Skip to main content

Hearing in Nonarthropod Invertebrates

  • Chapter
The Evolutionary Biology of Hearing

Abstract

Hearing, generally defined as the process of perceiving sound by means of sensory organs specialized for sound reception, is best known in terrestrial, i.e., air-exposed, vertebrates. But it is also well known in aquatic vertebrates (Schellart and Popper, Chapter 16), as well as in many arthropods (e.g., Römer and Tautz 1991; Michelsen, Chapter 5; Hoy, Chapter 8; Lewis, Chapter 7; Römer, Chapter 6). Whether hearing is present in nonar-thropod invertebrates, however, is still controversial and difficult to decide. Basically the problem lies with the definition of underwater sound and of underwater hearing (compare Markl 1973, 1978, 1983; Hawkins and Myrberg 1983; Kalmijn 1988; Webster, Chapter 37).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnold JM, Williams-Arnold LD (1980) Development of the ciliature pattern on the embryo of the squid Loligo pealei: A scanning electron microscope study. Biol Bull 159:102–116.

    Article  Google Scholar 

  • Aronova M (1974) Electron microscopic observations on the aboral organ of ctenophora. Z Mikrosk Anat Forsch 88:401–412.

    PubMed  CAS  Google Scholar 

  • Autrum H (1963) Anatomy and physiology of sound receptors in invertebrates. In: Busnel RG (ed) Acoustic Behaviour of Animals. Amsterdam, London, New York: Elsevier, pp. 412–433.

    Google Scholar 

  • Baglioni S (1909) Zur Physiologie des Geruchsinnes und des Tastsinnes der Seetiere. Versuche an Octopus und einigen Fischen. Zentralbl Physiol 22:719–723.

    Google Scholar 

  • Baglioni S (1910) Zur Kenntnis der Leistungen einiger Sinnesorgane (Gesichtssinn, Tastsinn und Geruchssinn) und des Zentralnervensystems der Zephalopoden und Fische. Z Biol 53:255–286.

    Google Scholar 

  • Barber VC, Dilly PN (1969) Some aspects of the fine structure of the statocysts of the molluscs Pecten and Pterotrachea. Z Zellforsch Mikrosk Anat 94:462–478.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Budelmann BU, Bullock TH (1991) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J Comp Physiol A 168:247–257.

    PubMed  CAS  Google Scholar 

  • Blinn DW, Wagner VT, Grim JN (1986) Surface sensilla on the predaceous fresh-water leech Erpobdella montezuma: Possible importance in feeding. Trans Am Microsc Soc 105:21–30.

    Article  Google Scholar 

  • Bone Q (1961) The organization of the atrial nervous system of amphioxus (Branchiostoma lanceolatum (Pallas). Phil Trans R Soc Lond B 243:241–269.

    Article  Google Scholar 

  • Bone Q, Best ACG (1978) Ciliated sensory cells in amphioxus (Branchiostoma). J Mar Biol Assoc U.K. 58:479–486.

    Article  Google Scholar 

  • Bone Q, Pulsford A (1978) The arrangement of the ciliated sensory cells in Spadella (Chaetognatha). J Mar Biol Assoc U.K. 58:565–570.

    Article  Google Scholar 

  • Bone Q, Ryan KP (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J Zool Lond 186:417–429.

    Article  Google Scholar 

  • Bone Q, Ryan KP (1979) The Langerhans receptor of Oikopleura (Tunicata, Larvacea). J Mar Biol Assoc U.K. 59:69–75.

    Article  Google Scholar 

  • Brüggemann J, Ehlers U (1981) Ultrastruktur der Statocyste von Ototyphlonemertes pallida (Keferstein 1862) (Nemertini). Zoomorphology 97:75–87.

    Article  Google Scholar 

  • Budelmann BU (1970) Die Arbeitsweise der Statolithenorgane von Octopus vulgaris. Z Vergl Physiol 70:278–312.

    Article  Google Scholar 

  • Budelmann BU (1975) Gravity receptor function in cephalopods with particular reference to Sepia officinalis. Fortschr Zool 23:84–96.

    PubMed  CAS  Google Scholar 

  • Budelmann BU (1976) Equilibrium receptor systems in molluscs. In: Mill PJ (ed) Structure and Function of Proprioceptors in the Invertebrates. London: Chapman and Hall, pp. 529–566.

    Google Scholar 

  • Budelmann BU (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res 160:261–270.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 757–782.

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 607–631.

    Chapter  Google Scholar 

  • Budelmann BU (1990) The statocyst of squid. In: Gilbert DL, Adelman WJ, Arnold JM (eds) Squid as Experimental Animals. New York and London: Plenum Press, pp. 421–439.

    Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: Water waves generate micro-phonic potentials in the epidermal head lines of Sepia officinalis and Lolliguncula brevis. J Comp Physiol A 164:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann BU, Young JZ (1984) The statocystoculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:159–189.

    Article  Google Scholar 

  • Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system of the statocyst of Octopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization. Phil Trans R Soc Lond B 315:305–343.

    Article  Google Scholar 

  • Bullock TH, Budelmann BU (1991) Sensory evoked potentials in unanesthetized unrestrained cuttlefish: a new preparation for brain physiology in cephalopods. J Comp Physiol A 168:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Campbell RD (1972) Statocyst lacking cilia in the coelenterate Corymorpha palma. Nature 238:49–51.

    Article  PubMed  CAS  Google Scholar 

  • Chia FS, Koss R, Bickell LR (1981) Fine structural study of the statocysts in the veliger larva of the nudibranch, Rostanga pulchra. Cell Tissue Res 214:67–80.

    Article  PubMed  CAS  Google Scholar 

  • Colmers WF (1981) Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris. J Comp Neurol 197: 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Creutzberg F (1975) Orientation in space Animals. Invertebrates. In: Kinne O (ed) Marine Ecology, Vol. 2. Physiological Mechanisms, Part 2. London: John Wiley, pp. 555–656.

    Google Scholar 

  • Daly JM (1973) The ability to localize a source of vibrations as a prey-capture mechanism in Harmothoe imbricata (Annelida, Polychaeta). Mar Behav Physiol 1:305–322.

    Article  Google Scholar 

  • Derosa YS, Friesen WO (1981) Morphology of leech sensilla: Observations with the scanning electron microscope. Biol Bull 160:383–393.

    Article  Google Scholar 

  • Dijkgraaf S (1963) Versuche über Schallwahrnehmung bei Tintenfischen. Naturwissenschaften 50:50.

    Google Scholar 

  • Dilly N (1961) Electron microscope observations of the receptors in the sensory vesicle of the ascidian tadpole. Nature 191:786–787.

    Article  Google Scholar 

  • Dilly N (1962) Studies on the receptors in the cerebral vesicle of the ascidian tadpole. I. The otolith. Q J Microsc Sei 103:393–398.

    Google Scholar 

  • Eakin RM, Kuda A (1971) Ultrastructure of sensory receptors in ascidian tadpoles. Z Zellforsch Mikrosk Anat 112:287–312.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers U (1985) Organisation der Statocyste von Retronectes (Catenulida, Plathelminthes). Microfauna Marina 2:7–22.

    Google Scholar 

  • Feigenbaum DL (1978) Hair-fan patterns in the Chaetognatha. Can J Zool 56:536–546.

    Article  Google Scholar 

  • Feigenbaum D, Reeve MR (1977) Prey detection in the Chaetognatha: Response to a vibrating probe and experimental determination of attack distance in large aquaria. Limnol Oceanogr 22:1052–1058.

    Article  Google Scholar 

  • Ferrero E (1973) A fine structural analysis of the statocyst in turbellaria acoeola. Zool Scr 2:5–16. Fish MP (1964) Biological sources of sustained ambient sea noise. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 175–194.

    Google Scholar 

  • Friesen WO (1981) Physiology of water movement detection in the medicinal leech. J Exp Biol 92:255–275.

    PubMed  CAS  Google Scholar 

  • Frings H (1964) Problems and prospects in research on marine invertebrate sound production and reception. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 155–173.

    Google Scholar 

  • Frings H, Frings M (1967) Underwater sound fields and behavior of marine invertebrates. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 261–282.

    Google Scholar 

  • Guthrie DM (1975) The physiology and structure of the nervous system of amphioxus (the lancelet) Branchiostoma lanceolatum (Pallas). Symp Zool Soc Lond 36:43–80.

    Google Scholar 

  • Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not “deaf”. Am Nat 129:312–317.

    Article  Google Scholar 

  • Hawkins AD, Myrberg AA (1983) Hearing and sound communication under water. In: Lewis B (ed) Bio-acoustics, A Comparative Approach. London: Academic Press, pp. 347–405.

    Google Scholar 

  • Hecht S (1918) The physiology of Ascidia atra Lesuer. II. Sensory Physiology. J Exp Zool 25:261–299.

    Article  CAS  Google Scholar 

  • Hernadez-Nicaise ML (1974) Ultrastructural evidence for a sensory-motor neuron in Ctenophora. Tissue & Cell 6:43–47.

    Article  Google Scholar 

  • Hertwig O, Hertwig R (1878) Das Nervensystem und die Sinnesorgane der Medusen. Leipzig: Vogel.

    Google Scholar 

  • Horridge GA (1965) Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc Lond B 162:333–350.

    Article  Google Scholar 

  • Horridge GA (1966) Some recently discovered underwater vibration receptors in invertebrates. In: Barnes H (ed) Some Contemporary Studies in Marine Science. London: Allen and Unwin, pp. 395–405.

    Google Scholar 

  • Horridge BA (1969) Statocyst of medusae and evolution of stereocilia. Tissue & Cell 1:341–353.

    Article  CAS  Google Scholar 

  • Horridge GA, Boulton PS (1967) Prey detection by Chaetognatha via a vibration sense. Proc R Soc Lond B 168:413–419.

    Article  Google Scholar 

  • Hubbard SJ (1960) Hearing and the octopus statocyst. J Exp Biol 37:845–853.

    Google Scholar 

  • Hulet WH (1982) Commentary on the international symposium on functional morphology of cephalopods. Malacologia 23:203–208.

    Google Scholar 

  • Iversen RTB, Perkins PJ, Dionne RD (1963) An indication of underwater sound production by squid. Nature 199:250–251.

    Article  PubMed  CAS  Google Scholar 

  • Josephson RK (1961) The response of a hydroid to weak water-borne disturbances. J Exp Biol 38:17–27.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Karlsen HE, Packard A, Sand O (1989) Cephalopods are definitely not deaf. J Physiol 415:75P.

    Google Scholar 

  • Knapp MF, Mill PJ (1971) The fine structure of ciliated sensory cells in the epidermis of the earthworm Lumbricus terrestris. Tissue & Cell 3:623–636.

    Article  CAS  Google Scholar 

  • Kolle-Kralik U, Ruff PW (1967) Vibrotaxis von Amoeba proteus (Pallas) im Vergleich mit der Zilienschlagfrequenz der Beutetiere. Protistologica 3:319–323.

    Google Scholar 

  • Krisch B (1973) Über das Apikaiorgan (Statocyste) der Ctenophore Pleurobrachia pileus. Z Zellforsch Mikrosk Anat 142:241–262.

    Article  PubMed  CAS  Google Scholar 

  • Laverack ML (1968) On the receptors of marine invertebrates. Oceanogr Mar Biol Annu Rev 6:249–324.

    Google Scholar 

  • Lyons KM (1973) Collar cells in planula and adult tentacle ectoderm of the solitary coral Balanophyllia regia (Anthozoa, Eupsammiidae). Z Zellforsch Mikrosk Anat 145:57–74.

    Article  PubMed  CAS  Google Scholar 

  • Maniwa Y (1976) Attraction of bony fish, squid and crab by sound. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 271–283.

    Google Scholar 

  • Markl H (1972) Neue Entwicklungen in der Bioakustik der wirbellosen Tiere. J Ornithol 113:91–104.

    Article  Google Scholar 

  • Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschr Zool 21:100–120.

    PubMed  CAS  Google Scholar 

  • Markl H (1974) The perception of gravity and of angular acceleration in invertebrates. In: Kornhuber HH (ed) Handbook of Sensory Physiology, Vol. 6. Vestibular System, Part 1. Basic Mechanisms. Berlin: Springer-Verlag, pp. 17–74.

    Google Scholar 

  • Markl H (1978) Adaptive radiation of mechanoreceptors. In: Ali MA (ed) Sensory Ecology. Review and Perspectives. New York and Amsterdam: Plenum Press, pp. 319–341.

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin, Heidelberg: Springer-Verlag, pp. 332–353.

    Google Scholar 

  • Maturana HM, Sperling S (1963) Unidirectional response to angular acceleration recorded from the middle cristal nerve in the statocyst of Octopus vulgaris. Nature 197:815–816.

    Article  Google Scholar 

  • McClarey A (1968) Statoliths of the gastropod Pomacea paludosa. Trans Am Microsc Soc 87:322–328.

    Article  Google Scholar 

  • Moynihan M (1985) Why are caphalopods deaf? Am Nat 125:465–469.

    Article  Google Scholar 

  • Myrbert AA (1978) Ocean noise and the behavior of marine animals: Relationships and implications. In: Diemer FP, Vernberg FJ, Mirkes DZ (eds) Advanced Concepts in Ocean Measurements for Marine Biology. University of South Carolina Press, pp. 461–491.

    Google Scholar 

  • Newbury TK (1972) Vibration perception by Chaetognaths. Nature 236:459–460.

    Article  Google Scholar 

  • Nishimura M (1961) Frequency characteristics of sea noise and fish sound. Tech Rep Fish Boat Lab Min Agr For Japan 15:111–118.

    Google Scholar 

  • Packard A, Karlsen HE, Sand O (1990) Low frequency hearing in cephalopods. J Comp Physiol A 166: 501–505.

    Article  Google Scholar 

  • Pariselle A, Matricon-Gondran M (1985) A new type of ciliated receptor in the cercariae of Nicolla gallica (Trematoda). Z Parasitenkd 71:353–364.

    Article  Google Scholar 

  • Peteya DJ (1975) The ciliary-cone sensory cell of anemones and cerianthids. Tissue & Cell 7:243–252.

    Article  CAS  Google Scholar 

  • Phillips CE, Friesen WO (1982) Ultrastructure of the water-movement sensilla in the medicinal leech. J Neurobiol 13:473–486.

    Article  PubMed  CAS  Google Scholar 

  • Pumphrey RJ (1950) Hearing. Symp Soc Exp Biol 4:3–18.

    Google Scholar 

  • Reid ML, Eckers CG, Muma KE (1986) Booming odontocetes and deaf cephalopods: Putting the cart before the horse. Am Nat 128:438–439.

    Article  Google Scholar 

  • Römer H, Tautz J (1991) Invertebrate auditory receptors. In: Ito F (ed) Comparative Aspects of Mechano-receptor Systems. New York: Springer-Verlag (in press).

    Google Scholar 

  • Schaeffer A A (1916) On the feeding habits of amoeba. J Exp Zool 20:529–584.

    Article  Google Scholar 

  • Schmidt W (1912) Untersuchungen über die Statocysten unserer einheimischen Schnecken. Z Med Naturwiss 48:515–562.

    Google Scholar 

  • Schwartzkopff J (1977) Auditory communication in lower animals: Role of auditory physiology. Ann Rev Psychol 28:61–84.

    Article  CAS  Google Scholar 

  • Singla CL (1975) Statocysts of hydromedusae. Cell Tissue Res 158:391–407.

    Article  PubMed  CAS  Google Scholar 

  • Stahlschmidt V, Wolff HG (1972) The fine structure of the statocyst of the prosobranch mollusc Pomacea paludosa. Z Zellforsch Mikrosk Anat 133:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Stephens PR, Young JZ (1982) The statocyst of the squid Loligo. J Zool Lond 197:241–266.

    Google Scholar 

  • Sundermann G (1983) The fine structure of epidermal lines on arms and head of postembryonic Sepia officinalis and Loligo vulgaris (Mollusca, Cephalopoda). Cell Tissue Res 232:669–677.

    Article  PubMed  CAS  Google Scholar 

  • Sundermann-Meister G (1978) Ein neuer Typ von Cilienzellen in der Haut von spätembryonalen und juvenilen Loligo vulgaris (Mollusca, Cephalopoda). Zool Jahrb Abt Anat Ontog Tiere 99:493–499.

    Google Scholar 

  • Tardent P, Schmid V (1972) Ultrastructure of mechano-receptors of the polyp Coryne pintneri (Hydrozoa, Athecata). Exp Cell Res 72:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Taylor MA (1986) Stunning whales and deaf squids. Nature 323:298–299.

    Article  Google Scholar 

  • Tschachotin S (1908) Die Statocysten der Heteropoden. Z Wiss Zool 90:343–422.

    Google Scholar 

  • Tsirulis TP (1981) The ultrastructural organization of statocysts of some bivalve molluscs (Ostrea edulis, Mytilus edulis, Anodonta cygnea). Tsitologiya 23: 631–637.

    Google Scholar 

  • van Bergeijk WA (1964) Directional and nondirectional hearing in fish. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 281–299.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Springer-Verlag, pp. 1–49.

    Google Scholar 

  • Wells MJ, Wells J (1956) Tactile discrimination and the behaviour of blind Octopus. Pubbl Stn Zool Napoli 28:94–126.

    Google Scholar 

  • Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol 5/1. Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Williamson R (1988) Vibration sensitivity in the statocyst of the northern octopus, Eledone cirrosa. J Exp Biol 134:451–454.

    Google Scholar 

  • Young JZ (1960) The statocysts of Octopus vulgaris. Proc R Soc Lond B 152:3–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Budelmann, B.U. (1992). Hearing in Nonarthropod Invertebrates. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics