Skip to main content

The Sense of Hearing in Fishes and Amphibians

  • Chapter
Comparative Hearing: Fish and Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

For humans, the act of hearing results in a set of experiences that can lead to knowledge, but may or may not lead to overt behaviors. Ordinary experience suggests that most humans share these experiences and acquired knowledge, and thus share a sense of hearing. However, hearing in other species can be inferred only from behaviors that may or may not reveal experience and knowledge. If we are careful not to anthropomorphize, as many of us have been taught, our view of hearing in nonhuman animals tends to be tied to the behaviors most easily observed and understood, such as predator avoidance, prey identification, courtship, and vocal social interaction. Since experience and knowledge are impossible to observe directly, we may tend to deny their existence in other species, particularly those with which we do not readily identify, and those that are most distantly related to us. This makes it difficult for us to evaluate and understand the sense of hearing in other species in terms other than naturally occurring, sound-related behaviors. We may be led to believe, for example, that hearing in a given species or class can be fully explained as an adaptation for initiating and directing behaviors that occur in close temporal association with those sound sources that seem to require a prompt response, that is, those thought to be of “biological significance.” In this view, we are probably fated to regard the sense of hearing in these species as simplified or impoverished compared with our own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allan SE (1992) The temporal resolving power of the auditory system in the green treefrog (Hyla cinerea). Unpublished doctoral dissertation, Brown University.

    Google Scholar 

  • Allan SE, Simmons AM (1994) Temporal features mediating call recognition in the green treefrog, Hyla cinerea: amplitude modulation. Anim Behav 47:1073–1086.

    Google Scholar 

  • Allen J (1997) OHCs shift the excitation pattern via BM tension. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics, World Scientific Publishers, Singapore, pp. 167–175.

    Google Scholar 

  • Arak A (1983) Sexual selection by male-male competition in natterjack toad choruses. Nature 306:261–262.

    Google Scholar 

  • Astrup J, Mohl B (1993) Detection of intense ultrasound by the cod, Gadus morhua. J Exp Biol 182:71–80.

    Google Scholar 

  • Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond [B] 168:158–180.

    CAS  Google Scholar 

  • BéKésy G von (1960) In: Weyer EG (ed) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol [A] 177:577–590.

    CAS  Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1997) Transient “deafness” accompanies auditory development during metamorphosis from tadpole to frog. Proc Natl Acad Sci USA 94:14877–14882.

    PubMed  CAS  Google Scholar 

  • Bodnar DA (1996) The separate and combined effects of harmonic structure, phase, and FM on female preferences in the barking treefrog (Hyla gratiosa). J Comp Physiol [A] 178:173–182.

    CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brzoska J (1980) Quantitative studies on the elicitation of the electrodermal response by calls and synthetic acoustical stimuli in Rana lessonae Camerano, Rana r. ridibunda Pallas and the hybrid Rana esculenta L. (Anura, Amphibia). Behav Proc 5:113–141.

    Google Scholar 

  • Brzoska J, Walkowiak W, Schneider H (1977) Acoustic communication in the grassfrog (Rana t. temporaria L.); calls, auditory thresholds and behavioral responses. J Comp Physiol [A] 118:173–186.

    Google Scholar 

  • Buerkle U (1969) Auditory masking and the critical band in Atlantic cod (Gadus morhua). J Fish Res Bd Canada 26:1113–1119.

    Google Scholar 

  • Buwalda RJA (1981) Segregation of directional and nondirectional acoustic information in the cod. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 139–172.

    Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sounds from opposing directions. J Comp Physiol [A] 150:175–184.

    Google Scholar 

  • Capranica RR (1965) The Evoked Vocal Response of the Bullfrog: A Study of Communication by Sound. Cambridge, MA.: MIT Press.

    Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neuroethological principles of acoustic communication in anurans. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. New York: Plenum Press, pp. 701–730.

    Google Scholar 

  • Carlile S (1990) The auditory periphery of the ferret. II: The spectral transformations of the external ear and their implications for sound localization. J Acoust Soc Am 88:2196–2204.

    PubMed  CAS  Google Scholar 

  • Carr CA, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Chapman CJ (1973) Field studies of hearing in teleost fish. Helgoländer wiss Meeresunters 24:371–390.

    Google Scholar 

  • Chapman CJ, Hawkins A (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol [A] 85:147–167.

    Google Scholar 

  • Chapman CJ, Johnstone ADF (1974) Some auditory discrimination experiments on marine fish. J Exp Bio161:521–528.

    Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.) (family Pleuronectidae). Comp Biochem Physiol 47:371–385.

    CAS  Google Scholar 

  • Chronopolous M, Fay RR (1996) Envelope perception in the goldfish. J Acoust Soc Am 100:2786 (abstr).

    Google Scholar 

  • Coombs S, Fay RR (1989) The temporal evolution of masking and frequency selectivity in the goldfish (C. auratus). J Acoust Soc Am 86:925–933.

    PubMed  CAS  Google Scholar 

  • Coombs S, Popper AN (1981) Comparative frequency selectivity in fishes: simultaneously and forward-masked psychophysical tuning curves. J Acoust Soc Am 71:133–141.

    Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1952) Uber die Schallwahrnehmung bei Merresfischen. Z Vergl Physiol 34:104–122.

    Google Scholar 

  • Dijkgraaf S, Verheijen F (1950) Neue Versuch uber das Tonunterscheidungsvermögen der Elritze. Z Vergl Physiol 32:248–265.

    Google Scholar 

  • Doherty JA, Gerhardt HC (1984) Evolutionary and neurobiological implications of selective phonotaxis in the spring peeper (Hyla crucifer). Anim Behav 32: 875–881.

    Google Scholar 

  • Dunning DJ, Ross QE, Geoghegan P, Reichle JJ, Menezes JK, Watson JK (1992) Alewives avoid high-frequency sound. North Am J Fish Manag 12:407–416.

    Google Scholar 

  • Dyson ML, Passmore NI (1988a) The combined effect of intensity and the temporal relationship of stimuli on phonotaxis in female painted reed frogs Hyperolius marmoratus. Anim Behav 36:1555–1556.

    Google Scholar 

  • Dyson ML, Passmore NI (1988b) Two-choice phonotaxis in Hyperolius marmoratus: the effect of temporal variation in presented stimuli. Anim Behav 36:648–652.

    Google Scholar 

  • Ehret G, Gerhardt HC (1980) Auditory masking and effects of noise on responses of the green treefrog (Hyla cinerea) to synthetic mating calls. J Comp Physiol [A] 141:13–18.

    Google Scholar 

  • Elepfandt A (1985) Naturalistic conditioning reveals good learning in a frog (Xenopus laevis). Naturwissenschaften 72:492–493.

    Google Scholar 

  • Elepfandt A (1986) Wave frequency recognition and absolute pitch for water waves in the clawed frog, Xenopus laevis. J Comp Physiol [A] 158:235–238.

    Google Scholar 

  • Elepfandt A, Seiler B, Aicher B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol [A] 157:255–261.

    Google Scholar 

  • Fay RR (1970a) Auditory frequency discrimination in the goldfish. J Comp Physiol Psychol 73:175–180.

    Google Scholar 

  • Fay RR (1970b) Auditory frequency generalization in the goldfish. J Exp Anal Behav 14:353–360.

    CAS  Google Scholar 

  • Fay RR (1972) Perception of amplitude modulated auditory signals by the goldfish. J Acoust Soc Am 52:660–666.

    Google Scholar 

  • Fay RR (1974a) The masking of tones by noise for the goldfish. J Comp Physiol Psychol 87:708–716.

    CAS  Google Scholar 

  • Fay RR (1974b) Auditory frequency discrimination in vertebrates. J Acoust Soc Am 56:206–209.

    CAS  Google Scholar 

  • Fay RR (1978) Phase-locking in goldfish saccular nerve fibers accounts for frequency discrimination capacities. Nature 275:320–322.

    PubMed  CAS  Google Scholar 

  • Fay RR (1980) Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: amplitude modulation detection. J Neurophysiol 39:871–881.

    Google Scholar 

  • Fay RR (1982) Neural mechanisms of an auditory temporal discrimination by the goldfish. J Comp Physiol [A] 147:201–216.

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of particle motion in three dimensions. Science 225:951–953.

    PubMed  CAS  Google Scholar 

  • Fay RR (1985) Sound intensity processing by the goldfish. J Acoust Soc Am 78:1296–1309.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1989a) Intensity discrimination of pulsed tones by the goldfish. J Acoust Soc Am 85:500–502.

    CAS  Google Scholar 

  • Fay RR (1989b) Frequency discrimination in the goldfish: effects of roving intensity, sensation level, and the direction of frequency change. J Acoust Soc Am 85:503–505.

    CAS  Google Scholar 

  • Fay RR (1992a) Structure and function in sound discrimination among vertebrates. In: Webster D, Fay R, Popper A (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–263.

    Google Scholar 

  • Fay RR (1992b) Analytic listening by the goldfish. Hear Res 59:101–107.

    CAS  Google Scholar 

  • Fay RR (1994a) Perception of temporal acoustic patterns by the goldfish (C. auratus). Hear Res 76:158–172.

    CAS  Google Scholar 

  • Fay RR (1994b) The sense of hearing in fishes: psychophysics and neurophysiology. Sensory Syst 8:222–232.

    Google Scholar 

  • Fay RR (1995) Perception of spectrally and temporally complex sounds by the goldfish (C. auratus). Hear Res 89:146–154.

    PubMed  CAS  Google Scholar 

  • Fay RR (1997) Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics, World Scientific Publishers, Singapore, pp. 69–75.

    Google Scholar 

  • Fay RR, Coombs S (1983) Neural mechanisms in sound detection and temporal summation. Hear Res 10:69–92.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hearing Research 111:1–21.

    PubMed  CAS  Google Scholar 

  • Fay RR, Passow B (1982) Temporal discrimination in the goldfish. J Acoust Soc Am 72:753–760.

    PubMed  CAS  Google Scholar 

  • Fay RR, Ream TJ (1986) Acoustic response and tuning in saccular nerve fibers of the goldfish (C. auratus). J Acoust Soc Am 79:1883–1895.

    PubMed  CAS  Google Scholar 

  • Fay RR, Ahroon WA, Orawski AT (1978) Auditory masking patterns in the goldfish: psychophysical tuning curves. J Exp Biol 74:83–100.

    PubMed  CAS  Google Scholar 

  • Fay RR, Yost WA, Coombs S (1983) Repetition noise processing by a vertebrate auditory system. Hear Res 12:31–55.

    PubMed  CAS  Google Scholar 

  • Fay RR, Chronopolous M, Patterson R (1996) The sound of a sinusoid: perception and neural representations in goldfish (C. auratus). Audit Neurosci 2:377–392.

    Google Scholar 

  • Fellers GM (1979) Aggression, territoriality and mating behaviour in North American treefrogs. Anim Behav 27:107–119.

    Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216.

    PubMed  CAS  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (H. gratiosa). J Comp Physiol [A] 107:241–252.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Google Scholar 

  • Freedman EG, Ferragamo M, Simmons AM (1988) Masking patterns in the bullfrog (Rana catesbeiana) II: Physiological effects. J Acoust Soc Am 84:2081–2091.

    PubMed  CAS  Google Scholar 

  • Frisch K von (1936) Über den Gehorsinn der Fische. Biol Rev 11:210–246.

    Google Scholar 

  • Gerhardt HC (1978) Mating call recognition in the green treefrog (Hyla cinerea): the significance of some fine-temporal properties. J Exp Biol 61:229–241.

    Google Scholar 

  • Gerhardt HC (1981a) Mating call recognition in the green treefrog (Hyla cinerea): importance of two frequency bands as a function of sound pressure level. J Comp Physiol [A] 144:9–16.

    Google Scholar 

  • Gerhardt HC (1981b) Mating call recognition in the barking treefrog (Hyla gratiosa): responses to synthetic mating calls and comparisons with the green treefrog (Hyla cinerea). J Comp Physiol [A] 144:17–25.

    Google Scholar 

  • Gerhardt HC (1987) Evolutionary and neurobiological implications of selective phonotaxis in the green treefrog, Hyla cinerea. Anim Behav 35:1479–1489.

    Google Scholar 

  • Gerhardt HC (1991) Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635.

    Google Scholar 

  • Gerhardt HC, Doherty JA (1988) Acoustic communication in the gray treefrog, Hyla versicolor: evolutionary and neurobiological implications. J Comp Physiol [A] 162:261–278.

    Google Scholar 

  • Gerhardt HC, Klump GM (1988) Masking of acoustic signals by chorus background noise in the green treefrog: a limitation on mate choice. Anim Behav 36:1247–1249.

    Google Scholar 

  • Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67:362–363.

    Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217:663–664.

    Google Scholar 

  • Gerhardt HC, Allan S, Schwartz JJ (1990) Female green treefrogs (Hyla cinerea) do not selectively respond to signals with a harmonic structure in noise. J Comp Physiol [A] 166:791–794.

    CAS  Google Scholar 

  • Green DM (1973) Minimum integration time. In: Miller A (ed) Basic Mechanisms in Hearing. London: Academic Press.

    Google Scholar 

  • Green DM (1988) Profile Analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Guttman N (1963) Laws of behavior and facts of perception In: Koch S (ed)Psychology: A Study of a Science, vol. 5. New York: McGraw-Hill, pp. 114–178.

    Google Scholar 

  • Hainfeld CA, Boatright-Horowitz SL, Boatright-Horowitz SS, Simmons AM (1996) Discrimination of phase spectra in complex sounds by the bullfrog (Rana catesbeiana). J Comp Physiol [A] 178:75–87.

    Google Scholar 

  • Hartmann WM (1988) Pitch perception and the segregation and integration of auditory entities. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurological Bases of Hearing. New York: Wiley, pp. 623–645.

    Google Scholar 

  • Hawkins AD (1981) The hearing abilities of fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 109–137.

    Google Scholar 

  • Hawkins AD, Chapman CJ (1975) Masked auditory thresholds in the cod, Gadus morhua L. J Comp Physiol [A] 103:209–226.

    Google Scholar 

  • Hawkins AD, Johnstone ADF (1978) The hearing of the Atlantic salmon, Salmo salar. J Fish Biol 13:655–673.

    Google Scholar 

  • Hawkins AD, Sand O (1977) Directional hearing in the median vertical plane by the cod. J Comp Physiol [A] 122:1–8.

    Google Scholar 

  • Hetherington TE (1987) Timing of development of the middle ear of Anura (Amphibia). Zoomorphology 106:289–300.

    Google Scholar 

  • Hetherington TE (1992) The effects of body size on functional properties of the middle ear of anuran amphibians. Brain Behav Evol 39:133–142.

    PubMed  CAS  Google Scholar 

  • Jacobs DW, Tavolga WN (1967) Acoustic intensity limens in the goldfish. Anim Behav 15:324–335.

    PubMed  CAS  Google Scholar 

  • Jacobs DW, Tavolga WN (1968) Acoustic frequency discrimination in the goldfish. Anim Behav 16:67–71.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    PubMed  CAS  Google Scholar 

  • Jorgenson MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol [A] 169:177–183.

    Google Scholar 

  • Kalmijn At (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 83–130.

    Google Scholar 

  • Karlsen HE (1992a) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187.

    Google Scholar 

  • Karlsen HE (1992b) The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J Exp Biol 171:163–172.

    Google Scholar 

  • Klump GM, Gerhardt HC (1987) Use of non-arbitrary acoustic criteria in mate choice by female gray treefrogs. Nature 326:286–288.

    Google Scholar 

  • Klump GM, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76:35–37.

    PubMed  CAS  Google Scholar 

  • Knudsen FR, Enger PS, Sand O (1992) Awareness reactions and avoidance responses to sound in juvenile Atlantic Salmon, Salmo salar L. J Fish Biol 40: 523–534.

    Google Scholar 

  • Knudsen FR, Enger PS, Sand O (1994) Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar. J Fish Biol 45:227–233.

    Google Scholar 

  • Lu Z, Fay RR (1993). Acoustic response properties of single units in the torus semicircularis of the goldfish, C. auratus. J Comp Physiol [A] 173:33–48.

    CAS  Google Scholar 

  • Lu Z, Fay RR (1996) Two-tone interaction in primary afferents and midbrain neurons of the goldfish (C. auratus). Audit Neurosci 2:257–273.

    Google Scholar 

  • Lu Z, Popper A, Fay R (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol [A] 179:227–234.

    CAS  Google Scholar 

  • Mann D, Lu Z, Popper A (1997) Ultrasound detection by a teleost fish. Nature 389:234.

    Google Scholar 

  • McCormick C, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J Comp Physiol [A] 155:753–761.

    Google Scholar 

  • McGill TE (1960) A review of hearing in amphibians and reptiles. Psych Bull 57:165–168.

    Google Scholar 

  • Megela-Simmons A (1984) Behavioral vocal response thresholds to mating calls in the bullfrog Rana catesbeiana. J Acoust Soc Am 76:676–681.

    PubMed  CAS  Google Scholar 

  • Megela-Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green treefrog (Hyla cinerea). J Acoust Soc Am 78:1236–1244.

    PubMed  CAS  Google Scholar 

  • Michelsen AM, Jorgenson M, Christensen-Dalsgaard J, Capranica RR (1986) Directional hearing of awake, unrestrained treefrogs. Naturwissenschaften 73:682–683.

    PubMed  CAS  Google Scholar 

  • Moss CF, Simmons AM (1986) Frequency selectivity of hearing in the green treefrog, Hyla cinerea. J Comp Physiol [A] 158:257–266.

    Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. J Acoust Soc Am 87:757–781.

    PubMed  CAS  Google Scholar 

  • Narins PM (1982) Effects of masking noise on evoked calling in the Puerto Rican coqui (Anura: Leptodactylidae). J Comp Physiol [A] 147:439–446.

    Google Scholar 

  • Narins PM (1983) Synchronous vocal response mediated by the amphibian papilla in a neotropical treefrog: behavioural evidence. J Exp Biol 105:95–105.

    Google Scholar 

  • Narins PM, Capranica RR (1978) Communicative significance of the two-note call of the treefrog Eleutherodactylus coqui. J Comp Physiol [A] 127:1–9.

    Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512.

    PubMed  CAS  Google Scholar 

  • Nestler JM, Ploskey GR, Pickens J, Menezes J, Schildt C (1992) Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. North Am J Fish Manag 12:667–683.

    Google Scholar 

  • Offutt G (1973) Structures for detection of acoustic stimuli in the Atlantic codfish Gadus morhua. J Acoust Soc Am 56:665–671.

    Google Scholar 

  • Passmore NI, Telford SR (1981) The effect of chorus organization on mate localization in the painted reed frog (Hyperolius marmoratus). Behav Ecol Sociobiol 9:291–293.

    Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). The localization of elevated sound sources. J Comp Physiol [A] 154:189–197.

    Google Scholar 

  • Patterson RD (1994a) The sound of a sinusoid: spectral models. J Acoust Soc Am 96:1409–1418.

    Google Scholar 

  • Patterson RD (1994b) The sound of a sinusoid: time-interval models. J Acoust Soc Am 96:1419–1428.

    Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press.

    Google Scholar 

  • Pettersen L (1980) Frequency discrimination in the bullhead Cottus scorpius, a fish without swimbladder. Master’s Thesis, University of Oslo.

    Google Scholar 

  • Popper AN (1972) Auditory threshold in the goldfish (C. auratus) as a function of signal duration. J Acoust Soc Am 52:596–602.

    Google Scholar 

  • Popper AN, Clarke NL (1979) Non-simultaneous auditory masking in the goldfish C. auratus. J Exp Biol 83:145–158.

    PubMed  CAS  Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol [A] 133:247–255.

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 131–149.

    Google Scholar 

  • Rogers P, Lewis PN, Willis MJ, Abrahamson S (1989) Scattered ambient noise as an auditory stimulus for fish. J Acoust Soc Am 85:S35 (abstr).

    Google Scholar 

  • Rose GJ, Capranica RR (1984) Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. J Comp Physiol [A] 154:211–219.

    Google Scholar 

  • Ryan MJ (1983) Sexual selection and communication in a neotropical frog, Physalaemus pustulosus. Evolution 37:261–272.

    Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204.

    PubMed  CAS  Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol [A] 98:307–332.

    Google Scholar 

  • Schuijf A, Buwalda RJA (1975) On the mechanism of directional hearing in cod (Gadus morhua). J Comp Physiol [A] 98:333–344.

    Google Scholar 

  • Schuijf A, Hawkins AD (1983) Acoustic distance discrimination by the cod. Nature 302:143–144.

    Google Scholar 

  • Schuijf A, Siemelink M (1974) The ability of cod (Gadus morhua) to orient towards a sound source. Experientia 30:773–774.

    PubMed  CAS  Google Scholar 

  • Schwartz JJ (1993) Male calling behavior, female discrimination and acoustic interference in the neotropical treefrog Hyla microcephala under realistic acoustic conditions. Behav Ecol Sociobiol 32:401–414.

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol [A] 166:37–41.

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray tree frog, Hyla versicolor. Audit Neurosci 1:195–206.

    Google Scholar 

  • Schwartz JJ, Simmons AM (1990) Encoding of a spectrally-complex communication sound in the bullfrog’s auditory nerve. J Comp Physiol [A] 166:489–499.

    CAS  Google Scholar 

  • Schwartz JJ, Wells KD (1983) The influence of background noise on the behavior of a neotropical treefrog, Hyla ebraccata. Herpetologica 39:121–192.

    Google Scholar 

  • Schwartz JJ, Wells KD (1984) Interspecific acoustic interactions of the neotropical treefrog. Hyla ebraccata. Behav Ecol Sociobiol 14:211–224.

    Google Scholar 

  • Shepard RN (1965) Approximation to uniform gradients of generalization by monotone transformations of scale. In: Mostofsky D (ed) Stimulus Generalization. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Simmons AM (1988a) Masking patterns in the bullfrog (Rana catesbeiana), I: Behavioral effects. J Acoust Soc Am 83:1087–1092.

    CAS  Google Scholar 

  • Simmons AM (1988b) Selectivity for harmonic structure in complex sounds by the green treefrog (Hyla cinerea). J Comp Physiol A 162:397–403.

    CAS  Google Scholar 

  • Simmons AM, Buxbaum RC (1996) Neural codes for pitch processing in a unique vertebrate auditory system. In: Moss CF, Shettleworth S (eds) Neuroethological Studies of Cognitive and Perceptual Processes. Boulder, CO: Westview Press, pp. 185–228.

    Google Scholar 

  • Simmons AM, Ferragamo M (1993) Periodicity extraction in the anuran auditory nerve I. Pitch shift effects. J Comp Physiol [A] 172:57–69.

    CAS  Google Scholar 

  • Simmons AM, Moss CF (1995) Reflex modification: a tool for assessing basic auditory function in anuran amphibians. In: Dooling RJ, Fay RR, Klump G, Stebbins W (eds) Methods in Comparative Psychoacoustics. Basel, Boston, Berlin: Birkhauser Verlag, pp. 197–208.

    Google Scholar 

  • Simmons AM, Buxbaum RC, Mirin M (1993) Perception of complex sounds by the green treefrog, Hyla cinerea: envelope and fine-structure cues. J Comp Physiol [A] 173:321–327.

    CAS  Google Scholar 

  • Strother WF (1962) Hearing in frogs. J Audit Res 2:279–286.

    Google Scholar 

  • Tavolga WN (1974) Signal/noise ratio and the critical band in fishes. J Acoust Soc Am 55:1323–1333.

    PubMed  CAS  Google Scholar 

  • Tavolga WN (1982) Auditory acuity in the sea catfish (Arius fells). J Exp Biol 96:367–376.

    Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.

    CAS  Google Scholar 

  • Weiss BA, Strother WF (1965) Hearing in the green treefrog (Hyla cinerea cinerea). J Audit Res 5:297–305.

    Google Scholar 

  • Weyer EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol [A] 161:659–669.

    CAS  Google Scholar 

  • Witschi E (1949) The larval ear of the frog and its transformation during metamorphosis. Z Naturforsch 4b:230–242.

    Google Scholar 

  • Wohlfahrt TA (1939) Untersuchungen uber das Tonunterscheidunsvermögen der Elritze. Z Vergl Physiol 26:570–604.

    Google Scholar 

  • Wotton JM, Haresign T, Simmons JA (1995) Spatially dependent acoustic cues generated by the external ear of the big brown bat, Eptesicus fuscus. J Acoust Soc Am 98:1423–1445.

    PubMed  CAS  Google Scholar 

  • Yost WA, Hill R, Perez-Falcon T (1978) Pitch and pitch discrimination of broad-band signals with rippled power spectra. J Acoust Soc Am 63:1166–1173.

    PubMed  CAS  Google Scholar 

  • Zelick RD, Narins PM (1982) Analysis of acoustically evoked call suppression behaviour in a neotropical treefrog. Anim Behav 30:728–733.

    Google Scholar 

  • Zelick RD, Narins PM (1983) Intensity discrimination and the precision of call timing in two species of neotropical treefrogs. J Comp Physiol [A] 153:403–412.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fay, R.R., Simmons, A.M. (1999). The Sense of Hearing in Fishes and Amphibians. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics