Skip to main content

Evolution of Central Auditory Pathways in Anamniotes

  • Chapter
The Evolutionary Biology of Hearing

Abstract

An inner ear containing multiple sensory endorgans arose early in vertebrate history. Among jawed vertebrates the ear includes seven endorgans believed to be primitive for jawed fishes (otolithic endorgans: utricle, saccule, lagena; macula neglecta; three semicircular canals) as well as the various derived papular endorgans of anamniotes (amphibian and basilar papillae) and amniotes (basilar papilla or cochlear duct). What is remarkable about this collection of endorgans is that, with the exception of the semicircular canal cristae, each of the remaining endorgans has been implicated in hearing in one species or another. The classic notion that the otolithic endorgans do not contribute to hearing in land vertebrates has been recently disproven in amphibians (reviewed in Lewis et al. 1985), a discovery that challenges us to reexamine otolithic endorgan function in other vertebrates. Moreover, it has also been recently claimed that the evolution of the papillar endorgans, at least of anamniotes, predates the emergence of vertebrates onto land (Fritzsch 1987, Chapter 18), a view that requires us to reconsider the selective pressures that influenced the appearance of acoustic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen JM, Blaxter JHS, Denton EJ (1976) The functional anatomy and development of the swimbladder-inner ear-lateral line system in herring and sprat. J Mar Biol Assoc UK 56:471–486.

    Article  Google Scholar 

  • Amemiya F, Kishida R, Goris RC, Onishi H, Kusonoki T (1985) Primary vestibular projections in the hagfish Eptatretus burgei. Brain Res 337:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Ariens Kappers CU, Huber GC, Crosby EC (1967) The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Hafner Publishing Company.

    Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates, In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/l. New York: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Barry MA (1987) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J Comp Neurol 266:457–477.

    Article  PubMed  CAS  Google Scholar 

  • Bass AH (1981) Organization of the telencephalon in the channel catfish, Ictalurus punctatus. J Morphol 169: 71–90.

    Article  Google Scholar 

  • Bell CC (1981a) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC (1981b) Some central connection of medullary octavolateral centers in a mormyrid fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 383–392.

    Google Scholar 

  • Best ACG, Gray JAB (1980) Morphology of the utricular recess in the sprat. J Mar Biol Assoc UK 60:703–715.

    Article  Google Scholar 

  • Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate Raja erinacea. J Comp Neurol 225:581–590.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Montgomery JC (1989) Central mechanosensory lateral line centers among the elasmobranchs. In: Coombs S, Gorner P, Munz H (eds) The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 323–339.

    Chapter  Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J Comp Neurol 207:274–282.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Northcutt RG (1988) Medullary and mesencephalic pathways and connections of lateral line neurons of the spiny dogfish Squalus acanthias. Brain Behav Evol 32:76–88.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Rasmussen GL (1963) Projections of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J Comp Neurol 120:463–471.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Roberts BL (1980) Medullary and cerebellar projections of the statoacoustic nerve of the dogfish, Scyliorhinus canicula. J Comp Neurol 193:57–68.

    Article  PubMed  CAS  Google Scholar 

  • Braford MR, Jr, McCormick CA (1979) Some connections of the torus semicircularis in the bowfin, Amia calva: A horseradish peroxidase study. Soc Neurosci Abst 5:139.

    Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE and Northcutt RG (eds) Fish Neurobiology, Vol. 2. Ann Arbor: University of Michigan Press, pp. 117–163.

    Google Scholar 

  • Budelli R, Macadar O (1979) Statoacoustic properties of utricular afferents. J Neurophysiol 42:1479–1493.

    PubMed  CAS  Google Scholar 

  • Cazals Y, Aran J-M, Erre J-P (1982) Frequency sensitivity and selectivity of acoustically evoked potentials after complete cochlear hair cell destruction. Brain Res 231:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Cazals Y, Aran J-M, Erre J-P, Guilhaume A (1980) Acoustic responses after total destruction of the cochlear receptor: brainstem and auditory cortex. Science 210:83.

    Article  PubMed  CAS  Google Scholar 

  • Cazals Y, Aran J-M, Erre J-P, Guilhaume A, Aurousseau C (1983) Vestibular acoustic function in the guinea pig: A saccular function? Acta Otolaryngol 95:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1978) The relation of inner ear structure to the feeding behavior in sharks and rays, Scanning Electron Micros II: 1105–1112.

    Google Scholar 

  • Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and non-otolithic sound detection. J Comp Physiol 142:379–390.

    Article  Google Scholar 

  • Corwin JT, Northcutt RG (1982) Auditory centers in the elasmobranch brainstem: deoxyglucose autoradiography and evoked potential recording. Brain Res 236: 261–273.

    Article  PubMed  CAS  Google Scholar 

  • de Burlet HM (1928) Uber die Papilla neglecta. Anat Anz 66:199–209.

    Google Scholar 

  • Dehadrai PV (1957) On the swimbladder and its relation with the internal ear in genus Notopterus (Lacepede). J Zool Soc India 9:50–61.

    Google Scholar 

  • Denton EJ, Gray JAB (1980) Receptor activity in the utriculus of the sprat. J Mar Biol Assoc UK, 60:717–740.

    Article  Google Scholar 

  • Dunn RF, Koester DM (1987) Primary afferent projections to the central octavus nuclei in the elasmobranch, Rhinobatos sp. as demonstrated by nerve degeneration. J Comp Neurol 260:564–572.

    Article  PubMed  CAS  Google Scholar 

  • Eaton RC, Bombardieri RA, Meyer DL (1977) The Mauthner-initiated startle response in teleost fish. J Exp Biol 66:65–81.

    PubMed  CAS  Google Scholar 

  • Echteler SE (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551.

    Article  PubMed  CAS  Google Scholar 

  • Echteler SE (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A: 156:267–280.

    Article  Google Scholar 

  • Fay RR, Kendall JI, Tester AL, Popper AN (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A: 1235–1240.

    Article  Google Scholar 

  • Finger TE (1983) The gustatory system in teleost fish. In: Northcutt RG, Davis RE (eds) Fish Neurobiology, Vol. I. University of Michigan Press, pp. 286–309.

    Google Scholar 

  • Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence. J Neurobiol 13:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Tong S-L (1984) Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151.

    Article  PubMed  CAS  Google Scholar 

  • Foster RE, Hall WC (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178:783–832.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1987) The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  Google Scholar 

  • Fritzsch B (1988) Phylogenetic and ontogenetic origin of the dorsolateral auditory nucleus of anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: John Wiley and Sons, pp. 561–585.

    Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gym-nophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217.

    Article  Google Scholar 

  • Fritzsch B, Nikundiwe AM, Will U (1984) Projection patterns of lateral line afferents in anurans: a comparative HRP study. J Comp Neurol 229:451–469.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Niemann U, Bleckmann H (1990) A discrete projection of the sacculus and lagena to a distinct brain stem nucleus in a catfish. Neurosci Lett 111:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, KM (1972) Central projections of the eighth nerve in frogs. Brain Behav Evol 5:70–88.

    Article  PubMed  CAS  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258:407–419.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby J, Rubinson K (1983) The acoustic and lateral line nuclei are distinct in the premetamorphic frog, Rana catesbeiana. J Comp Neurol 216:152–161.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates. New York: Academic Press.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Sensory Biology of Aquatic Animals. Atema J, Fay RR, Popper AN, Tavolga WN (eds) New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kevetter GA, Perachio AA (1989) Projections from the sacculus to the cochlear nuclei in the mongolian gerbil. Brain Behav Evol 34:193–200.

    Article  PubMed  CAS  Google Scholar 

  • Keyser A (1972) The development of the diencephalon of the Chinese hamster. Acta Anat 83 Suppl 59:1–181. Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432.

    Article  Google Scholar 

  • Koester DM (1983) Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria. J Comp Neurol 221:199–215.

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Kishida R, Goris R, Kusunoki T (1989) Afferent and efferent projections of the Vlllth cranial nerve in the lamprey, Lampetra japonica. J Comp Neurol 280:663–671.

    Article  PubMed  CAS  Google Scholar 

  • Kurivilla A, Sitko S, Schwartz IR, Honrubia V (1985) Central projections of primary vestibular fibers in the bullfrog: I. The vestibular nuclei. Laryngoscope 95:692–707.

    Google Scholar 

  • Larsell O (1934) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527.

    Article  Google Scholar 

  • Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL (1982) Inner ear: Dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. Boca Raton: CRC Press.

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76.

    Article  Google Scholar 

  • Lowenstein O (1970) The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting, and mechanical vibration. Proc Roy Soc Lond Series B Biol Sei 174:419–434.

    Article  CAS  Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology. Proc Roy Soc Lond Series B Biol Sei 176:21–42.

    Article  Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology. Proc Roy Soc Lond Series B Biol Sei 176:21–42.

    Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth: a contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 114:471–489.

    CAS  Google Scholar 

  • Maler L (1974) The acousticolateral area of bony fishes and its cerebellar relations. Brain Behav Evol 10: 130–145.

    Article  PubMed  CAS  Google Scholar 

  • Matesz C (1979) Central projections of the Vlllth cranial nerve in the frog. Neuroscience 4:2061–2071.

    Article  Google Scholar 

  • McCormick CA (1981) Central connections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181.

    Article  Google Scholar 

  • McCormick CA (1983a) Central projections of inner ear endorgans in the bowfin, Amia calva. Am Zool 23:895.

    Google Scholar 

  • McCormick CA (1983b) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 265:177–185.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1988) Evolution of auditory pathways in the Amphibia. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: John Wiley and Sons. pp. 587–612.

    Google Scholar 

  • McCormick CA, Braford MR Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Sensory Biology of Aquatic Animals. New York: Springer-Verlag, Atema J, Fay RR, Popper WN, Tavolga WN (eds) pp. 733–756.

    Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Gorner P, Munz H (eds). The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 341–364.

    Chapter  Google Scholar 

  • Meredith GE (1985) The distinctive central utricular projections in the herring. Neurosci Lett 55:191–196.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Butler AB (1983) Organization of eighth nerve afferent projections from individual endorgans of the inner ear in the teleost Astronotus ocellatus. J Comp Neurol 220:44–62.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Roberts BL, Maslam S (1987) Distribution of afferent fibers from end organs in the ear and lateral line in the European eel. J Comp Neurol 265:507–520.

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Fukuoka T, Ito H (1986) Telencephalic ascending acousticolateral system in a teleost (Sebasticus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus. J Comp Neurol 247:383–397.

    Article  PubMed  CAS  Google Scholar 

  • Narins PM (1975) Electrophysiological determination of the function of the lagena in terrestrial amphibians. Biol Bull 149:438.

    Google Scholar 

  • Neary TJ (1988) Forebrain auditory pathways in ranid frogs. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: John Wiley and Sons, pp. 233–252.

    Google Scholar 

  • Nelson EM (1955) The morphology of the swimbladder and auditory bulla in the Holocentridae. Fieldiana Zool 37:121–130.

    Google Scholar 

  • New JG, Northcutt RG (1984) Central projections of the lateral line nerves in the shovelnose sturgeon. J Comp Neurol 225:129–140.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Sensory Biology of Sharks, Skates and Rays, Hodgson ES, Mathewson RF (eds). Arlington, VA: Office of Naval Research, pp. 117–194.

    Google Scholar 

  • Northcutt RG (1979) Central projections of the eighth cranial nerve in lampreys. Brain Res 167:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • Northcutt RG (1981) Audition and the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR (eds). Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 331–355.

    Google Scholar 

  • Northcutt RG, Braford MR Jr (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed). Comparative Neurology of the Telencephalon. New York: Plenum, pp. 41–98.

    Google Scholar 

  • Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165:307–332.

    Article  PubMed  CAS  Google Scholar 

  • Plassmann W (1983) Sensory modality interdependence in the octaval system of an elasmobranch. Exp Brain Res 50:283–292.

    Article  PubMed  CAS  Google Scholar 

  • Platt C (1983) The peripheral vestibular system of fishes. In: Fish Neurobiology, Vol. 1. Northcutt RG, Davis RE (eds). Ann Arbor: University of Michigan Press, pp. 89–123.

    Google Scholar 

  • Popper AN (1983) Organization of the inner ear and auditory processing. In: Northcutt RG, Davis RE (eds). Fish Neurobiology, Vol. 1. Ann Arbor: University of Michigan Press, pp. 125–178.

    Google Scholar 

  • Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1881) Das Gehororgan der Wirbelthiere, Vol. 1. Stockholm: Samson and Wallin.

    Google Scholar 

  • Ross RJ, Smith JJB (1980) Detection of substrate vibrations by salamanders: frequency sensitivity of the ear. Comp Biochem Physiol 47A:387–390.

    Google Scholar 

  • Saidel W, McCormick CA (1985) Morphology of the macula neglecta in the bowfin, Amia calva. Soc Neurosci Abst 11:1312.

    Google Scholar 

  • Sarasin P, Sarasin F (1888) Zur Entwicklungsgeschichte und Anatomie der ceylonesischen Blindwuhle Ichthyophis glutinosus. Das Gehororgan. Ergebnisse Naturwiss Forsch auf Ceylon. Wiesbaden: Kreideis Verlag.

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost mid-brain. In: Coombs S, Gorner P, Munz H (eds). The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 421–443.

    Chapter  Google Scholar 

  • Schmidt RS (1984) Neural correlates of frog calling: Preoptic area trigger of “mating call”. J Comp Physiol A 154:847–853.

    Article  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The Central Nervous System of Cartilaginous Fishes. New York: Springer-Verlag.

    Google Scholar 

  • Stipetić E (1939) Uber das Gehororgan der Mormyriden. Z Vergl Physiol 26:740–752.

    Article  Google Scholar 

  • Striedter GF (1990) The diencephalon of the channel catfish, Ictalurus punctatus: II. Retinal, tectal, cerebellar, and telencephalic connections. Brain Behav Evolu 36:355–377.

    Article  CAS  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the diencephalon and telencephalon of channel catfishes. Brain Behav Evol (in press).

    Google Scholar 

  • Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the shark genus Carcharhinus with particular reference to the macula neglecta. Pacif Sei 26:264–274.

    Google Scholar 

  • Tickle DR, Schneider GE (1982) Projection of the auditory nerve to the medial vestibular nucleus. Neurosci Lett 28:1–7.

    Article  PubMed  CAS  Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed). Contributions to Sensory Physiology, Vol. 2. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. Contrib Sens Physiol 7:1–38.

    Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • White JS (1986) Comparative features of surface morphology of the basilar papilla in five families of salamanders (Amphibia: Caudata). J Morphol 187: 201–217.

    Article  PubMed  CAS  Google Scholar 

  • White JS, Baird IL (1982) Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures. Scanning Electron Microsc 111:1301–1312.

    Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: John Wiley and Sons, pp. 185–208.

    Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians: peripheral and central distribution. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. John Wiley and Sons, Inc., New York, pp. 159–183.

    Google Scholar 

  • Will U, Luhede G, Görner P (1985) The area octavo-lateralis in Xenopus laevis. I. The primary afferent connections. Cell Tissue Res 239:147–161.

    Article  Google Scholar 

  • Wilczynski W (1988) Brainstem auditory pathways in anuran amphibians. In: Fritzsch B, Ryan MJ.

    Google Scholar 

  • Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: John Wiley and Sons, pp. 209–231.

    Google Scholar 

  • Young ED, Fernandez C, Goldberg JM (1976) Sensitivity of vestibular nerve fibers to audiofrequency sound and head vibration in the squirrel monkey. J Acoust Soc Am 59:Suppl SI S47.

    Article  Google Scholar 

  • Zottoli SJ (1977) Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J Exp Biol 66:243–254.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

McCormick, C.A. (1992). Evolution of Central Auditory Pathways in Anamniotes. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics