Skip to main content

Part of the book series: Philips Technical Library ((PTL))

Abstract

Soldering is a method of joining metal components (or at least components with a metal skin) nearly always by means of a molten metal (alloy), the solder, with a melting point below that of the components to be joined and a composition different from that of the components. The components are wetted without melting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K.Bailey The meaning of solder ability British Non-ferrous Metals Research Association, Report A1104, October 1953.

    Google Scholar 

  2. G.L.J.Bailey, J. C. Watkins The flow of liquid metals on solid metal surfaces and its relation to soldering brazing and hot-dip-coating, Journal of the Institute of Metals, vol. 80, 1951, p. 57–81, and p. 692–694.

    Google Scholar 

  3. A. Bondi The spreading of liquid metals on solid surfaces.

    Google Scholar 

  4. R. D. Wasserman, J. Quaas Dilution and diffusion aspects of nonfusion welding, The Welding Journal, December 1951, p. 1098–1101.

    Google Scholar 

  5. E. R. Funk Surface tension and the joining of metals, Welding Research Supplement, May 1952, p. 247–252.

    Google Scholar 

  6. I. Milner A survey of the scientific principles related to wetting and spreading, British Welding Journal, March 1958.

    Google Scholar 

  7. F. B. Bowden, D. Tabor Mechanism of adhesion between solids, Proceedings of the second international congress on surface activity, 1957.

    Google Scholar 

  8. N. F. Lashko, S. V. Lashko-Avakyan Brazing and soldering of metals, London 1961.

    Google Scholar 

  9. H. H. Manko Solders and soldering, McGraw-Hill, New York.

    Google Scholar 

  10. J. Colbus Versuche zum Deutung der Bindevorgange beim Loten, Schweissen und Schneiden, 10, 1958, p. 50.

    Google Scholar 

  11. H. H. Manko Soldered Connections, Machine Design, May 21, 1964.

    Google Scholar 

  12. L. Pessel Assured reliability in soldered connections, IEEE Transactions on product engineering and production, January 1963, p. 28.

    Google Scholar 

  13. W. B. Harding Solderability testing, Plating, October 1965, p. 971.

    Book  Google Scholar 

  14. W. H. Kohl Soldering and brazing, Vacuum, vol. 14, p. 175–198.

    Google Scholar 

  15. J. O. Outwater Composite materials, particle materials, Mechanical Engineering, February 1966, p. 32–35.

    Google Scholar 

  16. H. Zürn, Th. Nesse Die metallurgischen Vorgänge beim Weichlöten von Kupfer und Kupferlegierungen und das Festigkeitsverhalten der Lotverbindungen, Metall, November 1966.

    Google Scholar 

  17. H. Zurn, Th. Nesse Löten, Vorträge der Sonder-Tagung Augsburg 1964 des Deutschen Verbandes für Schweisstechnik e.V., Arbeits- gruppe 26 “Loten”.

    Google Scholar 

  18. H. Parthey Grenzschichtprobleme beim löten, mitt. forschungs-gesellschaft blechverarbeitung, Nr. 23 /24, p. 367, 1965.

    Google Scholar 

  19. H. Lange, H. Parthey, I. N. Stranski Grenzschichtprobleme beim Löten, Mitt, der Forschungs-gesellschaft Blechverarbeitung e.V., Nr. 19, p. 209, October 1, 1958.

    Google Scholar 

  20. R. J. Klein, Wassink Wetting of solid-metal surfaces by molten metals, Journal of the Institute of Metals, vol. 95, p. 38, February 1967.

    Google Scholar 

  21. A. L. Maverick, R. Fichter Untersuchungen über Diffusionserscheinungen an Lötver- bindungen mit der Mikrosonde, Schweizer Archiv, January 1967, p. 22.

    Google Scholar 

  22. B. W. Mott Immiscibility in liquid metal systems, Journal of Materials Science, 3, 1968, p. 424–435.

    Google Scholar 

  23. Y. V. Naidich Interfacial surface ergies and contact angles of wetting of solids by liquid in equilibrium and non-equilibrium systems, Russian Journal of Physical hemistry, 42 (8), 1968.

    Google Scholar 

  24. N. F.Lashko, S. V. Lashko-Avakyan Brazing and soldering of metals, London 1961.

    Google Scholar 

  25. Jonson Brazing progress Journal of the American Ceramic Society, Ceramic Abstracts, 33, No. 5, 1950.

    Google Scholar 

  26. Jonson Brazing The vacuum furnaces for brazing, Engineering 183, No. 4757, p. 600, 1957.

    Google Scholar 

  27. Anon. Metal to non-metal brazing. Metal Treatment and Drop Forging, 21, No. 101, p. 66, 1954.

    Google Scholar 

  28. L. S. Darken, R. W. Gurry Physical Chemistry of Metals, New York, 1953.

    Google Scholar 

  29. W. H. Chang A dew point-temperature diagram for metal-metal oxide equilibria on hydrogen atmospheres Welding Journal, 35, No. 12, p. 6629, p. 6645, 1956.

    Google Scholar 

  30. D. M. Dovey. K. C. Randle High temperature furnace brazing Metal Treatment and Drop Forging, 22, November 123, p. 501, 1955.

    Google Scholar 

  31. R. L. Peaslee,W. M. Boam Design properties of brazed joints for high temperature applications, Welding Journal, 31, No. 8, p. 651, 1952.

    Google Scholar 

  32. J. Stanley The embrittlement of pure iron in wet and dry hydrogen Journal American Society for Metals, 44, 1952.

    Google Scholar 

  33. G. Simon Hartlöten in Schutzgas-Atmosphäre im elektrischen Wider- standsofen, Zeitschrift für Metallkunde, Band 117, Heft 7, 1957.

    Google Scholar 

  34. H. H. Kellog Metallurgical reactions of fluorides, Journal of Metals, vol. 191, no. 2, p. 137–141, 1951, no. 6, p. 864–872.

    Google Scholar 

  35. E. Lüder Handbuch der Lottechnik, Berlin 1952.

    Google Scholar 

  36. M. F. Jordan, D. R. Milner The removal of oxide from aluminium by brazing fluxes, Journal Institute of Metals, 85, No. 2, p. 33, 1956.

    Google Scholar 

  37. H. R. Clauser How to select brazing and soldering materials, Materials and Methods, 35, No. 3, p. 105, 1952.

    Google Scholar 

  38. W. I. Gabe Improve your soldering with non-corrosive flux, Iron Age, 172, No. 10, p. 115, 1953.

    Google Scholar 

  39. S. Freedman Fluxless aluminium joining avoids joint corrosion, Iron Age, 177, No. 9, p. 71, 1956.

    Google Scholar 

  40. H. KÜnzler, H. Bohren Untersuchungen an Feinlötstellen, Technische Mitteilungen P.T.T. (Bern), No. 9, p. 329, 1954.

    Google Scholar 

  41. A. Z. Mample Soldering fluxes and flux principles, Western Union Technical Review, 35, January 1957.

    Google Scholar 

  42. C. G. Keel, G. B. Brubacher Flussmittel zum Weichlöten, Journal de la Soudure, No. 5, p. 95, 1952.

    Google Scholar 

  43. H. C. Sohl Non-corrosive fluxes, evaluation of spread and corrosion properties, Symposium on solder, A.S.T.M.-S.T.P., No. 189, p. 81, 1956.

    Google Scholar 

  44. H. H. Manko How to choose the right solder flux, Product Engineering, 13 June, 1960, p. 43.

    Google Scholar 

  45. W. R. Bjorklund Non-spattering solder flux, Tin and Its Uses, No. 70, p. 12, 1966.

    Google Scholar 

  46. B. M. Allen Some factors involved in soft soldering, Electronic Components, July 1966.

    Google Scholar 

  47. H. H. Manko Solders and Soldering McGraw-Hill Book Company.

    Google Scholar 

  48. M. M. Schwartz Vacuum brazing—from aluminium alloys up through the refractory metals, Metals Engineering Quarterly, ASM, November 1966, p. 47–51.

    Google Scholar 

  49. W. R. Lewis The action of fluxes that assist tinning and soldering, Tin and Its Uses, No. 72, 1966.

    Google Scholar 

  50. W. R. Lewis DIN 8511: Flufimittel zum Löten metallischer Werkstoffe, Blatt 1: Hartlöten von Schwermetallen, Blatt 2: Weichlöten von Schwermetallen, Blatt 3: Weich- und Hartlöten von Leichtmetallen, Deutscher Normenausschup, August 1966.

    Google Scholar 

  51. G. Ciriak Werkstoffeinflüsse auf die Löttemperatur, Metall, 21. Jahrgang, Heft 6, p. 590, June 1967.

    Google Scholar 

  52. M. M. Schwarz Clean, fast vacuum brazing joins diverse materials, Materials Engineering, December 1967, p. 76.

    Google Scholar 

  53. W. Wuich Einwirkung schädigender Gase auf den menschlichen Organismus beim Schweissen und Löten, Draht-Welt, vol. 53, No. 4, p. 273, 1967.

    Google Scholar 

  54. B. Liebesman Développement de Temploi du fluxgazeux dans V assemblage des métaux, lecture to La Societe des Ingenieurs Soudeurs, February 24, 1955.

    Google Scholar 

  55. H. H. Manko Color, corrosion and fluxes, Electronic Packaging and Production, February 1969, p. 26.

    Google Scholar 

  56. W. P. McQuillan Guide to Soldering, Welding Engineer, April 1965, p. 112.

    Google Scholar 

  57. E. Lüder Handbuch der Löttechnik, Berlin 1952.

    Google Scholar 

  58. A. Keil Legierungen mit extrem niedrigen Schmelzpunkten, Metall, No. 13 /14, p. 515, 1954.

    Google Scholar 

  59. R. C. Jewell Brazing and soldering, Metal Industry, 89, No. 5, p. 83, 1956.

    Google Scholar 

  60. W. J. Smellie Soldering and brazing, Metal Industry, 79, No. 4, p. 76, 1951.

    Google Scholar 

  61. W. R. Lewis Notes on soldering, London 1948.

    Google Scholar 

  62. W. R. Lewis Metal Industry, Handbook and Directory, London, 1957.

    Google Scholar 

  63. E. Hermann Das Hartlöten von Aluminium, Aluminium, No. 4, p. 139, 1953.

    Google Scholar 

  64. E. Hermann Brazing Manual, American Welding Society, New York, 1955.

    Google Scholar 

  65. H. Spengler Niedrig schmelzende Metalle und Legierungen, Metall, p. 682, 1955.

    Google Scholar 

  66. A. Keil Weichlote für Sonderzwecke, Metallwissenschaft und Technik, p. 689, 1955.

    Google Scholar 

  67. A. Keil Metals Handbook The American Society of Metals, Cleveland, Ohio.

    Google Scholar 

  68. R. J. Nekervis Tin and its alloys, Industrial and Engineering Chemistry, p. 2253, 1953.

    Google Scholar 

  69. R. J. Nekervis Reports of the conference on reliability of electrical connections, April 15 /16, 1954, RETMA Engineering Office, 1954.

    Google Scholar 

  70. A. B. I.Caufman Selecting solders for low temperature service, Materials in Design Engineering, p. 114, November 1958.

    Google Scholar 

  71. A. B. I. Caufman Reports of Symposium on Solder, A.S.T.M.-S.T.P. No. 189, 1956, p. 129–158.

    Google Scholar 

  72. H. H. Manko How to choose the right soft solder alloy, Product Engineering, March 6, 1961.

    Google Scholar 

  73. F. Gordon Foster How to avoid embrittlement of gold plated solder joints, Product Engineering, August 19, 1963.

    Google Scholar 

  74. F. Gordon Zeitgemässe Lötverbindungen, Bulletin des Schweizerischen Elektrotechnischen Vereins, 54, August 10, 1963.

    Google Scholar 

  75. K. M. Weigert Zur Entwicklungsgeschichte der amerikanischen Silberlote, Metall, Heft 15 /16, p. 721, 1956.

    Google Scholar 

  76. K. M. Weigert Ag-Cu-Zi brazing alloys, Journal of Metals, No. 2, 1954.

    Google Scholar 

  77. G. H. Sistare, J. J. Halbig, L. H. Grehell Silver-brazing alloys for corrosion-resistant joints in stainless steels, Welding Journal, 33, No. 2, p. 137, 1954.

    Google Scholar 

  78. K. M. Weigert Physical properties of commercial silver-copper-phosphorus brazing alloys, Welding Journal, 53, No. 7, p. 672, 1956.

    Google Scholar 

  79. W. Espe Lote undLöten in der Hochvakuumtechnik, Feinwerktechnik, 58, H10, 1953.

    Google Scholar 

  80. E. Lüder Studien über die Anwendbarkeit der Kupfer-Phosphorlote, Schweisstechnik, Heft 5, 1957.

    Google Scholar 

  81. N. Bredzs, D. Canonico Lithium additions to brazing alloys, Welding Journal, 34, No. 11, p. 535, 1955.

    Google Scholar 

  82. N. F. Lashko, S. V. Lashko- Avakyan Brazing and soldering of metals, London 1961.

    Google Scholar 

  83. J. Sagoschen Palladium in der HartlÖttechnik, Metallwissenschaft und Technik, Jrg. 15, Heft 9, September 1961, p. 870.

    Google Scholar 

  84. D. C. Herrschaft The evolution of ductile high-temperature brazing alloys, Metal Progress, September 1961, p. 97.

    Google Scholar 

  85. M. J. Stern Brazing of components for small gas turbine engines, Metal Progress, September 1961, p. 101.

    Google Scholar 

  86. F. M. Miller Importance of purity in manufacturing brazing filler metals for high temperature service applications, Welding Journal, August 1961, p. 821.

    Google Scholar 

  87. F. M. Miller Soldering Manual American Welding Society.

    Google Scholar 

  88. W. H. Kohl Soldering and Brazing, Vacuum, Vol. 14, p. 175–198.

    Google Scholar 

  89. Anon. Technische Rundschau, March 4, 1966.

    Google Scholar 

  90. R. L. Peaslee Selecting high-temperature brazing alloys, Machine Design, 33, September 14, 1961.

    Google Scholar 

  91. A. S. Cross, J. B. Adamec New era brazing turns to filler metals with palladium, Welding Journal, August 1963.

    Google Scholar 

  92. Anon. Technische Rundschau April 1, 1966.

    Google Scholar 

  93. Anon. Dip brazing aluminium assemblies Machine Design, August 18, 1966, p. 158.

    Google Scholar 

  94. H. H. MankoSolders and soldering McGraw-Hill Book Company.

    Google Scholar 

  95. H. H. MankoMaterials Selector Issue Mid-October 1966, p. 558–559, Materials in Design Engineering.

    Google Scholar 

  96. H. H. MankoBrazing and brazing alloys, Technology Utilization National Aeronautics and Space Administration, NASA SP-5026, Washington, 1966.

    Google Scholar 

  97. R. M. Macintosh Tin in cold service, Tin and Its Uses, No. 72, p. 7, 1966.

    Google Scholar 

  98. V. L. Grishin, S. V. Lashko Specific features in soldering copper with gallium-base solders, Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, USA, AD 625 145.

    Google Scholar 

  99. A. Prince The Au-Pb-Sn ternary system, Journal of the Less-common Metals, 12, p. 107–116, 1967.

    Article  Google Scholar 

  100. M. H. Sloboda The selection of brazing alloys, Welding and Metal Fabrication, p. 386, October 1966.

    Google Scholar 

  101. D. C. Herrschaft Ternary systems for ductile brazing alloys, Metal Progress Data Sheet, p. 96B, September 1961.

    Google Scholar 

  102. K. L. Gustafson Development and evaluation of braze alloys for vacuum furnace brazing, NASA-Report CR-514, July 1966.

    Google Scholar 

  103. Löten, Vorträge der Sondertagung Augsburg 1964 des Deutschen Verbandes fur Schweisstechnik e.V., Arbeits- gruppe 26 “Löten”.

    Google Scholar 

  104. A. Van’t Hoen Einflufi des Antimons auf die Eigenschaften des Lötzinnes und der Lotnahte von Weissblechdosen, Mitt. Forschungs- gesellschaft Blechverarbeitung, 1963, Nr. 4, p. 55.

    Google Scholar 

  105. J. T. Klomp Solderen in de hoogvacümtechniek, Mededelingenblad van de Nederlandse Vacuümvereniging, Jaarg, 4, No. 4 /5, October 1966, p. 48.

    Google Scholar 

  106. R. J. Klein-Wassink Wetting of solid-metal surfaces by molten metals, Journal of the Institute of Metals, Vol. 95, p. 38, February 1967.

    Google Scholar 

  107. B. Keysselitz Der Einflufi von Verunreinigungen in Weichloten, Metall, Jahrg. 21, Heft 6, p. 593, June 1967.

    Google Scholar 

  108. H. Littnanski Hartlöten mit Silberloten, Mitt, der Forschungsgesellschaft Blechverarbeitung e.V., No. 4, p. 57, February 20, 1965.

    Google Scholar 

  109. J. Spergel Tin transformation of tinned copper wire, ASTM Special Technical Publication, No. 319, Papers on Soldering, 1962.

    Google Scholar 

  110. D. T. Hawkins, R. Hultgren Vapor pressure of lead and activity measurements on liquid lead-tin alloys by the torsion effusion method, Trans. Metallurg. Soc. of AIME, vol. 239, p. 1046, July 1967.

    Google Scholar 

  111. A. J. Gubin, E. N. Dobkina Self-fluxing fillers for the brazing of stainless steels and heat resisting alloys, Welding Production, 13, No. 8, p. 48, 1966.

    Google Scholar 

  112. W. Wuich Einwirkung schädigender Gase auf den menschlichen Organismus beim Schweiszen und Loten, Draht-Welt, 53, No. 4, p. 273, 1967.

    Google Scholar 

  113. K. Löhberg, P. Presche Beitrag zur β-α-Umwandlung des Zinns, Zeitschrift für Metallkunde, Bd. 59, Heft 1, 1968, p. 74.

    Google Scholar 

  114. S. W. Zehr, W. A. Backofen Superplasticity in lead-tin alloys, ASM Transactions Quarterly, vol. 61, No. 2, June 1968, p. 300–313.

    Google Scholar 

  115. J. Colbus Festigkeitsänderungen von Kupfer-Zink-haltigen Loten infolge des Lötvorganges, Metall, Jahrg. 22, Heft 12, November 1968, p. 1090.

    Google Scholar 

  116. H. R. Thresh, A. F Crawley The viscosities of lead, tin and Pb-Sn alloys Metallurgica Transactions, vol. 1, June 1970, p. 1531.

    Google Scholar 

  117. F. R. N. Nabarro, P. J. Jackson Growth and perfection of crystals Proceedings, 1958, p. 14, New York.

    Google Scholar 

  118. W. C. Elles et al Growth and perfection of crystals Proceedings, 1958, p. 102, New York.

    Google Scholar 

  119. R. V. Coleman The growth and properties of whiskers Met. Reviews, 9, No. 35, 1964.

    Google Scholar 

  120. S. M. Arnold The growth of metal whiskers on electrical components Proc. Electronic Components Conference 1959, Bell Monograph 3304, 1957.

    Google Scholar 

  121. S. C. Britton, M. Clarke Publication No. 341 (1964), Tin Research Institute.

    Google Scholar 

  122. S. M. Arnold Repressing the growth of tin whiskers Plating, January 1966.

    Google Scholar 

  123. M. Rosen Practical whisker growth control methods, Plating, November 1968.

    Google Scholar 

  124. W. P. McQuillan Guide to soldering Welding Engineer, April 1965, p. 64.

    Google Scholar 

  125. H. Richaud Surface treatment of titanium, Metal Industry, 89, No. 4, p. 496, 1956.

    Google Scholar 

  126. G. W. Sevlen Induktionslöten von Fahrradrahmen Zeitschrift des Vereins deutscher Ingenieure, 92, p. 337, 1950.

    Google Scholar 

  127. T. H. Bohn Silver brazing lap joints in stainless steel tubing, Welding Journal, 95, No. 9, p. 884, 1956.

    Google Scholar 

  128. N. F. Lashko, S. V. Lashko-Avakyan Brazing and soldering of metals, London 1961.

    Google Scholar 

  129. G. H. Sistare, J. J. Halbig, L. N. Grennel Silver-brazing alloys for corrosion-resistant joints in stainless steels, Welding Journal, 33, No. 2, p. 137, 1954.

    Google Scholar 

  130. E. Lüder Handbuch der Löttechnik, Berlin 1952.

    Google Scholar 

  131. G. W. Hinkle How to solder stainless steel, Metal Products Manufacturing, April 1957, p. 64.

    Google Scholar 

  132. G. W. Hinkle Proceedings of the second RETMA conference on reliability of electrical connections, September 11 /12, 1956.

    Google Scholar 

  133. G. W. Hinkle Working instructions for hot-tinning cast-iron, Tin Research Institute, November 1958.

    Google Scholar 

  134. A. W. Goldenstein, W. Rostoker, F. Schossberger, C. Gutzeit Structure of chemically deposited nickel, Transactions of Electrochemical Society, 104, No. 2, p. 104, 1957.

    Google Scholar 

  135. H. A. Saller, J. T. Stacy, H. L. Klebanow Brazing nichrome V with GE-81 alloy, U.S. Atomic Energy Commission BMI-947, August 27, 1954; BMI-933, August 2, 1954.

    Google Scholar 

  136. H. A. Saller, J. T. Stacy, H. L. Klebanow Joining nimonic, Aircraft Production, 12,143, p. 265, 1950.

    Google Scholar 

  137. I. T. Hook The welding of copper and its alloys, Welding Journal, 34, No. 7, p. 321–337, 1955.

    Google Scholar 

  138. R. M. Macintosh Technical aspects of soldering practice, Welding Journal, 31, No. 10, p. 881–897, 1952.

    Google Scholar 

  139. H. R. Clauser How to select brazing and soldering materials, Materials and Methods, 35, No. 3, p. 105, 1952.

    Google Scholar 

  140. H. R. Clauser Welding Handbook, 3rd edition, AWS, New York 1950.

    Google Scholar 

  141. C. H. Chatfield Silver brazing of refractory metals, Welding Journal, 33, No. 9, p. 864–867, 1954.

    Google Scholar 

  142. W. J. Smellie Soldering and brazing, Metal Industry, 79, No. 4, 1951.

    Google Scholar 

  143. T. Perry, H. S. Spacil, J. Wulff Effect of oxygen on welding and brazing molybdenum, Welding Journal, 33, No. 9, p. 4425–4485, 1954.

    Google Scholar 

  144. J. H. Jouston, H. Udin, J. Wulff Joining of molybdenum, Welding Journal, 33, No. 9, p. 449–458, 1954.

    Google Scholar 

  145. A. Keil Ueber die Benetzungsfähigkeit von Loten, Zeitschrift für Metallkunde, Heft 7, p. 493, 1956.

    Google Scholar 

  146. H. R. Clauser How to select brazing and soldering materials, Materials and Methods, 35, No. 3, p. 105, 1952.

    Google Scholar 

  147. W. R. Lewis, P. S. Rieppel, C. P. Voldrich A preliminary report on the brazing of titanium, mild and stainless steels, Sheet Metal Industries, 32, No. 343, p. 833, 1955.

    Google Scholar 

  148. N. A. Tiner Metallurgical aspects of silver brazing titanium, Welding Journal, 34, No. 9, p. 846, 1955.

    Google Scholar 

  149. J. D. Dowd Soldering aluminium, Welding Journal, 33, No. 3, p. 113, 1954.

    Google Scholar 

  150. J. H. Dunn, E. P. White Aluminium advances in brazing castings, SAE Journal, No. 9, 1952.

    Google Scholar 

  151. P. T. Stroup (Alcoa) USA 2, 659, 138. Chemical Abstracts, 48, No. 7, p. 3886, 1954.

    Google Scholar 

  152. M. A. Miller Select the right method, Materials and Methods, 38, No. 3, p. 96, 1953.

    Google Scholar 

  153. M. A. Miller Soldering aluminium, The Aluminium Development Association, November 1957.

    Google Scholar 

  154. M. A. Miller British tool solders aluminium without flux, Modern Metals, September 1955, p. 106–107.

    Google Scholar 

  155. W. J. Smellie Soldering joints in aluminium: mechanism of corrosion, Light Metals, July 1956, p. 210–214.

    Google Scholar 

  156. J. C. Bailey, J. A. Hirschfeld Soldering aluminium Research, p. 320–326, 1954.

    Google Scholar 

  157. D. W. White, J. E. Burke The metal beryllium, ASM, Cleveland, 1955.

    Google Scholar 

  158. H. C. Whelps Soldering flaws in zinc die-castings, Welding Engineer, 41, No. 3, p. 18, 1956.

    Google Scholar 

  159. W. R. Lewis Notes on soldering Tin Research Institute, 1948.

    Google Scholar 

  160. G. W. Eldridge Aluminium soldering British Welding Journal, October 1965, p. 488–495.

    Google Scholar 

  161. G. W. Eldridge How to solder aluminium Modern Metals, December 1962, January, February, March 1963.

    Google Scholar 

  162. F. G. Cox Joining molybdenum Welding and Metal Fabrication, September 1961, p. 371.

    Google Scholar 

  163. M. A. Miller Joining aluminium to other metals, The Welding Journal, August 1953.

    Google Scholar 

  164. H. Bender High-temperature metal-ceramic seals, Ceramic Age, 63, No. 4, p. 15–17, 20–31, 46–50, 1954.

    Google Scholar 

  165. H. J. Nolte, R. F. Spurk Metal ceramic sealing with manganese, Television Engineering, November 15–19, 1950.

    Google Scholar 

  166. H. J. Nolte, R. F. Spurk Beilage Mitteilungen der Deutschen Forschungsgesell- schaft für Blechverarbeitung und Oberflächenbehandlung e.V., Band 17, No. 16/17, August 25, 1966.

    Google Scholar 

  167. J. M. Seeman Ion sputtered coatings provide multi-functional finishes, Materials in Design Engineering, p. 102, November 1965.

    Google Scholar 

  168. S. C. Britton, M. Clarke Effect of diffusion from brass substrates into electro- deposited tin coatings on corrosion resistance and whisker growth Tin Research Institute, Publication No. 341.

    Google Scholar 

  169. S. C. Britton, M. Clarke The trend to tin-zinc coatings, Tin and Its Uses, No. 59, p. 12, 1963.

    Google Scholar 

  170. S. C. Britton, M. Clarke Brazing and brazing alloys, Technology Utilization National Aeronautics and Space Administration, NASA SP-5026, Washington, 1966.

    Google Scholar 

  171. R. E. Curran,L.I.Mendelsohn Brazing molybdenum and zircon sensor components Metal Progress, p.94 December 1966.

    Google Scholar 

  172. F. G . Foster Embrittlement of solder by gold from plated surfaces ASTM Special Technical Publication, No. 319; Papers on soldering p. 13.

    Google Scholar 

  173. J. D. Keller Printed wiring surface preparation methods—elimination of gold plating as a surface preparation for printed circuits and development of a contamination-free surface. ASTM Special Technical Publication, No. 319; Papers on soldering, p. 3.

    Google Scholar 

  174. J. KramAr Joints metal-ceramique soudes avec le titane dans le vide pousse, Le vide, No. 125, p. 402, September-October 1966.

    Google Scholar 

  175. W. R. Lewis The action of fluxes that assist tinning and soldering, Tin and Its Uses, No. 72, p. 3, 1966.

    Google Scholar 

  176. J. W. Price Tin en tinlegeringslagen in de electronische industries, Tijdschrift voor Oppervlaktetechnieken van Metalen, November 1966.

    Google Scholar 

  177. A. G. Metcalfe Method of brazing tungsten, To U.S. secretary of the Navy, USA 3.276.113, October 4, 1966.

    Google Scholar 

  178. A. G. Metcalfe A. E. C. Brazing alloys for tungsten and molybdenum, Belgian Patent 665.860 (June 24,1965) and Belgian Patent 669.448 (September 10, 1965 ).

    Google Scholar 

  179. F. Gordon Foster How to avoid embrittlement of gold-plated solder joints, Product Engineering, p. 59, August 19, 1963.

    Google Scholar 

  180. U. Harmsen, C. L. Meyer Vber Weichldtungen an Gold, Zeitschrift fur Metallkunde, Bd. 56, Heft 4, p. 234, 1965.

    Google Scholar 

  181. J. M. Thompson, L. K. Bjelland Evaluation of solderability of electroplated coatings, Proceedings of the American Electroplaters’ Society, 1961.

    Google Scholar 

  182. C. J. Thwaites Solderability of coatings for printed circuits, Transactions of the Institute of Metal Finishing, vol. 43, p. 143, 1965.

    Google Scholar 

  183. D. K. Davis, L. de Give High-reliability Ceramic-to-Metal Joints, Machine Design, vol. 39, p. 133, January 5, 1967.

    Google Scholar 

  184. G. V. Browning, M. H. Baster Experimental evaluation of reliable soldering processes, Proceedings 9th National Symposium on reliability and quality control, p. 211, January 22–24, 1963.

    Google Scholar 

  185. G. V. Browning, M. H. Baster Copper, p. 32, May 1967.

    Google Scholar 

  186. W. Kudenov Joining beryllium to stainless, American Machinist, p. 118, September 12, 1966.

    Google Scholar 

  187. W. Kudenov Löten Vorträge der Sondertagung Augsburg 1964 des Deutschen Verbandes fur Schwei Btechnik e.V., Arbeits- gruppe 26 “Löten”.

    Google Scholar 

  188. M. F. Jordan, D. R. Milner The removal of oxide from aluminium by brazing fluxes, Journal of the Institute of Metals, vol. 85, p. 33.

    Google Scholar 

  189. E. V. Walker, F. A. Waldie Soft-Soldering to Gold-Plated Surfaces, Post Office Electrical Engineering Journal, vol. 58, No. 4, p. 268, 1965.

    Google Scholar 

  190. E. V. Walker, F. A. Waldie Brazing alloys for tungsten, molybdenum and their alloys, U.S. patent 3.292.255 and British patent 1, 063, 274.

    Google Scholar 

  191. A. Prince Solderability of Gold Plating, The General Electric Company Ltd., Hirst Research Centre, Wembley, Middlesex, January 27, 1963.

    Google Scholar 

  192. K. Rüdinger, A. Ismerz Löten von Titan und Titanlegierungen, Schwei Ben und Schneiden, Jahrg. 19, Heft 2, p. 71, February 1967.

    Google Scholar 

  193. W. B. Harding, H. B. Pressley Soldering to gold plating, Techn. Proceedings American Electroplaters ’ Soc., 50, p. 90, 1963.

    Google Scholar 

  194. R. F. Karlak Metallizing Ceramics Machine Design, May 11, 1967, p. 160.

    Google Scholar 

  195. W. Wuich Einwirkung schädigender Gase auf den menschlichen Organismus beim Schweissen und Loten, Draht-Welt, vol. 53, No. 4, p. 273, 1967.

    Google Scholar 

  196. G. Weirich Das Löten von Hartmetallwerkzeugen, Löten, 41, No. 6, p. 18, 1964.

    Google Scholar 

  197. J. van Rooy Construeren met hardmetaal Philips Technische Biblio- theek, 1968.

    Google Scholar 

  198. L. Missel, R. K. Titus Plating of beryllium for brazing, Metal Finishing, vol. 65, 65, No. 10, p. 59, October 1967.

    Google Scholar 

  199. D. E. Salomon Joining dissimilar metals by gas tungsten-arc braze-welding Welding Journal, p. 181–191, March 1968.

    Google Scholar 

  200. D. E. Salomon Tin and Its Uses, No. 81, p. 14, 1969.

    Google Scholar 

  201. M. M. Karnovsky, A. Rosenzweig The gold-tin-lead alloys—The gold-tin-lead system, Trans. Metallurgical Society of AIME, Vol. 242, p. 2257, November 1968.

    Google Scholar 

  202. Anon. Vacuum brazing fills big vacuum Iron Age, January 9, 1969, p. 64.

    Google Scholar 

  203. Anon. Brazing Alcoa Aluminum, Alcoa, Pittsburgh, 1967.

    Google Scholar 

  204. L. E. Helwig, P. R. CarterSolder flow on galvanized surfaces Metal Finishing, February 1969, p. 63–68.

    Google Scholar 

  205. C. J. Thwaites Some effects of abrasive cleaning on the solderability of printed circuits, Metal Finishing Journal, September 1968, p. 291.

    Google Scholar 

  206. W. E. Hoare Hot tinning Tin Research Institute, 1948.

    Google Scholar 

  207. C. J. Thwaites Some experiments on the hot-tinning of small parts, Metallurgia, September 1961, p. 117.

    Google Scholar 

  208. E. Lüder Handbuch der Löttechnik, Berlin 1952.

    Google Scholar 

  209. W. J. Van Natten Design data for brazing, Welding Journal 31, No. 11, p. 1023, 1952.

    Google Scholar 

  210. H. H. Manko How to design the soldered electrical connection, Product Engineering, June 12, 1961.

    Google Scholar 

  211. J. Colbus Verbindungen durch Löten, Lastechniek, July/September 1962.

    Google Scholar 

  212. G. L. J. Bailey,G. P. McKnight The influence of joint design on solderability, Sheet Metal Industries, January 1955, p. 47–57.

    Google Scholar 

  213. H. Bühler, J. Colbus Die Festigkeitssteigerung von Spaltlotverbindungen bei Abnehmen der Spaltbreite, als Erscheinung der Festigkeit bei behinderter Verfirmung, Zeitschrift fur Metallkunde, 48, Heft 2, p. 66, 1957.

    Google Scholar 

  214. N. Bredz Investigation of factors determining the tensile strength of brazed joints, Welding Journal, 33, No. 11, p. 545 s, 1954.

    Google Scholar 

  215. N. Bredz Materials in Design Engineering, p. 104, July 1966.

    Google Scholar 

  216. N. Bredz Dipbrazing aluminum assemblies, Machine Design, p. 158, August 18, 1966.

    Google Scholar 

  217. H. Zörn, Th. Nesse Die metallurgischen Vorgänge beim Weichlöten von Kupfer und Kupferlegierungen und das Festigkeitsverhalten der Lötverbindungen, Metall, 20. Jahrg., Heft 11, November 1966.

    Google Scholar 

  218. H. H. MankoSolders and soldering McGraw-Hill Book Company.

    Google Scholar 

  219. H. H. MankoTin-zinc plating Tin Research Institute, Fact Sheet E 6.

    Google Scholar 

  220. K. F. Zimmer-Mann Schweissen und Schneiden 18. Jahrg., No. 9, p. 467, September 1966.

    Google Scholar 

  221. H. Zürn, Th. Nesse Beitrag zum Zeitstandverhalten von Lötverbindungen aus Zinn-Weichloten bei Raumtemperatur, Schweissen und Schneiden, Jahrg. 18 (1966), Heft 1, p. 2.

    Google Scholar 

  222. J. Colbus Die Scherfestigkeit von Silber-, Messing- und Neusilberloten auf St 37.11 in Abhängigkeit von Spaltbreite und Lötflache, Mitteilungen der Forschungsgesellschaft Blechverarbeitung e.V., No. 13, p. 141, July 1, 1957.

    Google Scholar 

  223. Designing for Preforms. Lucas-Milhaupt Engineering Co., Cudahy, Wisconsin, USA.

    Google Scholar 

  224. F. E. Faller Neue Aluminium-Plattierlotwerkstoffe mit verbessertem Korrosionsverhalten, Zeitschr. f. Metallkunde, 58, Heft 10, p. 676, 1967.

    Google Scholar 

  225. E.-A. Cornelius, J. Marlinghaus Gestaltung von Hartlötkonstruktionen hoher Tragfähigkeit, Konstruktion, 19, Heft 8, p. 321, August 1967.

    Google Scholar 

  226. K. F. Zimmer-mann Hartlöten-Regeln für Konstruktion und Fertigung, Deutscher Verlag für Schweisstechnik G.m.b.H, Düsseldorf, 1968.

    Google Scholar 

  227. W. P. McQuillan Guide to soldering, Welding Engineer, April 1965, p. 112.

    Google Scholar 

  228. H. Schwarzbart Metal fibre reinforced soldering tape, British Welding Journal, November 1968, p. 538–542.

    Google Scholar 

  229. B. Cambels Metal cleaning methods, Materials and Methods, 38, No. 5, 1953.

    Google Scholar 

  230. A. P. Schulze, Electrostatic descaling, Production Engineering and Management, 22, No. 3, p. 67, 1948.

    MathSciNet  Google Scholar 

  231. W. R. Lewis Einige Probleme beim WeichldtenMetall, Ii, Heft 5, P. 372 1957.

    Google Scholar 

  232. E.Lüder Handbuch der Löttechnik. Berlin 952.

    Google Scholar 

  233. E. Luder Automatic soldering machine, Sheet Metal Industries, 31, No. 325, 1954.

    Google Scholar 

  234. T. E. Protz How to dip-braze aluminium, American Machinist, 99, No. 2, 1955.

    Google Scholar 

  235. N.F. Lashko, S.V. Ashko- Avakyan Brazing and soldering of metals, London 1961.

    Google Scholar 

  236. A. J. Davis, A. J. Easton, J. Freezer The analysis of soldering alloys by density, Sheet Metal Industries, 32, No. 335, 1955.

    Google Scholar 

  237. W. E. Hoare Hot tinning, Tin Research Institute, 1948.

    Google Scholar 

  238. W. E. Hoare Proceedings of the second RETMA conference on reliability of electrical connections. Sept. 11–12, 1956, RETMA Engineering Office, New York.

    Google Scholar 

  239. E. S. Miller, A. A. Johns, Dip soldering printed circuits; Symposium on solder, ASTM-STP No. 189/1956, p. 30–39, 115–126.

    Google Scholar 

  240. C. J. Thwaites Some experiments on the hot-tinning of small parts Metallurgia, Sept. 1961, p. 117.

    Google Scholar 

  241. C. J. Thwaites Working instructions for hot-tinning cast iron, Tin Research Institute, 1957, p. 381–385.

    Google Scholar 

  242. V. Beatson,H.R.Brooker Industrial brazing, torch brazing, Welding and Metal H. R. Brooker Fabrication, 20, No. 6, 1952.

    Google Scholar 

  243. H. H. Grix, Efficient torch soldering, Schweissen und Schneiden, Aug. 1957, p. 381–385.

    Google Scholar 

  244. H. H. Grix, Equipment selection for soldering, Proceedings of the second RETMA conference on reliability of electrical connections, 11–12 Sept. 1956, RETMA Engineering Office, New York.

    Google Scholar 

  245. F. W. Curtis High-frequency induction heating McGraw-Hill, New York, 389 pp.

    Google Scholar 

  246. F. W. Curtis Brazing Manual, A.S.W., No. 1, New York 1955.

    Google Scholar 

  247. V. Beatson, H. R. Brooker Industrial brazing, 1953.

    Google Scholar 

  248. C. H. Yetman Induction heating successfully solders aluminum, Iron Age, 167, No. 11, p. 108, March 1951.

    Google Scholar 

  249. N. A. de Cecco, J. U. Perks The brazing of aluminium, Welding Journal, 32, No. 11, p. 1031, 1953.

    Google Scholar 

  250. Anon. The selection problem, Materials and Methods, 35, No. 3, p. 120, 1952.

    Google Scholar 

  251. W. Reed, L. Edelson Silver-brazing by carbon-arc process, Metal Industry, 52, No. 18, 1954.

    Google Scholar 

  252. I. C. McGuire This new method permits soldering difficult materials, Materials and Methods, 44, No. 1, 1956.

    Google Scholar 

  253. Anon. Method of soldering difficult materials, Machinery, vol. 89, July 6, 1956, p. 81.

    Google Scholar 

  254. A. Keiüber die Benetzungsfähigkeit von Löten, Zeitschrift fü r Metallkunde, Heft 7, 1956.

    Google Scholar 

  255. B. E. Noltingk, E. A. Neppiras Cavitation produced by ultrasonics, The Proceedings of the Physical Society (B), 63, No. 9, p. 665, 1951.

    Google Scholar 

  256. B. E. Noltingk, E. A. Neppiras Ultrasonic soldering irons, Nature (L), 166, p. 615, 1950.

    Google Scholar 

  257. A. E. Grawfords Ultrasonic soldering of light metals, Light Metals, 15, No. 3, 1952.

    Google Scholar 

  258. L. Walter Ultrasonics, the answer to aluminium soldering, Materials and Methods, 38, p. 59, 1953.

    Google Scholar 

  259. D. C. Burch, R. L. Simpkins New tin-depositing flux for soldering aluminium, Materials and Methods, 40, No. 3, 1954.

    Google Scholar 

  260. W. Hofmann, H. J. Husmann, R. Koppe Die Keilschweissung von Aluminium und Kupfer als, Selbstlotung, Zeitschrift fur Metallkunde, 43, Heft 10, 1952.

    Google Scholar 

  261. A. Keil Wie verbinden sich Metalle, Zeitschrift fur Schweisstechnik, No. 2, 1951.

    Google Scholar 

  262. E. V. Beatson, H. R. Brooker Furnace brazing, Welding and Metal Fabrication, 20, No. 9, 1952.

    Google Scholar 

  263. D. Brooks Brazing titanium to titanium and to steels, Metal Fabrication, 21, No. 1ll, 1954.

    Google Scholar 

  264. C.H. Wanamaker How to bronze-weld, Welding Journal, 29, No. 3, p. 235–257, 1960.

    Google Scholar 

  265. H. R. Schmuck Principles of bronze welding, Welding Journal, 31, No. 10, 954, 1952.

    Google Scholar 

  266. H. R. Schmuck Werkstoff und Schweissung, Band 2, Akademie Verlag, 1133, Berlin 1954.

    Google Scholar 

  267. S. Watkins Tube assemblies joined by vacuum induction brazing, Metal Progress, April 1966, p. 73.

    Google Scholar 

  268. B. J. Costello Infrared soldering of printed circuits, Design News, 27 Oct. 1965, p. 154.

    Google Scholar 

  269. B. J. Costello Philips high frequency induction heating, N.V. Philips’ Gloeilampenfabrieken, Eindhoven 1961.

    Google Scholar 

  270. B. J. Costello Cold tip puts solder where it counts, Iron Age, p. 80, 5 Nov. 1964.

    Google Scholar 

  271. H. H. Manko Solders and soldering, Mc-Graw-Hill Book Company.

    Google Scholar 

  272. Anon. Soldering for microcircuits, The Engineer, p. 168, 27 Jan. 1967.

    Google Scholar 

  273. Anon. Brazing and brazing alloys.

    Google Scholar 

  274. Anon. Solder sleeves, The Engineer, 20 Jan. 1967.

    Google Scholar 

  275. F. Z. Keister Beware of solder slivers, Electronic Packaging and Production, p. 162, Nov. 1966.

    Google Scholar 

  276. H. B. G. Casimir, The skin effect, Philips Techn. Review, 28, 1967, No. 9, J. Ubbink p. 271.

    Google Scholar 

  277. R. Cailler Le brasage au bain de sels de Valuminium et de ses alliages, lecture delivered for the Societe des Ingenieurs Soudeurs, 17 Nov. 1966.

    Google Scholar 

  278. L. Sanderson A new brazing technique, Tooling, July 1966, p. 39.

    Google Scholar 

  279. K. R. Perun Diffusion welding and brazing of Titanium 6A1–4V, Process Development Welding Journal Supplement, September 1967, p. 385-s.

    Google Scholar 

  280. W. Vanschen Das Elektrische Stiftloten Industrie-Anzeiger, 23 April 1968, p. 665 (73).

    Google Scholar 

  281. W. B. Archey Hot gas soldering for interconnection of integrated electronic packages, IEEE, Dec. 1964, p. 1657–1660.

    Google Scholar 

  282. D. E. Solomon Joining dissimilar metals by gas tungsten-arc braze-w elding, Welding Journal, March 1968, p. 181–191.

    Google Scholar 

  283. Anon. Inco Nickel, No. 20, Oct. 1967.

    Google Scholar 

  284. V. B. Boiko, Yu. A. Baigudanov Flash soldering by heating in glycerine, Svar. Proiz., No. 8, 1967, p. 42.

    Google Scholar 

  285. C. J. Thwaites Some effects of abrasive cleaning on the solderability of printed circuits, Metal Finishing Journal, Sept. 1968, p. 291.

    Google Scholar 

  286. B. M. Allen Soldering Handbook, Multicore Solders Ltd. 1969.

    Google Scholar 

  287. W. D. Wilkinson High frequency induction brazing and soldering, British Welding Journal, October 1965, p. 478–487.

    Google Scholar 

  288. C. E. Eadon-Clarke Modern production line methods for soldering and brazing British Welding Journal, October 1965, p. 500.

    Google Scholar 

(a) Solder alloys

  1. Hartlote für Schwermetalle, DIN 8513.

    Google Scholar 

  2. Silberlote zum Hartlöten von Edelmetallen, DIN 1735.

    Google Scholar 

  3. Soft solders, British Standards Specification, BS 219, 1959.

    Google Scholar 

  4. Hart- und Weichlote fürAluminium und Aluminiumlegierungen, DIN 8512.

    Google Scholar 

  5. Weichlote für Schwermetalle, DIN 1707, 4–1964.

    Google Scholar 

  6. Solder, lead alloy, tin-lead alloy and tin alloy, Federal Specification QQ-S-571d, 1963, USA.

    Google Scholar 

  7. Tentative specification for solder metal, ASTM B32–60aT, 1960.

    Google Scholar 

  8. Methods for chemical analysis of metals, ASTM, 1960.

    Google Scholar 

  9. Ingot tin, British Standards Specification BS 3252, 1960.

    Google Scholar 

  10. Soft solders for automobile use, British Standards Specification, AU 90, 1965.

    Google Scholar 

  11. Methods for the sampling and analysis of tin and tin alloys, Parts 1 to 13, 17 to 19 of British Standards Specification, BS 3338, 1961.

    Google Scholar 

(b) Resin cored soldering wire

  1. Resin-cored solder wire “activated” and “non-activated” (non-corrosive), British Standards Specification, BS 441, 1954.

    Google Scholar 

  2. Tentative specification for rosin flux cored solder, ASTM.B 284–60T.

    Google Scholar 

  3. Special Technical Publications, ASTM No. 189, 1956.

    Google Scholar 

  4. Report of the conference on reliability of electrical connections, RETMA, pp. 46–54, 1954, Illinois, USA.

    Google Scholar 

  5. Soldering fluxing and fluxed solders, UL 381-O-o (USA).

    Google Scholar 

  6. Resin flux cored solders, Japanese Industrial Standard, JIS C2512–1965, Japanese Standards Association.

    Google Scholar 

  7. Weichlote für Flussmittelseelen auf Harzbasis, DIN 8516.

    Google Scholar 

  8. Non-corrosive rosin-cored solder wire, containing rosin, mildly activated rosin or activated rosin. Activity of flux, corrosivity of residue, QQ-S-571d, 1963, USA.

    Google Scholar 

(c) Fluxes

  1. Non-corrosive flux for soft soldering, Aircraft Materials Specification DTD 599, 6–1953 (England).

    Google Scholar 

  2. Flux, soldering, liquid (rosin base), Military Specification Mil-F-14256c, 20.12.1963 (USA).

    Google Scholar 

  3. P. M. Fisk, Testing of solder fluxes, Sheet Metal Industries, Sept. 1954, pp. 743 – 747.

    Google Scholar 

  4. F. Hochberg, The suitability of soldering fluxes for use in the assembly of military equipment, Report of the conference on reliability of electrical connections, RETMA, 15 /16 April 1954, pp. 46 – 54.

    Google Scholar 

  5. Flussmittel zum Löten metallischer Werkstoffe, DIN 8511.

    Google Scholar 

  6. Composition of a salt flux solution, DTD 81 (England).

    Google Scholar 

  7. Rosin DEF 72, (England).

    Google Scholar 

  8. Rosins, classified by source, colour and presence of additives to reduce stickiness, LLL-R-626b, 1957 (USA).

    Google Scholar 

(d) (Solderability of) component parts, techniques

  1. Soldering of metallic materials—definitions, DIN 8505, 1965.

    Google Scholar 

  2. Draft Test T: Solderability, DIN 40046, 1967.

    Google Scholar 

  3. Draft Copper-clad laminate for printed circuit boards, DIN 40802, 1965.

    Google Scholar 

  4. Artificial climates for testing purposes, DIN 50015, 1959.

    Google Scholar 

  5. Draft Testing of electrical insulating materials, DIN 53482, 1965.

    Google Scholar 

  6. Environmental test, Part 2T: Soldering, British Standards Specification, BS 2011, 1966.

    Google Scholar 

  7. Copper-clad laminate for printed circuit boards, British Standards Specification, BS 3888, 1965.

    Google Scholar 

  8. Electronic parts of assessed quality, British Standards Specification, BS 9000, 1967.

    Google Scholar 

  9. Sampling procedures for electrical parts, British Standards, BS 9001, 1967—Sampling procedures, British Standards DEF-131-A, 1964—Sampling procedures for inspection by attributes, USA-MIL-STD-105.

    Google Scholar 

  10. Environmental testing, British Standard K 1007, 1963.

    Google Scholar 

  11. Draft Environmental test T: Solderability, British Standard DEF 5011, 1967.

    Google Scholar 

  12. Printed wiring boards with plated-through holes, British Standard DEF 5028, 1963.

    Google Scholar 

  13. General specification for soldering processes, USA-MIL-S-6872A, 1954.

    Google Scholar 

  14. Method 208 (solderability) and Method 210 (resistance to heat) USA-MIL-STD202C, 1962.

    Google Scholar 

  15. High-reliability hand soldering, USA-MIL-S-45743B, 1967.

    Google Scholar 

  16. Solderability of printed wiring boards, USA Standard RS-319, 1965.

    Google Scholar 

  17. Meniscus test for printed wiring boards, USA-MIL-P-55110.

    Google Scholar 

  18. Solderability of terminations, Electronic Industries Association Standard, RS-178-A USA.

    Google Scholar 

  19. Pessel test, IEEE, Transactions on product engineering and production, Jan. 1963, pp. 28–33.

    Google Scholar 

  20. C. J. Thwaites, A new solderability test apparatus, Tin Research Institute, Publication No. 344.

    Google Scholar 

  21. C. J. Thwaites, Testing for solderability, British Welding Journal, pp. 543 – 550, Nov. 1965.

    Google Scholar 

  22. H. H. Manko, Solders and soldering, McGraw-Hill Book Company.

    Google Scholar 

  23. Anon., Solderability of tin-coated copper, Plating, p. 315, April 1965.

    Google Scholar 

  24. J. A. Ten Duis, An apparatus for testing the solderability of wire, Philips Techn. Review, 20, 1958/59, No. 6, p. 158.

    Google Scholar 

  25. Kageyama NosuoOn the spreading properties of solder on metal surfaces Review of the Electrical Communication Laboratory. vol. 13, No. 1–2, Jan.Febr. 1965.

    Google Scholar 

  26. L. Z. G. Earle, A quantitative study of soft soldering by means of the Kollagraph, Journal Institute of Metals, pp. 45 – 73, 1945.

    Google Scholar 

  27. W. B. Harding, Solderability testing, Plating, p. 971 – 981, Oct. 1965.

    Google Scholar 

  28. W. H. Wade, G. W. Brown, A system for numerical evaluation of the solderability of lead wires, Plating, 53, p. 783, June 1966.

    Google Scholar 

  29. J. A. Ten Duis, E. Van Der Meulen, Measurement of the solderability of components, Philips Techn. Review, 28, 1967, No. 12, p. 362.

    Google Scholar 

  30. L. E. Helwig, P. R. Carter, Solder flow on galvanized surfaces, Appendix, Metal Finishing, Febr. 1969, p. 63 – 68.

    Google Scholar 

  31. R. S. Budrys, R. M. Brick, Variables affecting the wetting of tinplate by Sn-Pb solders, Metallurgical Transactions, vol. 2, January 1971, p. 103.

    Google Scholar 

(e) Soldered products

  1. Testing of printed circuits, British Standards Specification, BS 4025, 1966.

    Google Scholar 

  2. Guide on the reliability of electronic equipment, British Standards Specification, BS 4200, 1967.

    Google Scholar 

  3. Soldering and brazing inspection, British Standards AP4089 D.405.

    Google Scholar 

  4. Prüfung von Hartlötverbindungen, DIN 8525, 1965.

    Google Scholar 

  5. Prüfung von Weichlötverbindungen, DIN 8526, 1967.

    Google Scholar 

  6. Criteria for inspection for highly reliable soldered connections in electronic and electrical applications, USA Standard C 99.1–1966.

    Google Scholar 

  7. Lötspezifikationen entstanden im Projekt AZUR, I. Vorläufige Spezifikationen für die Herstellung zuverlässiger handgelöteter elektrischer Verbindungen, Satellitenprojekt 625A1, Bölkow G.m.b.H., Ottobrun bei München, 1967.

    Google Scholar 

  8. AWS and ASTM, Brazing manual, Reinhold Publishing Corporation, N.Y., 1955.

    Google Scholar 

  9. H. H. Manko, Solders and soldering, McGraw-Hill Book Company.

    Google Scholar 

  10. R. M. Macintosh, Technical aspects of soldering practices, Welding Journal, 31, No. 10, 1952, p. 881.

    Google Scholar 

  11. W. H. Rombach, Controlling quantity on soldered electrical connections, Symposium on solder, ASTM-STP No. 189, p. 175 – 283, 1956.

    Google Scholar 

  12. Dip brazing aluminum assemblies, Machine Design, 18 Aug. 1966, p. 158.

    Google Scholar 

Download references

Authors

Editor information

A. Davidson

Copyright information

© 1972 N. V. Philips’ Gloeilampenfabrieken, Eindhoven

About this chapter

Cite this chapter

van der Hoek, F. (1972). Soldering and brazing. In: Davidson, A. (eds) Handbook of Precision Engineering. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-01020-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-01020-2_4

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-01022-6

  • Online ISBN: 978-1-349-01020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics