Skip to main content

Quadratic Algebras, Dunkl Elements, and Schubert Calculus

  • Chapter
Advances in Geometry

Part of the book series: Progress in Mathematics ((PM,volume 172))

Abstract

We suggest a new combinatorial construction for the co-homology ring of the flag manifold.

The degree 2 commutation relations satisfied by the divided difference operators corresponding to positive roots define a quadratic associative algebra. In this algebra, the formal analogues of Dunkl operators generate a commutative subring, which is shown to be canonically isomorphic to the cohomology of the flag manifold. This leads to yet another combinatorial version of the corresponding Schubert calculus.

The paper contains numerous conjectures and open problems. We also discuss a generalization of the main construction to quantum cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, The cohomology ring of the colored braid group, Math.Notes 5(1969), 138–140.

    Article  Google Scholar 

  2. A. Beilinson, V. Ginzburg, and W. Soergel, Koszul Duality Patterns in Representation TheoryJ. Amer. Math. Soc. 9(1996), 473–527.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaceG/P Russian Math. Surveys 28(1973), 126.

    Google Scholar 

  4. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compactsAnn. ofMath. (2)57(1953), 115–207.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. BourbakiGroupesetalgèbres deLie, Ch. IV-VI, Hermann, Paris, 1968.

    MATH  Google Scholar 

  6. I. Ciocan-Fontanine, The quantum cohomology ring of flag varieties, Ph. D. thesis, University of Utah, June 1996.

    Google Scholar 

  7. M. Demazure, Désingularization des variétés de Schubert généraliséesAnn. Scient. Ecole Normale Sup.(4)7(1974), 53–88.

    MathSciNet  MATH  Google Scholar 

  8. C. F. Dunkl, Harmonic polynomials and peak sets of reflection groupsGeometriae Dedicata 32(1989), 157–171.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Ehresmann, Sur la topologie de certains espaces homogènesAnn. Math. 35(1934), 396–443.

    Article  MathSciNet  Google Scholar 

  10. S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert PolynomialsJ. Amer. Math. Soc. 10(1997), 565–596.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. FultonYoung tableaux with applicationstorepresentation theory and geometryCambridge University Press, 1996.

    Google Scholar 

  12. W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, preprintalg-geom/9608011.

    Google Scholar 

  13. I. M. Gelfand and A. N. Varchenko, Heaviside functions of a configuration of hyperplanesFunct. Anal. Appl. 21(1988), 255–270.

    Article  Google Scholar 

  14. A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda latticesComm. Math. Phys. 168(1995), 609–641.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. J. HahnQuadratic algebras Clifford algebras and arithmetic Witt groupsSpringer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  16. G. J. Heckman, A remark on the Dunkl differential-difference operators, in:Harmonic Analysis on Reductive Groups, W. Barker and P. Sally, eds., PM 104, Birkhäuser, 1991, 181–191.

    Chapter  Google Scholar 

  17. B. Kim, Quantum cohomology of flag manifolds G/B and quantum Toda latticespreprint alg-geom/9607001.

    Google Scholar 

  18. A. N. Kirillov and T. Maeno, Double quantum Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formulapreprint q-alg/9610022.

    Google Scholar 

  19. A. A. Kirillov, Jr., Lectures on affine Hecke algebras and Macdonald’s conjecturesBull. Amer. Math. Soc. 34(1997), 251–292.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Lascoux, Classes de Chern des variétés de drapeauxC. R. Ac. Sci. 295(1982), 393–398.

    MathSciNet  MATH  Google Scholar 

  21. A. Lascoux and M. P. Schützenberger, Polynômes de SchubertC.R. Ac.Sci. 294(1982), 447–450.

    MATH  Google Scholar 

  22. I. G. MacdonaldNotes on Schubert polynomialsPublications du LACIM, Montréal, 1991.

    Google Scholar 

  23. Yu. I. ManinQuantum groups and noncommutative geometryUniversité de Montréal, Centre de Recherches Mathématiques, Montréal, 1988.

    Google Scholar 

  24. D. Monk, The geometry of flag manifoldsProc. LondonMath.Soc. 9(1959), 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanesInv. Math. 56(1980), 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Postnikov, On a quantum version of Pieri’s formula, this volume, pp. 371–383.

    Google Scholar 

  27. J.-E. Roos, private communication.

    Google Scholar 

  28. J.-E. Roos, A computer-aided study of the graded Lie algebra of a local commutative Noetherian ringJ. Pure Appl. Algebra 91(1994), 255–315.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-E. Roos, Some non-Koszul algebras, this volume, pp. 385–389.

    Google Scholar 

  30. Y. Ruan and G. Tian, Mathematical theory of quantum cohomologyJ. Diff. Geom. 42(1995), no. 2, 259–367.

    MathSciNet  MATH  Google Scholar 

  31. F. Sottile, Pieri’s formula for flag manifolds and Schubert polynomialsAnnales de l’Institut Fourier 46(1996), 89–110.

    MathSciNet  MATH  Google Scholar 

  32. A. Varchenko, private communication.

    Google Scholar 

  33. R. Winkel, On the multiplication of Schubert polynomials, preprint, Adv.in Appl. Math. 20(1998), 73–97.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fomin, S., Kirillov, A.N. (1999). Quadratic Algebras, Dunkl Elements, and Schubert Calculus. In: Brylinski, JL., Brylinski, R., Nistor, V., Tsygan, B., Xu, P. (eds) Advances in Geometry. Progress in Mathematics, vol 172. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1770-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1770-1_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7274-8

  • Online ISBN: 978-1-4612-1770-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics