. Ultraphytoplankton biomass and production in some New Zealand lakes. N.Z. J. Mar. Freshwater Res. 11: 297–305.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie and J. F. Haney. 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23:1039–1044.

    Article  Google Scholar 

  • Pick, F. R. and D. A. Caron. 1987. Pico- and nanoplankton biomass in Lake Ontario: Relative contribution of phototrophic and heterotrophic communities. Can. J. Fish. Aquat. Sci. 44: in press.

    Google Scholar 

  • Platt, T. and W. K. W. Li. 1987. Photosynthetic picoplankton. Can. Bull. Fish. Aquat. Sci. 214:583 pp.

    Google Scholar 

  • Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24:499–504.

    Article  Google Scholar 

  • Pomeroy, L. R. 1984. Significance of microorganisms in carbon and energy flow in marine ecosystems. in: Current perspectives in microbial ecology, ed. M. J. Klug and C. A. Reddy, 405–411. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Pomeroy, L. R. and D. Diebel. 1986. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science, Washington, DC. 233:359–361.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K. G. 1973. Selective grazing and differential digestion of algae by zoo-plankton. Nature, London. 244: 179–180.

    Article  Google Scholar 

  • Porter, K. G. 1984. Natural bacteria as food resources for Zooplankton. in: Current perspectives in microbial ecology, ed. M. J. Klug and C. A. Reddy, 340–345. Washington, D. C: American Society of Microbiology.

    Google Scholar 

  • Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943–948.

    Article  Google Scholar 

  • Porter, K. G., M. L. Pace and J. F. Battey. 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature, London. 277:563–565.

    Article  Google Scholar 

  • Porter, K. G., Y. Feig and E. Vetter. 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia and Bosmina fed natural bacterioplankton. Oecologia 58:156–163.

    Article  Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace and R. W. Sanders. 1985. Protozoa in planktonic food webs. J. Protozool. 32:409–415.

    Google Scholar 

  • Riemann, B. 1985. Potential influence of fish predation and Zooplankton grazing on natural populations of freshwater bacteria. Appl. Environ. Microbiol. 50:187–193.

    PubMed  CAS  Google Scholar 

  • Riemann, B. and M. Sondergaard. 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8:519–536.

    Article  CAS  Google Scholar 

  • Robbins, E. I., K. G. Porterand, K. A. Kaberyan. 1985. Pellet microfossils: Possible evidence for metazoan life in early Proterozoic time. Proc. Nat. Acad. Sci. 82:5809–5813.

    Article  PubMed  CAS  Google Scholar 

  • Rodhe, W. 1955. Productivity: can plankton production proceed during winter darkness in subarctic lakes? Verh. Int. Ver. Limnol. 12:117–122.

    Google Scholar 

  • Sanders, R. W., K. G. Porterand, R. McDonough. 1985. Bacteriovory by ciliates, microflagellates and mixotrophic algae: factors influencing particle ingestion. EOS. 66: 1314.

    Google Scholar 

  • Scavia, D., D. A. Laird and G. L. Fahnenstiel. 1986. Production of planktonic bacteria in Lake Michigan. Limnol. Oceanogr. 31:612–626.

    Article  Google Scholar 

  • Scavia, D. and G. A. Laird. 1987. Bacterioplankton in Lake Michigan: Dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32:1017–1032.

    Article  CAS  Google Scholar 

  • Sherr, B. and E. Sherr. 1983. Enumeration of heterotrophic microprotozoa by epifluorescence microscopy. Estuarine Coastal Shelf Sci. 16:1–7.

    Article  Google Scholar 

  • Sherr, E. B., E. Sherr, R. D. Fallon and S. Y. Newell. 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31:177–183.

    Article  Google Scholar 

  • Shortreed, K. S. and J. G. Stockner. 1986. Trophic status of 19 subarctic lakes in the Yukon Territories. Can. J. Fish. Aquat. Sci. 43:797–805.

    Article  CAS  Google Scholar 

  • Sorokin, Y. I. and E. B. Paveljeva. 1978. On structure and functioning of ecosystems in a salmon lake. Hydrobiologia 57:525–48.

    Article  Google Scholar 

  • Stemberger, R. S. and J. J. Gilbert. 1985a. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66:1151–1159.

    Article  Google Scholar 

  • Stemberger, R. S. and J. J. Gilbert. 1985b. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol. Beih. 21:269–275.

    Google Scholar 

  • Stenson, J. A. 1985. Interactions between pelagic metazoan and protozoan zooplankton: an experimental study. Verh. Int. Ver. Limnol. 22:3001.

    Google Scholar 

  • Stockner, J. G. 1987. Lake fertilization: the enrichment cycle and lake sockeye (Oncorhynchus nerka) production, p. 198–215. In H. D. Smith, L. Margolis, and C. C. Wood [ed.] Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

    Google Scholar 

  • Stockner, J. G. 1981. Whole lake fertilization for the enhancement of sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Verh. Int. Ver. Limnol. 21: 293–299.

    CAS  Google Scholar 

  • Stockner, J. G. and N.J. Antia. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat Sci. 43:2472–2503.

    Article  Google Scholar 

  • Stockner, J. G. and Shortreed, K. S. 1988. Algal picoplankton and contribution to food webs in oligotrophic British Columbia Lakes. Hydrobiologia (in press).

    Google Scholar 

  • Williamson, C. E. and N.M. Butler. 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31:393–402.

    Article  Google Scholar 

  • Wood, E. J. F. 1965. Marine microbial ecology. New York: Reinhold Publishing Corp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Stockner, J.G., Porter, K.G. (1988). Microbial Food Webs in Freshwater Planktonic Ecosystems. In: Carpenter, S.R. (eds) Complex Interactions in Lake Communities. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3838-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3838-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8372-0

  • Online ISBN: 978-1-4612-3838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics