Skip to main content

Photoperiodism and Seasonality in Hamsters: Role of the Pineal Gland

  • Conference paper
Processing of Environmental Information in Vertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

During the past two decades, a large body of evidence has been accumulated to indicate a central role for the pineal gland in the regulation of photoperiodic responses in mammals (Goldman and Darrow 1983). Most of this evidence has come from studies of the effects of pinealectomy on the reproductive system in photoperiodic mammals. The Syrian hamster has been the most intensively studied of these species, and frequently has been presented as a “model” for the role of the pineal in regulating reproductive activity. This species is a long-day breeder and exhibits gonadal regression following several weeks of exposure to short days—i.e., daylengths of less than 12.5-h illumination/24-h cycle (Elliott 1976). Removal of the pineal completely prevents this response to short-day exposure; pinealectomized Syrian hamsters remain reproductively active under all photoperiodic conditions (Reiter 1969, Reiter 1974). The photoperiod dependency of the response to pinealectomy in this species has been emphasized. In long days, pinealectomized and intact Syrian hamsters show identical levels of reproductive activity; the effect of pinealectomy becomes apparent only during exposure to short days (Reiter 1974). The closely related Turkish hamster is also a long-day breeder and requires daylengths of nearly 16 h to stimulate reproductive activity (Hong et al. 1986). Pinealectomy also has a photoperiod-dependent effect on reproductive activity in this species, but the nature of the response to pinealectomy is almost the reverse of that seen in Syrian hamsters. In Turkish hamsters, pinealectomy actually triggers testicular regression in long-day-housed animals; short-day-exposed Turkish hamsters exhibit gonadal regression regardless of whether or not they have been pinealectomized (Carter et al. 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aschoff J (1965) Response curves in circadian periodicity. In: Aschoff J (ed) Circadian Clocks. North-Holland, Amsterdam, pp. 95 – 111.

    Google Scholar 

  • Bartness TJ and Wade GN (1985) Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Behav. Rev. 9: 599 – 612.

    CAS  Google Scholar 

  • Carter DS and Goldman BD (1983a) Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology 113: 1261 – 1267.

    Article  CAS  Google Scholar 

  • Carter DS and Goldman BD (1983b) Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): mediation by melatonin. Endocrinology 113: 1268 – 1273.

    Article  CAS  Google Scholar 

  • Carter DS, Hall VD, Tamarkin L, Goldman BD (1982) Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology 111: 863 – 871.

    Article  PubMed  CAS  Google Scholar 

  • Dark J, Zucker I (1985) Circannual rhythms of ground squirrels: role of the hypothalamic paraventricular nucleus. J Biol Rhythms 1: 17 – 23.

    Article  PubMed  CAS  Google Scholar 

  • Darrow JM, Goldman BD (1986) Circadian regulation of pineal melatonin and reproduction in the Djungarian hamster. J Biol Rhythms 1: 39 – 54.

    Article  Google Scholar 

  • Duncan MJ, Goldman BD, Di Pinto MN, Stetson MH (1985) Testicular function and pelage color have different critical daylengths in the Djungarian hamster, Phodopus sungorus sungorus. Endocrinology 116: 424 – 430.

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35: 2339 – 2346.

    PubMed  CAS  Google Scholar 

  • Elliott JA (1981) Circadian rhythms, entrainment and photoperiodism in the Syrian hamster. In: Follett BK, Follett DE (eds.) Biological Clocks in Seasonal Reproductive Cycles, John Wright and Sons, Bristol, England, pp. 203 – 217.

    Google Scholar 

  • Elliott JA, Goldman BD (1981) Seasonal reproduction: photoperiodism and biological clocks. In: Adler NT (ed) Neuroendocrinology of Reproduction: Physiology and Behavior, Plenum Press, New York, pp. 377 – 423.

    Google Scholar 

  • Elliott JA, Pittendrigh CS (1987) After-effects of entrainment on the phase response curve of Syrian hamsters. Manuscript in preparation.

    Google Scholar 

  • Elliott JA, Tamarkin L (1987) Complex structure of the circadian pacemaker regulating pineal melatonin content and wheel-running activity in the Syrian hamster. Manuscript in preparation.

    Google Scholar 

  • Goldman BD (1983) The physiology of melatonin in mammals. In: Reiter RJ (ed), Pineal Research Reviews, Vol. 1. Alan R. Liss, Inc., New York, pp. 145 – 182.

    Google Scholar 

  • Goldman BD, Darrow JM (1983) The pineal gland and mammalian photoperiodism. Neuroendocrinology 37: 386 – 396.

    Article  PubMed  CAS  Google Scholar 

  • Goldman BD, Darrow JM, Yogev L (1984) Effect of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology 114: 2074 – 2083.

    Article  PubMed  CAS  Google Scholar 

  • Goldman B, Hall V, Hollister C, Reppert S, Roychoudhury P, Yellon S, Tamarkin L (1981) Diurnal changes in pineal melatonin content in four rodent species: relationship to photoperiodism. Biol Reprod 24: 778 – 783.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman K (1978) Photoperiodic mechanism in hamsters: the participation of the pineal gland. In: Follett BK, Follett DE (eds) Environmental Endocrinology. Springer- Verlag, Berlin, pp. 94 – 102.

    Google Scholar 

  • Hoffmann K (1984) Photoperiodic reaction in the Djungarian hamster is influenced by previous light history. Soc Study Reprod 30: (Abstract 50), p. 55.

    Google Scholar 

  • Hong SM, Rollag MD, Stetson MH (1986) Maintenance of testicular function in Turkish hamsters: interaction of photoperiod and the pineal gland. Biol Reprod 34: 527 – 531.

    Article  PubMed  CAS  Google Scholar 

  • Horton TH (1985) Cross-fostering of voles demonstrates in uteroeffect of photoperiod. Biol Reprod 33: 934 - 939.

    Article  PubMed  CAS  Google Scholar 

  • Illnerova H, Vanacek J (1982) Two-oscillator structure of the pacemaker controlling the circadian rhythm of /V-acetyltransferase in the rat pineal gland. J Comp Physiol A145: 539 – 548.

    Article  Google Scholar 

  • Lyman CP (1943) Control of coat color in the varying hare, Lepus americanusErxleben. Bull Museum Comp Zool Harvard 93: 393 – 461.

    Google Scholar 

  • Lynch GR, Epstein AL (1976) Melatonin induced changes in gonads, pelage, and thermogenic characters in the white-footed mouse, Peromyscus leucopus. Comp Biochem Physiol 53C: 67.

    Google Scholar 

  • Martinet L, Meunier M, Allain D (1981) Control of delayed implantation and onset of spring moult in the mink (Mustela vison) by daylight ratio, prolactin and melatonin. In: Ortovant R, Pelletier J, Ravault JP (eds) Photoperiodism and Reproduction. INRA Publ., Paris, pp. 253 – 261.

    Google Scholar 

  • Pengelley ET (1974) Circannual Clocks. Academic Press, New York.

    Google Scholar 

  • Pittendrigh CS (1965) On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Aschoff J (ed) Circadian Clocks. North-Holland, Amsterdam, pp. 277 – 297.

    Google Scholar 

  • Pittendrigh CS (1981) Circadian organization and photoperiodic phenomena. In: Follett BK, Follett DE (eds) Biological Clocks in Seasonal Reproductive Cycles. John Wright and Sons, Bristol, England, pp. 1 – 35.

    Google Scholar 

  • Pittendrigh CS, Daan S (1976a) A functional-analysis of circadian pacemakers IV. Entrainment: pacemaker as clock. J Comp Physiol 106: 291 – 331.

    Article  Google Scholar 

  • Pittendrigh CS, Daan S (1976b) A functional analysis of circadian pacemakers V. Pacemaker structure: a clock for all seasons. J Comp Physiol 106: 333 – 355.

    Article  Google Scholar 

  • Pittendrigh CS, Elliott J, Takamura T (1984) The circadian component in photoperiodic induction. In: Photoperiodic Regulation of Insect and Molluscan Hormones (Ciba Foundation Symposium 104 ). Pitman, London, pp. 26 - 47.

    Google Scholar 

  • Reiter RJ (1969) Pineal function in long term blinded male and female golden hamsters. Gen Comp Endocrinol 12: 460 – 468.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1974) Circannual reproductive rhythms in mammals related to photoperiod and pineal function: a review. Chronobiologia 1: 365 – 395.

    PubMed  CAS  Google Scholar 

  • Reppert SM, Duncan MJ, Goldman BD (1985) Photic influences on the developing mammal. In: Evered D, Clark S (eds) Photoperiodism, Melatonin and the Pineal (Ciba Foundation Symposium 117 ). Pitman, London, pp. 116 – 128.

    Google Scholar 

  • Robinson JE, Karsch FJ (1984) Refractoriness to inductive day lengths terminates the breeding season of the Suffolk ewe. Biol Reprod 31: 656 – 663.

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, Martensz ND, Hastings MH, Herbert J (1985) Changes in photoperiod alter the daily rhythm of pineal melatonin content, hypothalamic β-endorphin content and the LH response to naloxone in the male Syrian hamster. Endocrinology 117: 141 – 147.

    Article  PubMed  CAS  Google Scholar 

  • Rollag MD, Panke ES, Reiter RJ (1980) Pineal melatonin content in male hamsters throughout the seasonal reproductive cycle. Proc Soc Exp Biol Med 165: 330 – 334.

    PubMed  CAS  Google Scholar 

  • Rust CC, Meyer RK (1969) Hair color, molt, and testes size in short-tailed weasels treated with melatonin. Science 165: 921 – 922.

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner S, Heldmaier G (1982) Role of photoperiod and melatonin in seasonal acclimatization of the Djungarian hamster, Phodopus sungorus. Int J Biometeor 26: 329 – 337.

    Article  CAS  Google Scholar 

  • Stetson MH, Elliott JA, Goldman BD (1986) Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters. Biol Reprod 34: 664 – 669.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308: 186 – 188.

    Article  PubMed  CAS  Google Scholar 

  • Tamarkin L, Reppert SM, Klein DC, Pratt BL, Goldman BD (1980) Studies on the daily pattern of pineal melatonin in the Syrian hamster. Endocrinology 107: 1525 – 1529.

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Desjardins C, Menaker M (1976) Differential effects of melatonin on the testes of photoperiodic and nonphotoperiodic rodents. Biol Reprod 15: 94 – 97.

    Article  PubMed  CAS  Google Scholar 

  • Vanacek J, Illnerova H (1985) Effect of short and long photoperiods on pineal N-acetyltransferase rhythm and on growth of testes and brown adipose tissue in developing rats. Neuroendocrinology 41: 186 – 191.

    Article  Google Scholar 

  • Vitale PM, Darrow JM, Duncan MJ, Shustak CA, Goldman BD (1985) Effects of photoperiod, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). J Endocrinol 106: 367 – 375.

    Article  PubMed  CAS  Google Scholar 

  • Yellon SM, Tamarkin L, Pratt BL, Goldman BD (1982) Pineal melatonin in the Djungarian hamster: photoperiodic regulation of a circadian rhythm. Endocrinology 111:488–492.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Goldman, B.D., Elliott, J.A. (1988). Photoperiodism and Seasonality in Hamsters: Role of the Pineal Gland. In: Stetson, M.H. (eds) Processing of Environmental Information in Vertebrates. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3740-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3740-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8328-7

  • Online ISBN: 978-1-4612-3740-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics