Skip to main content

Light and Vision in the Aquatic Environment

  • Conference paper
Sensory Biology of Aquatic Animals

Abstract

The conditions for vision underwater are more exacting than on land. As the depth increases, the daylight gets progressively less bright, and that which remains comes mostly from above and is restricted to a narrow and variable band of the spectrum. Deeper than about 1,000 m in even the clearest water, there is not enough daylight for vision, and animals must produce their own light. At all depths, light is more strongly scattered than is usual on land, and it is principally for this reason that it would be unusual indeed to be able to see farther than 100 m through the water. Both air and water scatter, refract, and absorb light; but the effects are quantitively much greater in water, and it is often possible to recognize visual adaptations to the particular conditions for vision underwater, and several of these will be considered in this chapter. However, an animal is concerned with the real problems of finding food, finding mates, and avoiding getting eaten, and several optical problems may be involved at any one time. If we are to understand how an animal is adapted to the real world around it. an attempt must be made to take a more integrated view of the problems it encounters in its visual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Avery, J.A., J.K. Bowmaker, M.B.A. Djamgos, and J.E.G. Downing. 1983. Ultraviolet sensitive receptors in a freshwater fish. J. Physiol. 334: pp 23.

    Google Scholar 

  • Baker, K.S., and R.C. Smith. 1982. Bio-optical classification and model of natural waters. II. Limnol. Oceanogr. 27:500–509.

    Article  CAS  Google Scholar 

  • Barlow, H.B. 1957. Purkinje shift and retinal noise. Nature (Lond.) 179:255–256.

    Article  CAS  Google Scholar 

  • Bayliss, L.E., R.J. Lythgoe, and K. Tansley. 1936. Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin. Proc. R. Soc. Lond. B Biol. Sci. 816:95–113.

    Article  Google Scholar 

  • Beatty, D.D. 1984. Visual pigments and the labile scotopic visual system of fish. Vision Res. 24:1563–1573.

    Article  PubMed  CAS  Google Scholar 

  • Blaxter, J.H.S. 1974. “Light: Fishes.” In Marine Ecology, vol. 1, by O. Kinney. London: Wiley Interscience.

    Google Scholar 

  • Blest, A.D., and M.F. Land. 1977. The physiological optics of Dinopus subrufus L. Koch, a fish-eye lens in a spider. Proc. R. Soc. Lond. B Biol. Sci. 196:197–222.

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker, J.K. 1984. Microspectrophotometry of vertebrate photoreceptors. Vision Res. 24:1641–1650.

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker, J.K., and A. Knowles. 1977. The visual pigments and oil droplets of the chicken retina. Vision Res. 17:755–764.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.D.B., and C.E. Delisle. 1974. Post-glacial evolution of the visual pigments of the Smelt, Osmerus eperlanus mordax. Vision Res. 14:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.D.B., and S. Yoshikama. 1970. The rhodopsin-porphyropsin system in freshwater fishes. 2. Turnover and interconversion of visual pigment prosthetic groups in light and darkness: role of the pigment epithelium. Vision Res. 10:1333–1345.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G.L. 1936. On the depth at which fishes can see. Ecology 17:452–456.

    Article  Google Scholar 

  • Cott, H.B. 1940. Adaptive Coloration in Animals. London: Methuen.

    Google Scholar 

  • Crescitelli, F., M. McFall-Ngai, and J. Horwitz. 1985. The visual pigment sensitivity hypothesis: further evidence for fish of varying habitats. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 157:323–333.

    Article  CAS  Google Scholar 

  • Dartnall, H.J. A. 1975. “Assessing the Fitness of Visual Pigments for Their Photic Environment.” In Vision in Fishes, by M.A. Ali. NY: Plenum Press.

    Google Scholar 

  • Dartnall, H.J.A., M.R. Lander, and F.W. Munz. 1961. “Periodic Changes in the Visual Pigment of a Fish.” In Progress in Photobiology, by B.C. Christensen and B. Buckman. Amsterdam: Elsevier.

    Google Scholar 

  • Dartnall, H.J.A., and J.N. Lythgoe. 1965. The spectral clustering of visual pigments. Vision Res. 5:81–100.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E.J., and J.A.C. Nicol. 1965. Studies on reflexions of light from silvery surfaces of fishes, with special reference to the bleak, Alburnus alburnus. J. Mar. Biol. Assoc. U.K. 45:683–703.

    Article  Google Scholar 

  • Denton, E.J., and J.A.C. Nicol. 1966. A survey of reflectivity in silvery teleosts. J. Mar. Biol. Assoc. U.K. 46:685–722.

    Article  Google Scholar 

  • Duntley, S.Q. 1951. The visibility of submerged objects. II. Proc. Armed Forces-Nat. Res. Council Vision Comm. 28:60.

    Google Scholar 

  • Duntley, S.Q. 1963. Light in the sea. J. Opt. Soc. Am. 53:214–233.

    Article  Google Scholar 

  • Fernald, R.D. 1981. Chromatic organization of a cichlid fish retina. Vision Res. 21:1748–1753.

    Article  Google Scholar 

  • Harosi, F.I., and Y. Hashimoto. 1983. Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222:1021–1023.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, Y., and M. Inokuchi. 1981. Characteristics of second order neurons in the dace retina: physiological and morphological studies. Vision Res. 21:1541–1550.

    Article  PubMed  CAS  Google Scholar 

  • Herring, P.J. 1977. Bioluminescence of marine organisms. Nature 267:788–793.

    Article  Google Scholar 

  • Jerlov, N.G. 1968. Optical Oceanography. N.Y.: Elsevier.

    Google Scholar 

  • Jerlov, N.G. 1951. Optical studies of ocean waters. Rep. Swed. Deep-Sea Exped. 3: 1–59.

    Google Scholar 

  • Jerlov, N.G. 1976. Marine Optics. Amsterdam; Elsevier.

    Google Scholar 

  • Kirschfeld, D. 1974. The absolute sensitivity of lens and compound eyes. Z. Naturforsch. 29c:592–596.

    CAS  Google Scholar 

  • Knowles, A., and H.J.A. Dartnall. 1977. “The Photobiology of Vision.” In The Eye, by H. Davson. N.Y.: Academic Press.

    Google Scholar 

  • Land, M.F. 1980. “Optics and Vision in Invertebrates.” In Handbook of Sensory Physiology VII/6B, by H. Autrum. Berlin: Springer-Verlag.

    Google Scholar 

  • Levine, J.S., and E.F. MacNicholl, Jr. 1979. Visual pigments in teleost fishes: effects of habitat, microhabitat and behavior on visual system evolution. Sensory Processes 3:95–130.

    PubMed  CAS  Google Scholar 

  • Liebman, P. A., and A.M. Granda. 1971. Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia midas. Vision Res. 11:105–114.

    Article  CAS  Google Scholar 

  • Locket, N.A. 1977. “Adaptations to the Deep-sea Environment”. In Handbook of Sensory Physiology VII/5, by F. Crescitelli. Berlin: Springer-Verlag.

    Google Scholar 

  • Loew, E.R., and H.J.A. Dartnall. Vitamin A1/A2-based visual pigment mixtures in cones of the rudd. Vision Res. 16:891–896.

    Google Scholar 

  • Loew, E.R., and J.N. Lythgoe. 1978. The ecology of cone pigments in teleost fish. Vision Res. 18:715–722.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. 1968. Visual pigments and visual range underwater. Vision Res. 8:997–1012.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. 1979. The Ecology of Vision. Oxford: Clarendon.

    Google Scholar 

  • Lythgoe, J.N. 1980. “Vision in Fish: Ecological Adaptations.” In Environmental Physiology of Fishes, by M.A. Ali. New York: Plenum.

    Google Scholar 

  • Lythgoe, J.N. 1984. Visual pigments and environmental light. Vision Res. 24:1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • MacFarland, W.N., and E.R. Loew. 1983. “Wave Produced Changes in Underwater Light and Their Relation to Vision”. In Predators and Prey in Fishes, by D.I.G. Noakes, D.G. Lindquist, G.S. Helfman, and T. Ward. The Hague: J.A Junk.

    Google Scholar 

  • MacNichol, Jr., E.F., Y.W. Kunz, J.S. Levine, F.I. Harosi, and B.A. Collins. 1978. Ellipsosomes: organelles containing a cytochrome-like pigment in the retinal cones of certain fishes. Science 200:549–552.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N.B. 1979. Explorations in Deep-sea Biology. Poole, U.K.: Blandford.

    Google Scholar 

  • Menaker, M. 1977. “Extra retinal photoreception.” In The Science of Photobiology, by K.C. Smith. London: Plenum.

    Google Scholar 

  • Middleton, W.E.K. 1952. Vision through the Atmosphere. University of Toronto Press.

    Google Scholar 

  • Munk, O. 1970. On the occurrence and significance of horizontal band-shaped retinal areas in teleosts. Vidensk. Medd. Dan. Naturhist. For en. 133:85–120.

    Google Scholar 

  • Munk, O. and R.D. Frederiksen. 1974. On the function of aphakic apertures in teleosts. Vidensk. Medd. Dan. Naturhist. Foren. 137:65–94.

    Google Scholar 

  • Munk, O. 1977. The visual cells and retinal tapetum of the foveate deep-sea fish Scopelosaurus lepidus (Teleostei). Zoomorphologie 87:21–49.

    Article  Google Scholar 

  • Muntz, W.R.A. 1976. On yellow lenses in mesopelagic animals. J. Mar. Biol. Assoc. U.K. 56:963–976.

    Article  Google Scholar 

  • Muntz, W.R.A., and G.S.V. Mouat. 1984. Annual variation in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Res. 24:1575–1580.

    Article  PubMed  CAS  Google Scholar 

  • Munz, F.W., and W.N. MacFarland. 1977. “Evolutionary Adaptations of Fishes to the Photic Environment”. In Handbook of Sensory Physiology by F. Crescitelli. Berlin: Springer-Verlag.

    Google Scholar 

  • Nicol, J.A.C., H.J. Arnott, and C.G. Best. 1974. Tapeta lucida in bony fishes (Actinopterygii): a survey. Can. J. Zool. 59:61–81.

    Google Scholar 

  • Ohtsuka, T. 1985. Relation of spectral types to oil droplets in cones of turtle retina. Science 229:874–877.

    Article  PubMed  CAS  Google Scholar 

  • Pirenne, M.H. 1967. Vision and the Eye. London: Chapman & Hall.

    Google Scholar 

  • Protasov, U.R. 1970. Vision and near orientation of fish. Translated by the Israel Program for Scientific Translation. Jerusalem.

    Google Scholar 

  • Ripps, H., and R.A. Weale. 1976. “The Visual Stimulus.” In The Eye, by H. Davson. New York: Academic Press.

    Google Scholar 

  • Rodieck, R.A. 1973. The Vertebrate Retina. San Francisco: W.H. Freeman.

    Google Scholar 

  • Saidel, W.M. and M.R. Braford, Jr. (In press.) Fundal variations in the eyes of osteoglossomorph fishes. Brain Behav. Evol.

    Google Scholar 

  • Sirovich, L., and I. Abramov. 1977. Photopigments and pseudopigments. Vision Res. 17:5–16.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.C. 1974. “Structure of Solar Radiation in the Upper Layers of the Sea. In Optical Oceanography, by N.G. Jerlov and E. Steeman Nielsen. London: Academic Press.

    Google Scholar 

  • Spekreijse, H., T.E.M. Mooij, and T.J.T.P. van de Berg. 1981. Photopigments and carp ganglion cell action spectra. Vision Res. 21:1601–1604.

    Article  PubMed  CAS  Google Scholar 

  • Stiles, W.S. 1948. “The Physical Interpretation of the Spectral Sensitivity Curve of the Eye. In Transaction of the Optical Convention of the Worshipful Company of Spectacle Makers. London: Spectacle Makers Company.

    Google Scholar 

  • Suzuki, T., and M. Makino-Tasak. 1984. Rhodopsin-porphyropsin system in a crayfish. Vision Res. 24:1699.

    Article  Google Scholar 

  • Suzuki, T., K. Arikawa, and E. Eguchi. 1985. The effects of light and temperature on the rhodopsin-porphyropsin visual system of the crayfish, Procambarus clarkii. Zool. Inst. Fac. Sci. Univ. Tokyo Annu. Rep. 2:455–461.

    CAS  Google Scholar 

  • Tansley, K. 1965. Vision in Vertebrates. London: Chapman & Hall.

    Google Scholar 

  • Tyler, J.E., and R.C. Smith. 1970. Measurements of Spectral Irradiance Underwater. New York: Gordon and Breach.

    Google Scholar 

  • Walls, G.L. 1942. The Vertebrate Eye and Its Adaptive Radiation. N.Y.: Hafner.

    Google Scholar 

  • Ward, F. 1919. Animal Life under Water. London: Cassell.

    Google Scholar 

  • Warner, J.A., M.I. Latz, and J.F. Case. 1979. Cryptic bioluminescence in a midwater shrimp. Science 203:1109–1110.

    Article  PubMed  CAS  Google Scholar 

  • Zrenner, E. 1983. “Neurophysiological Aspects of Colour Vision Mechanisms in the Primate Retina.” In Colour Vision, by J.D. Mollon and L.T. Sharp. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lythgoe, J.N. (1988). Light and Vision in the Aquatic Environment. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3714-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8317-1

  • Online ISBN: 978-1-4612-3714-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics