Skip to main content

The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making. II. Additional Compounds

  • Chapter
Reviews of Environmental Contamination and Toxicology

Abstract

Since the publication of the original compilation of the pesticide parameter database as the entire Volume 123 of Reviews of Environmental Contamination and Toxicology (199), considerable interest, both domestic and foreign, has been shown in this unique compilation. This is likely the result of increased incidence of detections of pesticides in groundwater. While the original intent was for use in screening procedures that could lead to improved pesticide stewardship in the agricultural arena, the database has taken on a much wider role, including remediation assessments, environmental audits, and more in-depth assessments of the uncertainty of environmental risks of pesticide contamination of ground and surface water. These uses have prompted questions about pesticide products that are no longer on the market but are still found in soil and aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abernathy JR (1972) Linuron, chlorbromuron, nitrofen and fluorodifen adsorption and movement in twelve selected Illinois soils. PhD thesis. University of Illinois, Urbana-Champaign. 61 pp.

    Google Scholar 

  2. Addala MSA, Hance RJ, Drennan DSH (1984) Effects of application method on the performance of some soil applied herbicides. I. Glasshouse experiments. Weed Res 24:99–104.

    Article  Google Scholar 

  3. Altom JD, Stritzke JF (1973) Degradation of dicamba, picloram, and four phenoxy herbicides in soils. Weed Sci 21:556–560.

    CAS  Google Scholar 

  4. Anderson TA, Beauchamp JJ, Walton BT (1991) Fate of volatile and semivolatile organic chemicals in soils: Abiotic versus biotic losses. J Environ Qual 20:420–424.

    Article  CAS  Google Scholar 

  5. Austin DJ, Briggs GG (1976) A new extraction method for benomyl residues in soil and its application in movement and persistence studies. Pestic Sci 7:201–210.

    Article  CAS  Google Scholar 

  6. Bailey GW, Thruston AD Jr, Pope JD Jr, Cochrane DR (1970) The degradation kinetics of an ester of Silvex and the persistence of Silvex in water and sediment. Weed Sci 18:413–419.

    CAS  Google Scholar 

  7. Bailey GW, White JL (1964) Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning biological activity. J Agric Food Chem 12:324–332.

    Article  CAS  Google Scholar 

  8. Bailey GW, White JL (1965) Herbicides: a compilation of their chemical, physical and biological properties. Residue Rev 10:1–97.

    Google Scholar 

  9. Ballantine CG (1990) Personal communication, Agricultural Division Ciba-Geigy Corp., Greensboro, NC.

    Google Scholar 

  10. Beali ML Jr (1976) Persistence of aerially applied hexachlorobenzene on grass and soil. J Environ Qual 5:367–368.

    Article  Google Scholar 

  11. Beyer EM, Brown HM, Duffy MJ (1987) Sulfonylurea herbicide soil relations. Proc Brit Crop Prot Conf Weeds 2:531–540.

    Google Scholar 

  12. Boesten JJTI, Van der Pas LJT (1983) Test of some aspects of a model for the adsorption/desorption of herbicides in field soil. Aspects Appl Biol 4:496–501.

    Google Scholar 

  13. Bovey RW, Baur JR (1972) Persistence of 2,4,5-T in grasslands of Texas. Bull Environ Contam Toxicol 8:229–233.

    Article  PubMed  CAS  Google Scholar 

  14. Bowman BT, Sans WW (1977) Adsorption of parathion, fenitrothion, methyl parathion, aminoparathion and paraocen by Na+, Ca2+ and Fe3+ montmorillonite suspensions. Sou Sci Soc Am J 41:514–518.

    Article  CAS  Google Scholar 

  15. Bowman BT, Sans WW (1982) Influence of methods of pesticide application on subsequent desorption from soils. J Agric Food Chem 30:147–150.

    Article  CAS  Google Scholar 

  16. Bowman BT, Sans WW (1983) Determination of octanol-water partitioning coefficients (Kow) of 61 organophosphorus and carbamate insecticides and their relationship to respective water solubility (s) values. J Environ Sci Hlth B18:667–683.

    Article  CAS  Google Scholar 

  17. Briggs GG (1981) Adsorption of pesticides by some Australian soils. Aust J Soil Res 19:61–68.

    Article  CAS  Google Scholar 

  18. Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficient, water solubilities, bioconcentration factors and the parachor. J Agric Food Chem 29:1050–1059.

    Article  CAS  Google Scholar 

  19. British Crop Protection Council (1986) Pesticide manual, 7th Ed. British Crop Protection Council, Croydon, England. 695 pp.

    Google Scholar 

  20. British Crop Protection Council (1991) Pesticide manual, 9th Ed. Unwin Brothers Limited, Old Woking, Surrey. 933 pp.

    Google Scholar 

  21. Bull DL, Ivie GW, MacConnell JG, Stevenson VM, Vanden Heuvel WJA (1984) Fateof Avermectin B1A in soil and plants. J Agric Food Chem 32:94–102.

    Article  CAS  Google Scholar 

  22. Burkhard N, Guth JA (1981) Rate of volatilization of pesticides from soil surface: comparison of calculated results with those determined in a laboratory model system. Pestic Sci 12:37–44.

    Article  CAS  Google Scholar 

  23. Cabras P, Meloni M, Pirisi FM (1987) Pesticide fate from vine to wine. Rev Environ Contam Toxicol 99:83–117.

    PubMed  CAS  Google Scholar 

  24. Call F (1957) Soil fumigation IV-Sorption of ethylene dibromide on soils at field capacity. J Sci Food Agric 8:137–142.

    Article  CAS  Google Scholar 

  25. Carlson DA, Konyha KD, Wheeler WB, Marshall GP, Zaylskie RG (1976) Mirex in the environment: Its degradation to Kepone and related compounds. Science 194:939–941.

    Article  PubMed  CAS  Google Scholar 

  26. Caron G, Suffet IH, Belton T (1985) Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds. Chemosphere 14:993–1000.

    Article  CAS  Google Scholar 

  27. Carsel RF, Smith CN, Mulkey LA, Dean D, Jowise P (1984) User’s manual for the pesticide root zone model (PRZM) Release 1. EPA-600/3-84-109 USEPA, Athens, GA. 219 pp.

    Google Scholar 

  28. Cessna AJ, Grover R (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J Agric Food Chem 26:189–192.

    Article  Google Scholar 

  29. Chemical and Pharmaceutical Press (1991) Crop protection chemicals reference, 7th Ed. John Wiley and Sons, New York, NY. 2101 pp.

    Google Scholar 

  30. Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fluvic acids. Environ Sci Technol 20:502–507.

    Article  PubMed  CAS  Google Scholar 

  31. Choi J, Aomine S (1974) Adsorption of pentachlorophenol by soils. Soil Sci Plant Nutr 20:135–144.

    CAS  Google Scholar 

  32. Chrisholm D (1974) Persistence of fensulfothion in soil and uptake by rutabagas and carrots. Can J Plant Sci 54:667–671.

    Article  Google Scholar 

  33. Chrzanowski RL Leitch RE (1982) Metabolism of O-ethyl O-(4-nitrophenyl) [14C] phenylphosphonothioate in cotton. J Agric Food Chem 30:155–161.

    Article  CAS  Google Scholar 

  34. Cliath MM, Spencer WF (1971) Movement and persistence of dieldrin and lindane in soil as influenced by placement and irrigation. Soil Sci Soc Am Proc 35:791–795.

    Article  CAS  Google Scholar 

  35. Colbert FO, Volk VV, Appleby AP (1975) Sorption of atrazine, terbutryn and GS-14254 on natural and lime-amended soils. Weed Sci 23:390–394.

    CAS  Google Scholar 

  36. Dao TH, Lavy TL, Dragun J (1983) Rationale for the solvent selection for soil extraction of pesticide residues. Residue Rev 87:91–104.

    CAS  Google Scholar 

  37. Day EW JR (1989) Personal communication, Lilly Research Laboratories, Greenfield, IN.

    Google Scholar 

  38. Dickens R, Hiltbold AE (1967) Movement and persistence of methanearsanates in soil. Weeds 15:299–304.

    Article  CAS  Google Scholar 

  39. DiToro DM (1985) A particle interaction model of reversible organic chemical sorption. Chemosphere 14:1503–1538.

    Article  CAS  Google Scholar 

  40. Esser HO, Dupuis G, Ebert E, Vogel C, Marco GJ (1976) S-Triazines. In: Kearney PC, Kaufman DD (eds) Herbicides, chemistry, degradation, and mode of action, 2nd Ed., Volume 1, Chapter 2. Marcel Dekker Inc. New York, pp 129–208.

    Google Scholar 

  41. Ferguson DT, Schehl SE, Hageman LH, Lepone GE, Carraro GA (1985) DPX-L5300-A new cereal herbicide. 1985 British Crop Protection Conference on Weeds. BCPC Publications, Croydon, England, pp 43–48.

    Google Scholar 

  42. Frink CR, Bugbee GJ (1989) Ethylene dibromide: persistence in soil and uptake by plants. Soil Sci 148:303–307.

    Article  CAS  Google Scholar 

  43. Gerstl Z (1990) Evaluating the groundwater pollution hazard of toxic chemicals by molecular connectivity. Final report, Project 2530-2-87, Institute of Soils and Water, the Volcani Center, Bet Dagan, Israel. 196 pp.

    Google Scholar 

  44. Gerstl Z, Helling CCS (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. J Environ Sci Hlth Part B Pestic Food Contain Agric Wastes 22:55–69.

    Google Scholar 

  45. Geter WF, Plotkin S, Bagdon JK, Hesketh ES (1992) National agricultural pesticide risk assessment. Proc ASAE, Charlotte, NC. Am Soc Agric Engineering, St Joseph, MI.

    Google Scholar 

  46. Getzin LW, Rosefield I (1968) Organophosphorous insecticide degradation by heat-labile substances in soil. J Agric Food Chem 598–601.

    Google Scholar 

  47. Grayson BT, Williams KS, Freehauf PA, Pease RR, Ziesel WT, Sereno RL, Reinsfelder RE (1987) The physical and chemical properties of the herbicide cinmethylin (SD 95481). Pestic Sci 21:143–153.

    Article  CAS  Google Scholar 

  48. Green RE, Karickhoff SW (1990) Estimating pesticide sorption coefficients for soils and sediments. In: DeCoursey DG (ed) Small watershed model (SWAM) for water, sediment and chemical movement: supporting documentation. USDA-ARS Publ ARS-80, USDA-ARS, Washington, DC, pp 1–18.

    Google Scholar 

  49. Greenhalgh R, Read DC (1981) Persistence of fensulfothion in a sandy loam soil and uptake by rutabagas, carrots and radishes using microplots. J Environ Sci Hlth B16:363–379.

    Article  CAS  Google Scholar 

  50. Grover R (1975) Adsorption and desorption of urea herbicides on soils. Can J Soil Sci 55:127–135.

    Article  CAS  Google Scholar 

  51. Grover R, Banting JD, Morse PM (1979) Adsorption and bioactivity of diallate, tri-allate and trifluralin. Weed Res 19:363–369.

    Article  CAS  Google Scholar 

  52. Gruber VF, Halley BA, Hwang S-C, Ku CC (1990) Mobility of avermectin B1A in soil. J Agric Food Chem 38:886–890.

    Article  CAS  Google Scholar 

  53. Gückel W, Synnatschke G, Rittig R (1973) A method for determining the volatility of active ingredients used in plant protection. Pestic Sci 4:137–147.

    Article  Google Scholar 

  54. Gullo VP, Kempf AJ, MacConnell JG, Mrozik H, Arison B, Putter I (1983) The microbial formation of the 23-keto derivative from avermectin B2A in soil. Pestic Sci 14:153–157.

    Article  CAS  Google Scholar 

  55. Gunther FA, Iwata Y, Carman GE, and Smith CA (1977) The citrus reentry problem: Research on its causes and effects, and approaches to its minimization. Residue Rev 67:1–139.

    PubMed  CAS  Google Scholar 

  56. Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide teachability. Environ Toxicol Chem 8:339–357.

    Article  CAS  Google Scholar 

  57. Gustafson DI, Holden LR (1990) Nonlinear pesticide dissipation in soil: A new model based on spatial variability. Environ Sci Technol 24:1032–1038.

    Article  CAS  Google Scholar 

  58. Gutenmann WH, Loos MA, Alexander M, Lisk DJ (1964) Beta oxidation of phenoxyalkanoic acids in soil. Soil Sci Soc Am Proc 28:205–207.

    Article  CAS  Google Scholar 

  59. Hamaker JW (1975) The interpretation of soil leaching experiments. In: Haque R, Freed VH (eds) Environmental dynamics of pesticides. Plenum Press, New York, NY, pp 115–133.

    Google Scholar 

  60. Hamaker JW, Thompson JM (1972) Adsorption. In: Goring CAI, Hamaker JW (eds) Organic chemicals in the soil environment, Vol 1. Marcel Dekker, New York, NY, pp 51–143.

    Google Scholar 

  61. Hance RJ (1965) The adsorption of urea and some of its derivatives by a variety of soils. Weed Res 5:98–107.

    Article  CAS  Google Scholar 

  62. Hance RJ (1967) The speed of attainment of sorption equilibria in some systems involving herbicides. Weed Res 7:29–36.

    Article  CAS  Google Scholar 

  63. Handly J, Gerwick C, Vane R (1983) Preemergence potential for haloxy-fop-methyl in soybean production. Proc North Central Weed Control Conf 38:10.

    Google Scholar 

  64. Haque R, Freed VH (1974) Behavior of pesticides in the environment: Environmental chemodynamics. Residue Rev 52:89–115.

    CAS  Google Scholar 

  65. Harris CI (1966) Adsorption movement and phytotoxicity of monuron and s-triazine herbicides in soil. Weeds 14:6–10.

    Article  CAS  Google Scholar 

  66. Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behavior. 2 Volumes, Academic Press, New York, NY. 1024 pp.

    Google Scholar 

  67. Harvey RG (1974) Soil adsorption and volatility of dinitroaniline herbicides. Weed Sci 22:120–124.

    CAS  Google Scholar 

  68. Heller SR (1990) Personal communication, USDA-ARS Systems Research Laboratory, Beltsville, MD.

    Google Scholar 

  69. Helweg A (1975) Degradation of 14C-labelled maleic hydrazide in soil as influenced by sterilization, concentration and pretreatment. Weed Res 15:53–58.

    Article  CAS  Google Scholar 

  70. Helweg A (1977) Degradation and adsorption of carbendazim and 2-aminobenzimidazole in soil. Pestic Sci 8:71–78.

    Article  CAS  Google Scholar 

  71. Hill BD, Schaalje GB (1985) A two-compartment model for the dissipation of deltamethrin from soil. J Agric Food Chem 33:1001–1009.

    Article  CAS  Google Scholar 

  72. Hiltbold AE (1974) Behavior of organoarsenicals in plants and soil. In: EA Woolson (ed) Arsenical pesticide, Am Chem Soc Washington, DC, Chap. 4, pp 53–69.

    Google Scholar 

  73. Hiltbold AE, Hajek BF, Buchanan GA (1974) Distribution of arsenic in soil profiles after repeated application of MSMA. Weed Sci 22:272–275.

    CAS  Google Scholar 

  74. Hoag DL, Hornsby AG (1992) Coupling groundwater contamination with economic returns when applying farm pesticides. J Environ Qual 21:579–586.

    Article  CAS  Google Scholar 

  75. Hoag DL, Hornsby AG, Nofziger DL (1994) PEET: Pesticide, economic and environmental tradeoffs. In: Watson DG, Zazueta FS, Harrison TV (eds) Proc 5th Int Conf Computers in Agric, Am Soc Agricul Engineers, St Joseph, MI, pp 801–806.

    Google Scholar 

  76. Holst RA (1988) Personal communication, Office of Pesticide Programs, Environmental Fate and Effects Division, US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  77. Hotchkiss BE, Gillett JW, Kamrin MA, Witt JW, Craigmill A (1989) EXTOXNET: Extension Toxicology Network. A pesticide information project of the Cooperative Extension Offices of Cornell Univ, Univ of Calif, Michigan State Univ, and Oregon State Univ. Cornell University, Ithaca, NY.

    Google Scholar 

  78. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates, Lewis Publishers, Chelsea, MI. 725 pp.

    Google Scholar 

  79. Hurtig H (1972) Long-distance transport of pesticides. In: Matsumura F, Boush GM, Misato T (eds) Environmental toxicology of pesticides. Academic Press, New York, NY, pp 257–280.

    Google Scholar 

  80. Iwata Y, Düsch ME, Westlake WE, Gunther FA (1975) Behavior of five organophosphorus pesticides in dust derived from several soil types. Bull Environ Contam Toxicol 14:9–56.

    Article  Google Scholar 

  81. Jacques GL, Harvey RG (1979) Adsorption and diffusion of dinitroaniline herbicides in soils. Weed Sci 27:450–455.

    CAS  Google Scholar 

  82. Jaworski EG (1975) Chloroacetamides. In: Kearney PC, Kaufman DD (eds) Herbicides, chemistry, degradation and mode of action. 2nd Ed., Chap 6. Marcel Dekker, New York, NY, pp 349–376.

    Google Scholar 

  83. Johnson-Logan LR, Brashears RE, Klaine SJ (1992) Partitioning behavior and mobility of chlordane in groundwater. Environ Sci Technol 26:2234–2239.

    Article  CAS  Google Scholar 

  84. Jury WA, Winer AM, Spencer WF, Focht DD (1987) Transport and transformations of organic chemicals in the soil-air-water ecosystem. Rev Environ Contam Toxicol 99:120–164.

    Google Scholar 

  85. Jury WA, Focht DD, Farmer WJ (1987) Evaluation of pesticide groundwater potential from standard indices of soil-chemical adsorption and biodegradation. J Environ Qual 16:422–428.

    Article  CAS  Google Scholar 

  86. Kaiser KLE (1978) The rise and fall of Mirex. Environ Sci Technol 12:520–528.

    Article  CAS  Google Scholar 

  87. Kanazawa J (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ Toxicol Chem 8: 477–484.

    Article  CAS  Google Scholar 

  88. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soil. Chemosphere 10:833–846.

    Article  CAS  Google Scholar 

  89. Kaufman DD (1976) Phenols. In: Kearney PC and Kaufman DD (eds) Herbicides, chemistry, degradation and mode of action. 2nd Ed., Vol 2, Chap 13, Marcel Dekker, New York, NY, pp 129–208.

    Google Scholar 

  90. Kearney PC, Plummer JR, Wheeler WB, Kontson A (1976) Persistence and metabolism of dinitroaniline herbicides in soils. Pest Biochem Physiol 6:229–238.

    Article  CAS  Google Scholar 

  91. Kenaga EE (1980) Correlation of bioconcentration factors of chemicals in aquatic and terrestrial organisms with their physical and chemical properties. Environ Sci Technol 14:553–556.

    Article  CAS  Google Scholar 

  92. Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4:26–38.

    Article  PubMed  CAS  Google Scholar 

  93. Kenaga EE, Goring CAI (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In Eton et al. (eds) Aquatic Toxicology, ASTM Spec Publ 707, ASTM, Philadelphia, PA, pp 78–115.

    Google Scholar 

  94. Ketchersid ML, Merkle MG (1975) Persistence and movement of perfluidone in soil. Weed Sci 23:344–348.

    CAS  Google Scholar 

  95. Kidd H, Hartley D (1988) Pesticide index. Royal Society of Chemistry, Nottingham, England. 258 pp.

    Google Scholar 

  96. Kiigemagi U, Terriere LC (1972) Persistence of DDT in orchard soils. Bull Environ Contam Toxicol 7:348–352.

    Article  PubMed  CAS  Google Scholar 

  97. King PH, McCarty PL (1968) A chromatographic model predicting pesticide migration in soils. Soil Sci 106:248–261.

    Article  CAS  Google Scholar 

  98. Knisel WG, Leonard RA, Davis FM (1989) Gleams User Manual, Southeast Watershed Research Laboratory, USDA-ARS, Tifton, GA. 25 pp.

    Google Scholar 

  99. Koskinen WC, Cheng HH (1983) Effect of experimental variables on 2,4,5-T adsorption-desorption in soil. J Environ Qual 12:325–330.

    Article  Google Scholar 

  100. Koskinen WC, O’Connor GA, Cheng HH (1979) Characterization of hysteresis in the desorption of 2,4,5-T from soils. Soil Sci Soc Am J 43:871–874.

    Article  CAS  Google Scholar 

  101. Kozak J, Weber JB (1983) Adsorption of five phenylurea herbicides by selected soils of Czechoslovakia. Weed Sci 31:368–372.

    CAS  Google Scholar 

  102. Kuwatsuka S (1972) Degradation of several herbicides in soils under different conditions. In: Matsumura F, Boush GM, Misato T, (eds) Environmental toxicology of pesticides. Academic Press, New York, pp 385–400.

    Google Scholar 

  103. Kuwatsuka S, Igarashi M (1975) Degradation of PCP in soils II. The relationship between the degradation of PCP and the properties of soils, and the identification of the degradation products of PCP. Soil Sci Plant Nutr 21: 405–414.

    CAS  Google Scholar 

  104. Kuwatsuka S, Niki Y (1976) Fate and behavior of herbicides in soil environments with special emphasis on the fate of principal paddy herbicides in flooded soils. Rev Plant Prot Res 9:143–163.

    CAS  Google Scholar 

  105. Laskowski DA, Swann RL, McCall PJ, Bidlack HD (1983) Soil degradation studies. Residue Rev 85:139–147.

    CAS  Google Scholar 

  106. Lee LS, Rao PSC, Nkedi-Kizza P, Delfino JJ (1990) Influence of solvent and sorbent characteristics on distribution of pentachlorphenol in oetanol-water and soil-water systems. Environ Sci Technol 24:654–661.

    Article  CAS  Google Scholar 

  107. Leonard RA (1990) Movement of pesticides into surface waters. In: Cheng HH (ed) Pesticides in the soil environment:processes, impacts, and modeling. Soil Sci Soc Am Book Ser No. 2, Soil Science Society of America, Madison, WI, pp 303–349.

    Google Scholar 

  108. Lichtenstein EP (1959) Adsorption of some chlorinated hydrocarbon insecticides from soils into various crops. J Agric Food Chem 7:430–433.

    Article  CAS  Google Scholar 

  109. Lichtenstein EP, Schulz KR (1970) Volatilization of insecticides from various substrates. J Agric Food Chem 18:814–818.

    Article  PubMed  CAS  Google Scholar 

  110. Loos MA (1975) Phenoxyalkanoic acids. In: Kearney PC, Kaufman DD (eds) Herbicides, chemistry, degradation and mode of action. 2nd Ed. Marcel Dekker, New York, pp 1–128.

    Google Scholar 

  111. Lord KA, Briggs GG, Neale MC, Manlove R (1980) Uptake of pesticides from water and soil by earthworms. Pestic Sci 11:401–408.

    Article  CAS  Google Scholar 

  112. Loux MM, Liebl RA, Slife FW (1989) Adsorption of imazaquin and imazethapyr on soils, sediments and selected adsorbents. Weed Sci 37:712–718.

    CAS  Google Scholar 

  113. Lu P-Y, Metcalf RL, Cole LK (1978) The environmental fate of 14C-Pentachlorophenol in laboratory model ecosystems. In: Rao KR (ed) Pentachlorophenol: chemistry, pharmacology and environmental toxicology. Plenum Press, New York, NY, pp 53–63.

    Google Scholar 

  114. Mackay D, Bobra A, Shiu WY (1980) Relationships between aqueous solubility and octanol-water partition coefficients. Chemosphere 9:701–711.

    Article  CAS  Google Scholar 

  115. Mackay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15: 1006–1014.

    Article  CAS  Google Scholar 

  116. Maire-Bode H, Hartel K (1981) Linuron and monolinuron. Residue Rev 77:1–352.

    Google Scholar 

  117. McCall PJ, Laskowski DA, Swann RL, Dishburger HJ (1980) Measurement of sorption coefficients for chemicals and their use in environmental fate and movement of toxicants. In: Zweig G, Beroza M (eds) Test protocols for environmental fate and movement of toxicants. Assoc Offic Anal Chem, Arlington, VA, pp 89–109.

    Google Scholar 

  118. McCall PJ, Swann RL, Laskowski DA, Unger SM, Vrona SA, Dishburger HJ (1980) Estimation of chemical mobility in soil from liquid chromatographic retention time. Bull Environ Contam Toxicol 24:190–195.

    Article  PubMed  CAS  Google Scholar 

  119. McCall PJ, Vrona SA, Kelly SS (1981) Fate of uniformly carbon-14 ring labeled 2,4,5-trichlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. J Agric Food Chem 29:100–107.

    Article  CAS  Google Scholar 

  120. McGrath D (1976) Factors that influence the persistence of TCA in soil. Weed Res 16:131–137.

    Article  CAS  Google Scholar 

  121. McKone CE, Hance RJ (1972) Determination of residues of 2,4,5-trichlorophenoxyacetic acid in soil by gas chromatography of the n-butyl ester. J Chromatogr 69:204–206.

    Article  Google Scholar 

  122. McLean JE, Sims RC, Doucette WJ, Caupp CR, Grenney WJ (1988) Evaluation of mobility of pesticides in soil using USEPA methodology. J Environ Eng 114:689–703.

    Article  CAS  Google Scholar 

  123. Meister Publishing Company (1990) Farm chemicals handbook. Meister Publishing Company, Willoughby, OH. 523 pp.

    Google Scholar 

  124. Meister Publishing Company (1991) Farm chemicals handbook. Meister Publishing Company, Willoughby, OH. 462 pp.

    Google Scholar 

  125. Meister Publishing Company (1992) Farm chemicals handbook. Meister Publishing Company, Willoughby, OH. 794 pp.

    Google Scholar 

  126. Meister Publishing Company (1993) Farm chemicals handbook. Meister Publishing Company, Willoughby, OH. 823 pp.

    Google Scholar 

  127. Merck & Company, Inc (1989) The Merck index, 11th Ed. Merck & Co., Rahway, NJ. 2283 pp.

    Google Scholar 

  128. Miles JRW, Bowman BT, Harris CR (1981) Adsorption, desorption, soil mobility and aqueous persistence of fensulfothion and its sulfide and sulfone metabolites. J Environ Sci Hlth B16:309–324.

    Article  CAS  Google Scholar 

  129. Miles JRW, Tu CM, Harris CR (1979) Persistence of eight organophosphorus in sterile and non-sterile mineral organic soils. Bull Environ Contam Toxicol 22:312–318.

    Article  PubMed  CAS  Google Scholar 

  130. Mingelgrin U, Gerstl Z (1983) Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J Environ Qual 12:1–10.

    Article  CAS  Google Scholar 

  131. Miyamoto J (1979) Recent progress in the studies on metabolism and degradation of organophosphorus insecticides. Rev Plant Prot Res 12:1–10.

    CAS  Google Scholar 

  132. Modson J, Williams NA (1988) The estimation of the adsorption coefficient (Koc) for soils by high performance liquid chromatography. Chemosphere 17:67–77.

    Article  Google Scholar 

  133. Moore WT (1963) Physical chemistry, 3rd Ed. Prentice-Hall, Englewood Cliffs, NJ. 844 pp.

    Google Scholar 

  134. Moreale A, van Bladel R (1981) Adsorption, degradation et movement du 2,4,5-T, MCPA et carbofuran en colonne de sol homogene. Med Fac Land-bouww Rijksuniv, Gent 46:281–296.

    CAS  Google Scholar 

  135. Morrill LG, Mahilum BC, Mohiuddin SH (1982) Organic compounds in soils: sorption degradation and persistence. Chapter 13, Persistence of pesticides in soil. Lewis Publishers, Chelsea, MI, pp 241–303.

    Google Scholar 

  136. Müller MD, Bosshardt H-P (1987) Degradation and residues of cyclohexyltin compounds in orchard soil following field application of cyhexatin. Bull Environ Contam Toxicol 38:627–633.

    Article  PubMed  Google Scholar 

  137. Nash RG (1980) Dissipation rate of pesticides from soils. In: CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems, Volume 1, Chapter 17, Model documentation. USDA-Science and Education Administration, Conservation Research Report Number 26. United States Department of Agriculture.

    Google Scholar 

  138. Nelson D (1993) Personal communication, Quailty Associates Inc, Baltimore, MD.

    Google Scholar 

  139. Newsom HC, Mitchell EM (1972) Determination of dinitramine residues in soil and plant tissue. J Agric Food Chem 20:1222–1224.

    Article  PubMed  CAS  Google Scholar 

  140. Nkedi-Kizza P, Rao PSC, Johnson JW (1983) Adsorption of diuron and 2,4,5-T on soil particle-size separates. J Environ Qual 12:195–197.

    Article  CAS  Google Scholar 

  141. Norris LA (1981) The movement, persistence and fate of the phenoxy herbicides and TCDD in the forest. Residue Rev 80: 65–135.

    Google Scholar 

  142. Northwest Florida Water Management District (1990) Primary pesticide list for northwest Florida water management eistrict, Part IV-Urban area pesticides, toxicity, persistence, analytical method. Northwest Florida Water Management District, Tallahassee, FL.

    Google Scholar 

  143. O’Connor GA, Anderson JU (1974) Soil factors affecting the adsorption of 2,4,5-T. Soil Sci Soc Am Proc 38:433–436.

    Article  Google Scholar 

  144. Phillips FT (1964) The aqueous transport of water-soluble nematicides through soils: I. The sorption of phenol and ethylene dibromide solutions and the chromatographic leaching of phenol in soils. J Agric Food Chem 15:444–450.

    Article  CAS  Google Scholar 

  145. Rao PSC, Davidson JM (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In: Overcash MR, Davidson JM (eds) Environmental impact of nonpoint source pollution. Ann Arbor Science Publications, Inc., Ann Arbor, MI, pp 23–67.

    Google Scholar 

  146. Rao PSC, Hornsby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Soil Crop Sci Soc Fl Proc 44:1–8.

    CAS  Google Scholar 

  147. Renner KA, Meggett WF, Penner D (1988) Effect of soil pH on imazaquin and imazethapyr adsorption to soil and phytotoxicity to corn. Weed Sci 36: 78–83.

    CAS  Google Scholar 

  148. Rick SK, Slife FW, Banwart WL (1987) Adsorption of selective grass Herbicides by soils and sediments. Weed Sci 35:282–288.

    CAS  Google Scholar 

  149. Rohm and Haas Company (1989) Systhane 2E fungicide, Rohm and Haas Co. Philadelphia, PA. 9 pp.

    Google Scholar 

  150. Rouchaud J, Metsue M, van Himme M, Gillet J, Benoit F, Ceustermans N (1988) Biodegradation of chlorbromuron in the soil of rape celery crops made in greenhouses, or in field covered or not with plastic sheets. Med Fac Land-bouww Rijksuniv, Gent 53:1455–1458.

    CAS  Google Scholar 

  151. Royal Society of Chemistry (1983). The agrochemical handbook. Royal Society of Chemistry, Nottingham, England. 425 pp.

    Google Scholar 

  152. Royal Society of Chemistry (1987) The agrochemical handbook, 2nd Ed. and updates dated April 1988, December 1988, June 1989, December 1989. Royal Society of Chemistry, Nottingham, England. 1181 pp.

    Google Scholar 

  153. Russell MH (1990) Physical, chemical and environmental properties of all active ingredients registered in the USA. Compiled by the Environmental Studies Section. DuPont Agricultural Products, E.I. du Pont de Nemours and Co. Wilmington, DE.

    Google Scholar 

  154. Ryan JA, Bell RM, Davidson JM, O’Connor GA (1988) Plant uptake of nonionic organic chemicals from soils. Chemosphere 17:2299–2323.

    Article  CAS  Google Scholar 

  155. Sabljic A (1984) Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. J Agric Food Chem 32:243–246.

    Article  CAS  Google Scholar 

  156. Sabljic A (1987) On the prediction of soil sorption coefficients of organic pollutants form molecular structure: Application of molecular topology model. Environ Sci Technol 21:358–366.

    Article  Google Scholar 

  157. Sabjic A, Protic M (1982) Relationship between molecular connectivity indices and soil sorption coefficients of polycyclic aromatic hydrocarbons. Bull Environ Contam Toxicol 28:162–165.

    Article  Google Scholar 

  158. Savage KE (1973) Adsorption and degradation of chlorbromuron in soil. Weed Sci 21:416–420.

    CAS  Google Scholar 

  159. Schellenberg K, Leuenberger C, Schwarzenbach RP (1984) Sorption of chlorinated phenols by natural sediments and aquifer materials. Environ Sci Technol 18:652–657.

    Article  CAS  Google Scholar 

  160. Schering Pflanzenschultz (1990) Clofentezin: Informationen zum Wirkstoff, Schering Co., Dusseldorf, Germany. 15 pp.

    Google Scholar 

  161. Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater. Environ Sci Technol 15:1360–1367.

    Article  CAS  Google Scholar 

  162. Shadbolt CA, Whiting FL (1961) Urea herbicide breakdown in slow under field conditions. Calif Agric 15:10–11.

    Google Scholar 

  163. Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res 14: 1095–1100.

    Article  CAS  Google Scholar 

  164. Sheets TJ (1970) Persistence of triazine herbicides and related problems. The triazine herbicides. Residue Rev 32:287–310.

    PubMed  CAS  Google Scholar 

  165. Shiu WY, Ma KC, Mackay D, Seiber JN, Wauchope RD (1990) Solubilities of pesticides chemicals in water. I. Environmental physical chemistry. Rev Environ Contain Toxicol 116:1–13.

    CAS  Google Scholar 

  166. Shiu WY, Ma KC, Mackay D, Seiber JN, Wauchope RD (1990) Solubilities of pesticides chemicals in water. II. Data compilation. Rev Environ Contam Toxicol 116:15–187.

    PubMed  CAS  Google Scholar 

  167. Siltanen H, Rosenberg C (1978) Pyrethrins residues in the soil. Pyrethrum Post 14:65–67.

    CAS  Google Scholar 

  168. Sleicher CA, Hopcraft J (1984) Persistence of pesticides in surface soil and relation to sublimation. Environ Sci Technol 18:514–518.

    Article  CAS  Google Scholar 

  169. Smith AE (1970) Degradation, adsorption and volatility of di-allate and triallate in prairie soils. Weed Res 10:331–339.

    Article  CAS  Google Scholar 

  170. Smith AE (1974) Degradation of trichloracetic acid in Saskatchewan soils. Soil Biol Biochem 6:201–202.

    Article  CAS  Google Scholar 

  171. Smith AE (1976) The hydrolysis of herbicidal phenoxyalkanoic esters to phenoxyalkanoic acids in Saskatchewan Soils. Weed Res 16:19–22.

    Article  CAS  Google Scholar 

  172. Smith AE (1985) Transformation and persistence of the herbicide [14C] haloxy-fop-methyl in soil under laboratory conditions. J Agric Food Chem 33:972–976.

    Article  CAS  Google Scholar 

  173. Smith AE, Fitzpatrick A (1970) The loss of five thiolcarbamate herbicides in nonsterile soils and their stability in acidic and basic solutions. J Agric Food Chem 18:720–722.

    Article  CAS  Google Scholar 

  174. Spencer WF, Cliath MM (1972) Volatility of DDT and related compounds. J Agric Food Chem 20:645–649.

    Article  PubMed  CAS  Google Scholar 

  175. Spillner CJ Jr, De Baun JR, Menn JJ (1979) Degradation of fenitrothion in forest soil and effects on forest soil microbes. J Agric Food Chem 27:1054–1060.

    Article  CAS  Google Scholar 

  176. Sprankle P, Meggitt WF, Penner D (1975) Absorption, action and translocation of glyphosphate. Weed Sci 23:235–240.

    CAS  Google Scholar 

  177. Stougaard RN, Shea PJ, Martin AR (1990) Effect of soil type and pH on adsorption, mobility and efficacy of imazaquin and imazethapyr. Weed Sci 38:67–73.

    CAS  Google Scholar 

  178. Sundaram A, Sundaram KMS, Cadogan BL, Nott R, Leunig JW (1985) An evaluation of physical properties, droplet spectra, ground deposits, and soil residues of aerially applied aminocarb and fenitrothion emulsions in conifer forests in New Brunswick. J Environ Sci Hlth B20:665–688.

    Article  CAS  Google Scholar 

  179. Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D (1988) Critical review of Henry’s law constants for pesticides. Residue Rev 103:1–59.

    CAS  Google Scholar 

  180. Szeto SY, Sundaram KMS (1982) Behavior and degradation of chlorpyrifosmethyl in two aquatic models. J Agric Food Chem 30:1032–1035.

    Article  CAS  Google Scholar 

  181. Talekar NS, Sun L-T, Lee E-M, Chen J-S (1977) Persistence of some insecticides in subtropical soil. J Agric Food Chem 25:348–352.

    Article  PubMed  CAS  Google Scholar 

  182. Tammes PM, de Lint MM (1969) Leaching of arsenic from soil. Neth J Agric Sci 17:128–132.

    CAS  Google Scholar 

  183. Turner JC (1993) Personal communication, BASF Corp., Research Triangle Park, NC.

    Google Scholar 

  184. Tweedy BG, Houseworth LD (1976) Miscellaneous herbicides. In: Kearney PC, Kaufman DD (eds) Herbicides, chemistry, degradation and mode of action. 2nd Ed. Vol 2, Chap 17, Marcel Dekker, New York, NY, pp 815–833.

    Google Scholar 

  185. US Department of Agriculture, Agricultural Research Service (1990) Pesticide properties database. Systems Research Laboratory, Beltsville MD.

    Google Scholar 

  186. US Department of Agriculture (1988) Basic Statistics-1982 National Resource Inventory. Stat Bull 756, Soil Conservation Service and Statistical Laboratory, Iowa State Univ, Ames, LA.

    Google Scholar 

  187. US Environmental Protection Agency (USEPA) (1988) Environmental fate and ground water branch’s one liner database.

    Google Scholar 

  188. USEPA (1988) Pesticide fact handbook Volume I. Noyes Data Corp. Park Ridge, NJ. 827 pp.

    Google Scholar 

  189. USEPA (1989) Drinking water health advisory. Lewis Publishers, Chelsea, MI. 819 pp.

    Google Scholar 

  190. USEPA (1990) Pesticide fact handbook Volume II. Noyes Data Corp. Park Ridge, NJ, 660 pp.

    Google Scholar 

  191. van Genuchten MTh, Wierenga PJ, O’Connor GA (1977) Mass transfer studies in sorbing porous media: III. Experimental evaluation with 2,4,5-T. Soil Sci Soc Am J 41:278–285.

    Article  Google Scholar 

  192. van Leemput L, Swysen E, Hendrickx J, Lauwers W, Meuldermans W, Heykants J (1985) On the transformation of 14C-imazalil in soil during a one-year laboratory incubation. Med Fac Landbouww Rijksuniv, Gent 50:895–906.

    Google Scholar 

  193. van Leemput L, Swysen E, Meuldermans W, Heykants J (1988) Adsorptiondesorption of imazalil on soil. Med Fac Landbouww Rijksuniv, Gent 53:1433–1442.

    Google Scholar 

  194. Verschueren K (1983) Handbook of Environmental Data on Organic Chemicals, Heidemij Adviesbureau and Department of Public Health and Tropical Hygiene, Wageningen, Netherlands.

    Google Scholar 

  195. Walker A (1987) Further observations on the enhanced degradation of iprodione and vinclozolin in soil. Pestic Sci 21:219–231.

    Article  CAS  Google Scholar 

  196. Wauchope RD (1975) Fixation of arsenical herbicides, phosphate, and arsenate in alluvial soils. J Environ Qual 4:355–358.

    Article  CAS  Google Scholar 

  197. Wauchope RD (1976) Acid dissociation constants of arsenic acid, methylarsonic acid (MAA), dimethylarsinic acid (cacodylic acid), and N-(phophonomethyl) glycine (glyphosate). J Agric Food Chem 24:717–721.

    Article  CAS  Google Scholar 

  198. Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields—A review. J Environ Qual 7:459–472.

    Article  CAS  Google Scholar 

  199. Wauchope RD, Buttler TM, Horasby AG, Augustijn-Beckers PWM, Burt JP (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123:1–164.

    PubMed  CAS  Google Scholar 

  200. Wauchope RD, Savage KE, Koskinen WC (1983) Adsorption-desorption equilibria of herbicides in soil: Naphthalene as a model compound for entropyenthalpy effects. Weed Sci 31:744–751.

    CAS  Google Scholar 

  201. Weber JB (1972) Interaction of organic pesticides with particulate matter in aquatic and soil systems. In: Gould RF (ed) Fate of organic pesticides in the aquatic environment. Adv Chem Ser 111:55–120.

    Google Scholar 

  202. Weber JB (1982) Ionization and adsorption-desorption of tricyclazole by soil organic matter, montmorillonite clay and Cape Fear sandy loam soil. J Agric Food Chem 30:384–588.

    Article  Google Scholar 

  203. Weber JB, Warren RL (1992) Herbicide behavior in soils: A pesticide/soil ranking system for minimizing ground water contamination. Proc Northeastern Weed Sci Soc 47:147–157.

    Google Scholar 

  204. Webster GRB, Friesen KJ, Sarna LP, Miur DCG (1985) Environmental fate modelling of chlorodioxins: Determination of physical constants. Chemosphere 14:609–622.

    Article  CAS  Google Scholar 

  205. Weed Science Society of America (1979) Herbicide handbook, 4th Ed. Weed Sci Soc Am, Champaign, IL. 479 pp.

    Google Scholar 

  206. Weed Science Society of America (1983) Herbicide handbook, 5th Ed. Weed Sci Soc Am, Champaign, IL. 515 pp.

    Google Scholar 

  207. Weed Science Society of America (1989) Herbicide handbook, 6th Ed. Weed Sci Soc Am, Champaign, IL. 301 pp.

    Google Scholar 

  208. Wegman RCC, van den Broek HH, Hofstee AWM, Marsman JA (1984) Determination of triazines, organophosphorus containing pesticides and aromatic amines in soil samples. Med Fac Landbouww Rijksuniv, Gent 49/3b:1231–1239.

    Google Scholar 

  209. Weil L, Dure G, Quentin K-E (1984) Z Wasser Abwasser Forsch 7:169.

    Google Scholar 

  210. Wilson RG, Rodebush JE (1987) Degradation of dichlormid and dietholate in soils with prior EPTC, butylate, dichlormid and dietholate exposure. Weed Sci 35:289–294.

    CAS  Google Scholar 

  211. Wolf DE, Johnson RS, Hill GD, Varner RW (1958) Herbicidal properties of neburon. Proceedings North Central Weed Control Conference, 15th Annual Meeting, Cincinnati, OH, pp 7–8.

    Google Scholar 

  212. Woolson EA, Aharonson N, Iadevaia R (1982) Application of the highperformance liquid method to the study of alkyl arsenical herbicide metabolism in soil. J Agric Food Chem 30:580–585.

    Article  CAS  Google Scholar 

  213. Woolson EA, Kearney PC (1973) Persistence and reactions of 14C-cacodylic acid in soils. Environ Sci Technol 7:47–50.

    Article  CAS  Google Scholar 

  214. Yarden O, Gamliel N, Aharonson N, Katan J (1989) Solarization enhances dissipation of carbendazim. Soil Biol Biochem 21:857–861.

    Article  CAS  Google Scholar 

  215. Young HC, Carroll JC (1951) The decomposition of pentachlorophenol when applied as a residual pre-emergence herbicide. Agron J 43:504–507.

    Article  CAS  Google Scholar 

  216. Young-Oh S, Chodan JJ, Wolcott AR (1970) Adsorption of DDT by soils, soil fractions and biological materials. J Agric Food Chem 18:1129–1133.

    Article  Google Scholar 

  217. Vogue P, Jenkins JJ, Kerle E, Huddleston H (1993) The Oregon water quality guide. Oregon Agric Ext Serv, Corvallis, OR. 21 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Augustijn-Beckers, P.W.M., Hornsby, A.G., Wauchope, R.D. (1994). The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making. II. Additional Compounds. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 137. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2662-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2662-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7625-8

  • Online ISBN: 978-1-4612-2662-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics